
Abstract. The optical transformation of a zeroth-order Bes-
sel beam to a second-order Bessel beam is studied theoreti-
cally and experimentally in the case when the beam propa-
gates along the optical axis of a uniaxial crystal. It is shown
that, if the crystal length or the cone angle of the incident
beam are chosen properly, the energy of the input éeld can be
almost completely converted into a second-order Bessel beam.
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1. Introduction

Bessel light beams (BLBs) are a separate object of optical
research for 15 years already. This éeld has been initiated
by papers [1, 2], in which it has been shown that BLBs are
described by exact solutions of the Helmholtz equation and
have the remarkable property of continuous self-reproduc-
tion of their proéle, which is called the ray-like property. So
far, most studies have been concentrated on zeroth-order
BLBs (see, e.g., Refs [3 ë 6]), which is explained by their
importance for practical applications. Zeroth-order BLBs
have a deep focus ì a narrow, relatively intense central
maximum that is diffraction-free at large distances. It is
important that éelds with a deep focus can be produced
using a simple scheme with an axicon, a fact known long
before the publication of papers [1, 2] (see Refs [7 ë 11]).
Apart from the above-mentioned feature of the spatial
structure, the Fourier spectrum structure of BLBs is also
quite important. The cone of the wave vectors of Bessel
beams makes it possible to realise various vector interac-
tions in nonlinear optics (see, e.g., Ref. [12]).

Recently, a new application employing diffraction-free
BLBs has emerged: BLBs can be used to conéne cold atoms
and control their motion [13 ë 16]. Of some advantages is the
variant when atoms are localised in a zero-intensity region.
One can use either higher order BLBs or circular BLBs,
formed in the far-éeld zone of a limited BLB of an arbitrary

order. In the former case, one can create an optical trap with
transverse dimensions of a few wavelengths provided that
the used BLBs have a suféciently large cone angle.

Thus, the problem of generating higher order BLBs is of
current interest. At present, BLBs are mostly generated with
the help of holograms [14, 17, 18]. The main advantage of
the holographic method is its universality: it can create BLBs
of arbitrary orders or their superpositions. Its main draw-
back is a relatively low eféciency, amounting to � 40%.
The second method for the generation of higher order BLBs
employs the conversion of higher order Laguerre ëGauss
modes in an axicon. This process is similar to the conversion
of a fundamental mode (Gaussian beam) to a zeroth-order
BLB [19, 20].

The authors of Ref. [16] have recently performed a
comprehensive study of this method and conérmed its
high eféciency. However, this conclusion concerns the
last stage of the conversion, when an axicon is used, whereas
the main restriction of this method currently comes from the
limited eféciency of the generation of higher-order La-
guerre ëGauss modes. In Refs [16,19], Laguerre ëGauss
modes have been formed by holograms; in Ref. [20], a
biaxial crystal has been used for this purpose, allowing a
conversion eféciency of approximately 60%.

The stage of generating higher order Laguerre ëGauss
modes is excluded in a two-stage method employing an
axicon and a biaxial crystal, earlier proposed in Ref. [21]. In
this scheme, the fundamental laser mode can be almost
completely converted into a érst-order BLB. A drawback of
this method is the necessity to implement the n-fold
cascading of the optical scheme to generate a nth-order
BLB.

In this paper, we continue the study of transformation of
the Bessel beam order by anisotropic crystals, in particular,
the possibility of using uniaxial crystals for this purpose.

2. Theoretical model

Let us determine the refracted éeld induced by a BLB that
is incident on a uniaxial crystal from an isotropic medium
along its optic axis c (Fig. 1). For a uniaxial crystal, the
Maxwell equations have two solutions corresponding to
ordinary (o) and extraordinary (e) plane waves. The electric
éeld vectors corresponding to these solutions can be written
as

Êo;e�R� � Eo;e�r� exp�iko;ez� imj�, (1)

where R � ( r, j, z ) are the cylindrical coordinates and m is
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an integer. The components of the vector amplitudes Eo;e
can be expressed in terms of mth-order Bessel functions of
the érst kind Jm( qr) and their derivatives Jm

0 ( qr) �
qJm( qr)=q ( qr) as

Eor �
im
qr

Jm�qr�; Eoj � ÿJm0 �qr�; Eoz � 0 (2)

for an ordinary beam and

Eer � i�cos ge�Jm0 �qr�; Eej � ÿ�cos ge�
m

qr
Jm�qr�;

Eez � �sin ge�
eo
ee
Jm�qr� (3)

for an extraordinary beam. The cone parameter q, equal to
the radial component of the BLB wave vectors, is con-
tinuous at the interface due to the boundary conditions.
For the both beams inside the crystal, it coincides with the
cone parameter q � k1 sin g1 of the incident beam, where
k1 � n1o=c; n1 is the refractive index of the isotropic me-
dium (see Fig. 1). The longitudinal components of wave
vectors ko;z�k0no cos go and kez�k0ne(ge) cos ge are related
to the radial component q by expressions

q 2 � k 2
oz � k 2

0 n
2
o ; q 2 � k 2

ez � k 2
0 n

2
e �ge�,

where n 2
o � eo; n

2
e (g) � eoee=(eo sin

2 g� ee cos
2 g); eo and ee �

n 2
e are the principal values of the dielectric permittivity

tensor of the crystal.

One can see from equations (2) and (3) that, similarly to
the case of ordinary and extraordinary plane waves, the
polarisation vector of the BLB has nonzero j- and r-com-
ponents only if m � 0 (Fig. 2). Higher-order BLBs addi-
tionally have components that are orthogonal to the indi-
cated ones.

To induce éelds (2) and (3), which have homogeneous
azimuthal intensity distribution, the incident beam must be
circularly polarised [21]. In the general case of vector BLBs,
this condition is satiséed by beams whose electric éeld
vector has a transverse component of the form

Ê �1?�R� � iA1

� �er � itej�
�1� t 2�1=2

m

qr
Jm�qr�

� �ter � iej�
�1� t 2�1=2

Jm
0 �qr�

�
exp�i�kzz�mj��, (4)

where er;j are the unit vectors of the cylindrical system of
coordinates; t � cos g1; A1 is a constant amplitude factor.
The longitudinal éeld components of beams (4) are given by

E�z � �A�sin g�Jm�qr�.

One can see from Eqn (4) that, at small cone angles
(g1 ! 0), the éeld polarisation is close to the right-handed
(�) or left-handed (ÿ) circular polarisation (quasi-circular
polarisation). A numerical estimation shows that the
ellipticity t of éeld (4) is close to unity for angles g1 as
high as � 208.

For deénitiness, we will assume that the crystal is irra-
diated by a right-polarised BLB (4). In order to énd the
amplitudes Ao;e of the two refracted beams, we need to solve
the boundary problem, in which the incident, reêected, and
refracted waves satisfy the continuity condition for the
tangential components of the electric and magnetic éelds.
Its solution yields the following expressions for the ampli-
tude refraction coefécients to;e � Ao;e=A1:

to �
2n1

n1 cos g1 � no cos go

cos g1
�1� cos2 g1�1=2

, (5)

te �
2n1

n1 cos ge � n 2
o cos g1=ne�ge� cos ge

cos g1
�1� cos2 g1�1=2

. (6)

Thus, a superposition of o- and e-polarised BLBs is pro-
duced inside the crystal. The electric éeld of this superpo-
sition has the transverse component

Ê?�R� � toEo?�r� exp�ikozz� imj�

� teEe?�r� exp�ikezz� imj�, (7)

where, in accordance with Eqns (2) and (3),

Eo?�r� � ier
m

qr
Jm�qr� ÿ ejJm

0 �qr�, (8)

Ee?�r� � i�cos ge�erJm0 �qr� ÿ �cos ge�ej
m

qr
Jm�qr�. (9)

A numerical estimation of coefécients to;e, given by for-
mulas (5) and (6), shows that the ratio to=te differs from
unity by less than 3% inside the cone angle of the incident
beam, where the polarisation can be treated as circular.
Then, assuming to � te in Eqn (7) and introducing the no-
tation kzo;e � kz � Dk=2, we have

Ê?�R� � te

�
Eo?�r� exp

�
i
Dkz
2

�
�

n1 g1
k1

ge go

no, ne c z

Figure 1. Orientations of the wave vectors of the incident and two
refracted BLBs at the boundary of the uniaxial crystal.

a by y

j j

c cx x

Figure 2. Polarisation vectors of a zeroth-order BLB in a uniaxial crystal
as a function of the azimuthal coordinate j, corresponding to the
rotation about the optical axis c, in the case of ordinary (a) and
extraordinary (b) waves.

86 N A Khilo, E S Petrova, A A Ryzhevich



�Ee?�r� exp
�
ÿ i

Dkz
2

��
exp�i kzz� imj�. (10)

Inserting the vector amplitudes (8) and (9) into Eqn (10)
and omitting the insigniécant phase factor exp (ikzz), we
obtain

Ê?�R� � t

��
cos

Dkz
2

�
Jmÿ1�qr�e� exp�ÿij�

� i
�
sin

Dkz
2

�
Jm�1�qr�eÿ exp�ij�

�
exp�imj�. (11)

Here, t � 2n1=(n1 � no) is the Fresnel amplitude transmitti-
vity and e� � (e1 � e2)=

���
2
p

are the basis vectors of the right-
and left-circular polarisations.

In the case when a left-polarised beam is incident on a
uniaxial crystal, the transverse component of the refracted
éeld can be found in a similar fashion:

Ê?�R� � t

��
cos

Dkz
2

�
Jm�1�qr�eÿ exp�ij�

� i
�
sin

Dkz
2

�
Jmÿ1�qr�e� exp�ÿij�

�
exp�imj�. (12)

Using formulas (11) and (12), one can study the éelds in-
duced inside the crystal by circularly polarised BLBs and
their arbitrary superpositions.

3. Analysis of the theoretical results

To analyse the expressions obtained, we will write the
electric éeld of the incident beam (4) in the paraxial appro-
ximation:

Ê �1 �R� � ie�Jm�1�qr� exp�i�kzz� �m� 1�j��. (13)

Comparison of expressions (11) and (12) with expression
(13), shows that the érst terms in Eqns (11) and (12) desc-
ribe the incident éeld. Thus, in the both cases, the refracted
éeld is a superposition of the incident BLB and an ortho-
gonally polarised BLB. As the beams propagate in the crys-
tal, their amplitudes oscillate as cos (Dkz=2) and sin (Dkz=2).
The most important property of Eqns (11) and (12) is that
the order of the orthogonally polarised BLB differs from
that of the incident BLB by two units.

In the special case of m � 1, when the incident right-
polarised éeld (13) is a zeroth-order BLB, equation (11)
yields

Ê?�R� � t

��
cos

Dkz
2

�
J0�qr�e�

� i
�
sin

Dkz
2

�
J2�qr�eÿ exp�2ij�

�
. (14)

The intensity of the éeld (13) is given by

I�r; z� � jÊ?r; z�j2

� t 2
��

cos2
Dkz
2

�
J 2
0 �qr� �

�
sin2

Dkz
2

�
J 2
2 �qr�

�
. (15)

For the incident left-polarised BLB of the zeroth order (m
� ÿ1), we derive from Eqn (12)

Ê?�R� � t

��
cos

Dkz
2

�
J0�qr�eÿ

� i
�
sin

Dkz
2

�
J2�qr�e� exp�ÿ2ij�

�
. (16)

The intensity of the éeld (16) is also described by formula
(15).

The refracted éelds (14) and (16) are superpositions of
circularly polarised beams of the zeroth and second order.
For Dkzn=2 � p=2� pn, the radiation transmitted by the
crystal will be BLBs of the second and minus second orders,
respectively.

Thus, if we neglect the reêected radiation, the zeroth-
order BLB is fully converted into a second-order BLB.
Fig. 3 shows the intensity oscillation half-period, z0 �
p=Dk (g1), as a function of the cone angle of the KDP
crystal. One can see that the half-period z0 falls off dras-
tically with increasing angle g1. For example, the energy is
fully converted in a 2.5-cm-thick crystal if g1 � 1:78.

The obtained results allow us to calculate the structural
transformation of a linearly polarised incident beam as well.
This beam has the form Ê1 �

�
Ê �1?(m � 1)� Ê ÿ1?(m �

ÿ1)�= ���
2
p

and is a superposition of left- and right-polarised
BLBs (4). Inserting the vector amplitudes given by (4), at
t � 1 we obtain

Ê1�r; z� � e1J0�qr� exp�ikzz�, (17)

i.e., a zeroth-order BLB linearly polarised along the x-axis.
The éeld inside the crystal can be found by adding Eqns
(14) and (16):

Ê?�R� � t

��
cos

Dkz
2

�
J0�qr�e1

� i
�
sin

Dkz
2

�
J2�qr��e1 cos 2j� e2 sin 2j�

�
.

(18)

In an optical scheme employing a crossed conéguration of
the polariser and the analyser, the transmitted éeld has a
component polarised along e2, whose intensity is given by

0.5 1.0 1.5 2.0 2.5 g1
�
8

0

10

20

z0(g1)
�
cm

Figure 3. Dependence of the conversion half-period of the Bessel beam
order as a function of the cone angle inside the KDP crystal for no � 1:51,
ne � 1:47, and n1 � 1.
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I�R� � t 2J 2
2 �qr� sin2

�
Dkz
2

�
sin2 2j. (19)

In addition, it follows from Eqn (18) that, in the case of
sin�Dkz=2� � 1, the éeld component polarised along e1 is
itJ2(qr) cos 2j, that is, an azimuthally modulated BLB of
the second order.

4. Comparison with the experiment

Both in the cases of circularly and linearly polarised inputs,
the uniaxial crystal transforms a zeroth-order BLB into a
second-order BLB. In the case of a circularly polarised
input éeld, the output beam contains a second-order screw
dislocation of the wavefront. The sign of the screw dis-
location changes with a change in the direction of the
circular polarisation. If the input beam is linearly polarised,
the amplitude of the output second-order BLB is modulated
along the azimuthal coordinate. The corresponding inten-
sity distribution is shown in Fig. 4a, numerically calculated
with the help of formula (19). One can see that the number
of lopes contained in the output intensity distribution is an
evident criterion of the order of the Bessel function.

We have tested this theoretical result in an experiment.
Fig. 5 shows the scheme of our experimental setup. A colli-
mated beam produced by a He ëNe laser, 4 mm in diameter,
was converted with the help of an axicon 4 into a zeroth-
order BLB with a cone angle of � 0:658 and then entered a
26-mm-long KDP crystal 6. An analyser 3 separated the
transmitted radiation component whose polarisation was
orthogonal to that of the incident beam. Axicon 5 trans-
formed the circular éeld into a second-order BLB with a

cone angle of � 0:68, whose transverse structure was detec-
ted by a CCD array 8. Fig. 4b shows the detected intensity
distribution, which conérms the theoretical results predicted
by formula (19). The conversion eféciency was relatively
small (� 10%); it was determined by the parameters of the
available axicons and crystal.

It is important to compare the calculated éelds with the
well-known conoscopic images, produced by a linearly pola-
rised input Gaussian beam in a scheme with a crossed coné-
guration of the polariser and analyser [22]. Fig. 6a shows the
conoscopic image produced by a Gaussian input beam in
the scheme shown in Fig. 5 with the axicons replaced by
spherical lenses. One can see that the main distinction be-
tween the conoscopic images produced by Bessel and Gaus-
sian beams lies in the radial intensity distribution.

Qualitatively, this distinction can be explained by rep-
resenting the Gaussian beam as a superposition of zeroth-
order BLBs of different cone angles. Each of these partial
BLBs forms its own conoscopic image, as described above.
The observed pattern will be a superposition of many cono-
scopic images, generally resulting in a complex radial dis-
tribution of the intensity.

Note, however, that by appropriately focusing a Gaus-
sian beam on the crystal, one can produce éelds close to
optical modes. Fig. 6b shows an example of such a éeld,
produced by focusing a collimated Gaussian beam on the
crystal by a lens with the focal distance of 7 cm. In a good
approximation, this éeld is a one-ring second-order La-
guerre ëGauss mode. Upon passing through the axicon, it is
converted into a second-order BLB, which almost coincides
with the one shown in Fig. 4b. Unlike the previous situ-
ation, however, one cannot realise in this way a complete
conversion of the input beam into a Laguerre ëGauss or
Bessel beam.

5. Conclusions

The theoretical and experimental investigation of the
transformation of the order of Bessel beams in uniaxial
crystals has shown that an input zeroth-order circularly
polarised BLB transforms into a second-order BLB as it
propagates along the optic axis of the crystal. If the
input beam is linearly polarised, it is converted into an
azimuthally modulated second-order BLB. The conversion
eféciency can be made close to 100% by choosing an
appropriate crystal thickness or cone angle. By cascading

a b

Figure 4. Intensity distribution of an azimuthally modulated second-
order BLB calculated according to formula (19) (a) and measured
experimentally (b).

1 2
4

6
3 5

7 8

Figure 5. Optical scheme of the experiment: ( 1 ) 20-fold telescope; ( 2, 3 )
polariser and analyser in a crossed conéguration; ( 4, 5 ) axicons subten-
ding angles of � 1:3 and 2.58, respectively; ( 6 ) uniaxial KDP crystal; ( 7 )
microscope; ( 8 ) CCD array.

a b

Figure 6. Conoscopic image of a Gaussian beam (a) and the intensity
distribution of a single-circle second-order Laguerre ëGauss beam (b).
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the optical scheme, one can obtain BLBs of higher even
orders.
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