
Abstract. Frequency characteristics and the stability of
lasing regimes are considered for a solid-state laser with
intracavity second-harmonic generation and feedback at the
frequency of the second harmonic. Three stationary states
differing from each other by a nonlinear phase shift related to
second-harmonic generation are investigated. It is shown that
jumps in the frequency of laser radiation may be induced by
transitions between the considered stationary states as para-
meters of a dual-cavity laser are smoothly tuned.

Keywords: intracavity second-harmonic generation, dual ca-
vity, nonlinear frequency shift, solid-state laser.

1. Introduction

Methods of intracavity frequency doubling are widely used
to improve the eféciency of nonlinear optical processes [1 ë
21]. Previous studies on intracavity second-harmonic gene-
ration (SHG) can be divided into two groups. The érst
group includes research on frequency doubling [1 ë 13] and
self-doubling [14 ë 17] inside a laser cavity. The second
group includes studies devoted to SHG with laser radiation
injected into an extracavity resonator containing a non-
linear crystal [18 ë 21]. The inêuence of intracavity SHG on
the dynamics of lasing was investigated as a part of the érst
group of these studies. Such investigations were mainly per-
formed for systems where the second harmonic leaves the
cavity after a single pass (no feedback is introduced at the
frequency of the second harmonic 2o). The dynamics of
SHG inside a laser cavity in the absence of feedback at the
frequency 2o was thoroughly analysed in [2 ë 9]. In parti-
cular, periodic regimes of antiphase self-modulation and
dynamic chaos in multimode lasers have been examined and
the ways to stabilise stationary lasing regimes have been
considered.

Second-harmonic generation inside a laser cavity in the
presence of feedback at the frequency 2o was theoretically
investigated in [10 ë 13]. In particular, the stability of statio-
nary lasing in a single-mode laser was analysed [10, 11, 13],
parameters of squeezed light were investigated [11, 12], and

the inêuence of the cavity Q-factor at the frequency 2o on
the SHG eféciency was studied [13]. This paper is devoted to
a theoretical analysis of the nonlinear phase shift, frequency
characteristics, and the stability of lasing regimes of a solid-
state laser with intracavity SHG in the presence of feedback
in the second harmonic.

The propagation of waves through a nonlinear crystal
may be accompanied by the appearance of additional
nonlinear phase shifts jNL

1;2 at the frequencies o and 2o
related to the conversion of radiation frequency (nonlinear
phase shifts). In the phase-matched regime, the nonlinear
phase shift at the fundamental frequency is written as

jNL
1 �

� l

0
w
����
I2

p
coscdx, (1)

where w is the nonlinearity coefécient; l is the length of the
nonlinear element; I2 is the second-harmonic intensity; c �
2j1 ÿ j2; j1;2 are the phases of the fundamental wave and
the second harmonic in the nonlinear crystal. Nonlinear
phase shifts jNL

1;2 vanish in phase-matched intracavity SHG
in the absence of feedback at the frequency 2o, since
cosc � 0 in this case. As shown below, such phase shifts
may arise in the presence of a feedback.

2. The system of equations and stationary lasing
regimes

Consider single-mode lasing in a solid-state laser with
intracavity SHG. We assume that the laser cavity includes
mirrors with high reêection coefécients at the fundamental
frequency and the frequency of the second harmonic. Such
a system will be called a dual cavity. The system of rate
equations governing the dynamics of lasing in such a system
can be written as

da1
dt
� a1

2Tc
k1�N ÿ 1� ÿ ��

e
p

a2 sinc
� �

, (2)

da2
dt
� ÿ k2

2Tc
a2 �

��
e
p
2Tc

a 2
1 sinc, (3)

dc
dt
�

��
e
p
2Tc

�
a 2
1

a2
ÿ 2a2

�
cosc� o2c ÿ 2o1c , (4)

dN
dt
� 1

T1
1� Z� � ÿN 1� a 2

1� �� �. (5)

Here, a1;2 � (I1;2=Is)
1=2 are the normalised éeld amplitudes

inside the cavity at the fundamental frequency and the
frequency of the second harmonic; j1;2 and I1;2 are the
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phases and intensities of these éelds; Is is the saturation
intensity of the active medium; k1;2 is the magnitude of
linear losses in the dual cavity; Tc is the cavity single-pass
time; e � ( wl )2Is is the nonlinearity parameter; T1 is the
relaxation time of population inversion; o2c is the cavity
eigenfrequency for the second harmonic; 2o1c is twice the
cavity frequency for fundamental radiation; N is the ratio
of the population inversion to its threshold value; 1� Z is
the ratio of the pump power to its threshold value.

The system of Eqns (2) ë (5) is derived in the Appendix.
When deriving these equations, we made several assump-
tions determining the applicability range of this system. We
consider SHG for type-I phase matching (ooe interaction).
We assume that phase matching is achieved in the nonlinear
crystal [see inequality (A5) in the Appendix], and the rele-
vant phase-matching condition determines the range of
admissible wave-vector mismatches Dj � j2 ÿ 2j1 for the
waves involved in the interaction. Deriving these equations,
we also assumed that the total magnitudes of losses per
cavity single pass are low for both wavelengths.

We assume also that the change in the phase difference
Dc between the interacting waves is small within a cavity
single pass (jDcj5p). This assumption imposes restrictions
on the tolerable nonlinear phase shifts jNL

1;2 (jjNL
1;2 j5 p). The

phase-matching condition [inequality (A5) in the Appendix]
limits the admissible range of mismatches of cavity eigen-
frequencies o2c ÿ 2o1c. The mismatch of eigenfrequencies in
a dual cavity is due to the dispersion of intracavity optical
elements and the inequality of phase shifts d1;2 arising in the
reêection of light waves from cavity mirrors [see Eqns (A6)
of the Appendix].

The relative detuning of the fundamental frequency from
the centre of the gain line for a single-mode solid-state laser
is small. Therefore, this detuning is neglected in Eqns (2)
ë (5). In a particular case of an inertialess active medium
(a class-A laser), when the population inversion N can
be adiabatically excluded [T1 5Tc, N � (1� Z)=(1� a 2

1 )],
Eqns (2) ë (5) are reduced to the equations employed in
[11, 12].

We start with a particular case when the cavity eigen-
frequency for the second harmonic o2c is equal to twice the
cavity frequency for fundamental radiation, o2c � 2o1c. In
such a situation, we can énd three stationary solutions to the
system of Eqns (2) ë (5). Solution 1 corresponds to cosc �
0. The éeld amplitudes inside the cavity in this case are given
by

a 2
1 �
ÿB0 � B 2

0 � 4A0k1Z
� �1=2

2A0
, a 2

2 �
ea 4

1

k 2
2
, (6)

where A0 � e=k2 and B0 � k1 � A0.
Examination of small perturbations of the stationary

solution (6) and analysis of the relevant characteristic equa-
tion show that this solution is stable when the inequality

e Zÿ k2
2k1

� �
4

k2
4

� �2
2� k2

k1

� �
. (7)

is satiséed.
The lasing frequency corresponding to solution 1

coincides with the frequency of the cavity mode, since
jNL
1 � 0 in this case and the nonlinear frequency shift

proportional to jNL
1 vanishes.

When the stability of solution 1 is violated, i.e., the
inequality

e Zÿ k2
2k1

� �
>

k2
4

� �2
2� k2

k1

� �
, (8)

is met, two other stable solutions exist. For these solutions,
cosc 6� 0, and, consequently, nonlinear phase shifts jNL

1;2
and frequency shifts arise. For the second (a) and third (b)
solutions, the éeld amplitudes are given by

a 2
2 � Zÿ k2

2k1

� ��
2� k2

k1

� �
, a 2

1 � 2a 2
2 . (9)

The corresponding lasing frequencies are written as

oa;b � o1c � oNL, (10)

where

oNL �
1
Tc

e�Zÿ k2=2k1�
2� k2=k1

ÿ k2
4

� �2" #1=2
(11)

is the nonlinear shift of the lasing frequency. The existence
of two solutions deéned by Eqns (9) ë (11) is due to the fact
that Eqns (2) ë (4) for sinc have two roots equal in their
absolute values, but opposite in sign.

Fig. 1 presents the dependence of the frequency shift
Df � (oa;b ÿ o1c)=2p on the excess of the pump power over
the threshold power. This dependence was calculated for a
system with the following parameters: e � 5� 10ÿ5, Tc �
0:2 ns, k1 � 0:01, and k2 � 0:01. These characteristics cor-
respond (except for the value of k2) to parameters of a
YAG : Nd laser with intracavity SHG in a KTP crystal with
a length l � 5 mm employed in experiments [3 ë 5].

Nonlinear phase and frequency shifts arise also for
second-harmonic radiation. Using Eqns (2) ë (5), we can
demonstrate that the frequency of the second harmonic
is determined by the formula

o2 � 2o1c �
��
e
p
Tc

cosc.

One can see from this formula, the frequency of the second
harmonic is equal to twice the lasing frequency:

oL � o1c �
��
e
p
2Tc

cosc.

Now, let us consider the inêuence of mismatch of cavity
frequencies o2c ÿ 2o1c on the frequency shift and the
stability of lasing.

Df
�
MHz

0 2 4 6 8 10 Z

ÿ8

ÿ4

0

4

Figure 1. Dependence of the shift of the lasing frequency Df � (oa;bÿ
o1c)=2p on the excess of the pump power over the threshold power Z for
e � 5� 10ÿ5, T � 0:2 ns, k1 � 0:01, and k2 � 0:01.
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3. Jumps of the lasing frequency induced
by varying the mismatch of cavity
frequencies x2c ÿ 2x1c

Amplitude and frequency characteristics of radiation pro-
duced by a dual-cavity laser with intracavity SHG are
highly sensitive to the mismatch of cavity eigenfrequencies
D � o2c ÿ 2o1c. Applying Eqns (2) ë (5), we can easily
derive formulas governing stationary lasing in such a
system with D 6� 0:

a 2
1 �
ÿB � B 2 � 4Ak1Z

� �1=2
2A

, a2 �
��
e
p
k2

a 2
1 sinc, (12)

D � o2c ÿ 2o1c �
��
e
p
2Tc

�
2a2 ÿ

a 2
1

a2

�
cosc, (13)

where A � (e=k2) sin
2 c and B � k1 � A.

These formulas directly describe the parametric depend-
ence of a 2

1 and a 2
2 on the mismatch D. Deéning the

parameter c, we can use Eqns (12) and (13) to calculate
a 2
1 , a

2
2 , and D. The normalised second-harmonic intensity a 2

2
as a function of D is shown in Fig. 2.

The stability of stationary lasing in the case of D 6� 0 was
investigated with the use of the Rauss ëGurwitz criterion.
The dependence a 2

2 (D) within the stability range is shown by
a solid curve, while the dotted line shows this dependence in
the area of instability. One can see from Fig. 2 that the
maximum intensity of second-harmonic emission is achieved
with D � 0. The intensity a 2

2 monotonically decreases with
the growth in jDj.

Two solutions differing from each other by the sign of
the nonlinear frequency shift may exist within some range of
mismatches of cavity frequencies D � o2c ÿ 2o1c. This result
is illustrated by Fig. 3, which presents the lasing frequency
shift

oL ÿ o1c �
��
e
p
2Tc

cosc

as a function of the mismatch D. For D 6� 0, the dependence
of oL ÿ o1c on D in the stability range is shown by a solid
curve, while the dotted line represents unstable states. One
can see from Fig. 3 that the sign reversal of the frequency
mismatch switches lasing regimes for parameters character-
istic of solid-state lasers. The lasing regimes in the consi-

dered system differ from each other by the sign of the
nonlinear frequency shift oL ÿ o1c. As a result, when the
mismatch D is smoothly tuned, the lasing frequency may
change in a jumpwise manner. This jump in the lasing
frequency is equal to 2oNL, where oNL is given by Eqn (11).
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Appendix

To derive Eqns (2) ë (5), we shall consider a distributed mo-
del of a unidirectional ring laser. In the plane-wave appro-
ximation, the intracavity optical éelds Em at the fundamen-
tal frequency (m � 1) and at the frequency of the second
harmonic (m � 2) can be written in the following way:

Em � Refem�x; t� exp�i�motÿ jmx��g, (A1)

where, mo and jm are the optical frequencies and the wave
vectors of the éelds.

Slowly varying complex amplitudes e1;2(x; t) and the
density of population inversion D(x; t) are governed by the
following system of equations (see, e.g., [22]):

qe1
qx
�n1

c

qe1
qt
�ÿis1e �1 e2 �

sa
2
De1� i�oÿo1c�

n1
c
ÿ a1

2

h i
e1, (A2)

qe2
qx
� n2

c

qe2
qt
� ÿis2e 21 � i�2oÿ o2c�

n2
c
ÿ a2

2

h i
e2, (A3)

qD
qt
� D0 ÿ D�1� je1j2=Is�

T1
, (A4)

where n1;2(x) and a1;2(x) are the refractive indices and the
distributed absorption coefécients at the frequencies o and
2o, respectively; D0(x; t) is the density distribution of
population inversion in the absence of saturation; and Is is
the saturation intensity of the active medium. Equations
(A2) and (A3) are written with an assumption that phase-
matching conditions are satiséed in the nonlinear crystal [1].
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Figure 2. The normalised second-harmonic intensity a 2
2 as a function of

the mismatch of dual-cavity eigenfrequencies D=2p for Z � 2 and
k1 � k2 � 5� 10ÿ3. The other parameters are the same as in Fig. 1 (the
unstable solution is shown by the dotted line).
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Figure 3. The shift of the lasing frequency (oL ÿ o1c)=2p as a function of
the mismatch of dual-cavity eigenfrequencies D=2p. The laser parameters
are the same as in Fig. 2 (the unstable solution is shown by the dotted
line).
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With a nonzero wave-vector mismatch Dj � j2 ÿ 2j1, the
phase-matching condition is met when the mismatch Dj
satisées the inequality

jDjjl5 1. (A5)

We assume that a nonlinear crystal with a length l is located
within an area x0 < x < x0 � l, and the active crystal with a
length la is located within the area xa < x < xa � la. In a
particular case when x0 � xa and l � la, the considered
system of equations describes a laser with a nonlinear active
medium. The ends of crystals (or the ends of a nonlinear
active element) are assumed to be totally antireêective and
ignore the reêection of light waves from these ends. As light
passes from one medium to another, wave amplitudes
change. If the refractive indices of the active and nonlinear
crystals considerably differ from each other, then the ampli-
tudes of the waves in these crystals also considerably dif-
fer from one another. To exclude such effects, we assume
that the active element and the nonlinear crystal have close
refractive indices.

The boundary conditions for intracavity optical éelds
E1;2 on the output coupler are written as

~R1;2E1;2�L; t� � E1;2�0; t�,

where ~R1;2 � R1;2 exp (id1;2) are the complex reêection coef-
écients; R1;2 are the moduli of these coefécients; d1;2 are the
phase shifts introduced by reêection; L is the cavity peri-
meter. We assume for simplicity that only one of the cavity
mirrors has reêection coefécients R1;2 different from unity,
while the reêection coefécients of all the other mirrors are
equal to unity. Neglecting the nonlinear polarisability of the
crystal and the population inversion in the active medium,
we can énd the wave vectors of intracavity éelds j1;2 and
the cavity eigenfrequencies o1c;2c. The following expressions
can be derived for o1c;2c:

o1c �
2pm� d1

Tc1
, o2c �

4pm� d2
Tc2

, (A6)

where m is the index of the axial mode and Tc1;c2 � cÿ1�� L
0 n1;2(x)dx are the cavity single-pass times for the waves at
the fundamental and second-harmonic frequencies.

The boundary conditions for the complex amplitudes of
the éelds e1;2(x; t) on the output coupler can be written as

R1;2e1;2�L; t� � e1;2�0; t�. (A7)

Integrating Eqns (A2) ë (A4) with respect to x from zero
to L, we derive the following differential equations for
the complex wave amplitudes and the density of population
inversion averaged over the cavity length, he1;2i � Lÿ1�� L
0 e1;2(x; t)dx and hDi � � L0 D(x; t)dx=L:

Tc
dhe1i
dt
� e1�L; t� ÿ e1�0; t� � ÿis1lhe �1 ihe2i

� salahDi
2

� iTc�oÿ o1c� ÿ
a1l
2

� �
he1i, (A8)

Tc
dhe2i
dt
� e2�L; t� ÿ e2�0; t� � ÿis2lhe1i2

� iTc�2oÿ o2c� ÿ
a2l
2

h i
he2i, (A9)

qhDi
qt
� hDi0 ÿ hDi�1� je1j

2=Is�
T1

, (A10)

where hDi0 �
� L
0 D0(x; t)dx=L.

Performing integration in the expressions above, we took
into consideration that the complex wave amplitudes in a
high-Q cavity only slightly vary within the cavity length. In
addition, since we are interested in the mismatches of cavity
eigenfrequencies o1c ÿ o2c that are small as compared with
the frequency difference between the adjacent axial modes,
the cavity single-pass times Tc1;c2 in Eqns (A8) and (A9) are
replaced by the mean cavity single-pass time Tc � (Tc1�
Tc2)=2 (the difference in the times Tc1 and Tc2 should be
taken into consideration only in formulas for cavity
eigenfrequencies). Taking into consideration the boundary
conditions, we can approximately write the terms e1;2(L; t)ÿ
e1;2(0; t) involved in Eqns (A8) and (A9) as e1;2(L; t)ÿ
e1;2(0; t) � (1ÿ R1;2)he1;2i. Now, let us introduce the coefé-
cients of linear losses,

k1;2
2
� 1ÿ R1;2 �

�L
0

a1;2
2

dx

and assume that the nonlinearity coefécients s1 and s2 are
equal to each other, s1 � s2 � w=2. We represent also he1;2i
as he1;2i � a1;2

����
Is
p

exp (ij1;2) and introduce the nonlinearity
parameter e � Is(wl )

2. Then, one can easily verify that
Eqns (A8) and (A9) yield Eqns (2) ë (4). Setting N in
Eqn (A10) equal to the ratio of the mean density of
population inversion hDi to its threshold value Dth and
introducing the notation hD0i=Dth � 1� Z, we also arrive at
Eqn (5) for N.
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