
Abstract. The nonlinear behaviour of a pair of optically
coupled semiconductor laser diodes is studied for different
coefécients of optical coupling and different pump currents.
As the pump current increases, the behaviour of the system
undergoes several transformations from stationary behaviour
to a periodic behaviour and then to chaos. Approximate
formulas for the self-oscillation frequency of the system and
other characteristics of the pair of lasers are derived as func-
tions of the pump current. An analytic expression is found for
the critical pump intensity above which there appears a non-
zero average difference between the frequencies of the lasers.
The behaviour of these regimes in the coupled lasers is cha-
racterised by the éxed phase incursion of the éelds per period.
The chaotic behaviour of two-section semiconductor lasers
arranged in the controlling laser ë slave laser conéguration is
studied numerically. The possibility of an almost complete
synchronisation of the chaos is demonstrated in this scheme.

Keywords: synchronous chaos, two-frequency laser, optical
communication.

1. Introduction

The research interest in the dynamic chaos in various
physical systems has been constantly growing recently. As
researchers get deeper insight in the complex behaviour of
chaotic systems, they develop new control methods and
practical applications of chaotic behaviour. In particular,
the dynamic chaos can be used for the secure transmission
of encoded information through communication channels.
For this purpose, one has to obtain lasing in a chaotic
mode, control the lasing parameters, and synchronise the
chaotic operation of the transmitter and the receiver. It has
been established that many laser systems can exhibit
dynamic chaos. In particular, there are ways to obtain a
chaotic output from semiconductor lasers. The usability of
semiconductor lasers for optical communications and the
possibility of obtaining chaos in them account for their
special role in chaos-based optical cryptography systems.

A concrete scheme of a laser communication channel in

which a chaotic signal emitted by a laser transmitter was
coded and then transferred to a receiver representing a laser
identical to the transmitter, was considered theoretically in
Ref. [1] and experimentally realised in Refs [2, 3].

The scheme for coding/decoding information in a cha-
otic sequence of laser pulses is based on a nontrivial effect:
When an optical signal additionally modulated by the
information signal is injected into a slave laser, which is
identical to the controlling laser, the former removes the
modulation and reconstructs the original radiation [1].
Comparing the received information-carrying beam with
the output of the slave laser, one can reconstruct the enco-
ded information.

Thus, this scheme features two key processes: (1) The
synchronisation of the receiving laser to which a chaotic
signal is injected from an identical laser transmitter and (2)
The erasure of the information delivered in the injected
beam. Various factors can affect the quality of these proces-
ses. The inêuence of the non-equivalence of the laser trans-
mitter and receiver signiécantly depends on the character-
istics of the chaos (in particular, its fractal dimensionality),
which, in turn, are determined by the mechanism of the
chaos development in the lasers. The scheme under consi-
deration has been studied best for the situation when the
chaos was induced by a periodic modulation of the pumping
rate. In particular, we have shown earlier [4] that the syn-
chronisation of the chaotic laser that was controlled by the
injected chaotic signal from a frequency-detuned controlling
laser was incomplete. However, the resulting difference
between the éelds was small, leaving the possibility of
practical applications.

Obviously, the information loss in the receiver that
preserves the carrier chaotic radiation does not take place
in any circumstances. There are restrictions on the coded
information density and the degree of identity of the lasers.
We have earlier studied numerically the question about the
permissible frequency bandwidth for data communication in
the case when the two lasers were identical and the chaos
was produced by a periodic pump [5]. We have found that
the bandwidth of the information signal should not exceed
� 0:2 of the relaxation oscillation frequency of the laser.

These studies were performed for a model system of
optically coupled CO2 lasers (with unidirectional coupling).
We have noted above that semiconductor lasers are the real
candidates for optical cryptography applications. Concern-
ing the lasing behaviour, a novel factor, which was ignored
in the systems investigated earlier, is the self-modulation of
radiation in semiconductors due to nonlinear refraction,
which is mainly determined by the contribution propor-
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tional to inversion. A simple way to achieve the chaotic
operation regime in a laser diode is to employ a two-section
design in which the sections are optically coupled (Fig. 1).
As was shown numerically in Ref. [6], at a certain distance
between the sections (i.e., at a given optical coupling
constant), the laser starts to generate spikes randomly
distributed in time. Methods for producing chaos that do
not require external éxed-frequency sources for the mod-
ulation of the system parameters offer some advantages,
especially at high frequencies, which are necessary for
increasing the information channel bandwidth. Note also
that it is easier to distinguish and decode the data signal in
the case of a low-dimensional chaos (according to Lyapu-
nov) than in the case of a high-dimensional one [7].

The above arguments explain the importance of studying
the nonlinear behaviour of two-section laser diodes exhibit-
ing chaos of a higher dimensionality. This problem demands
a large amount of calculations, which explains why we use
the simple coupled-mode theory. A comparison between our
results and those of Ref. [6], in which a pair of optically
coupled laser diodes was studied using a model with distri-
buted parameters, demonstrates the identity of the regimes
observed.

The purpose of this work was to study analytically and
numerically the sequence of the lasing regimes observed with
increasing current in the two-section laser diode, to choose
chaotic regime of a high dimensionality, and to study nume-
rically the synchronisation of the second pair of the section
by injecting radiation of the érst pair.

2. Model of two-section laser diode

Fig. 1 shows the schematic of a two-section semiconductor
laser that was considered in Ref. [6]. The evolution of the
electromagnetic éeld E1;2( t ) exp (ÿ iot ) inside the two se-
miconductor laser diodes is described by the truncated wave
equations for the slowly varying complex amplitudes [8]:

qe1

qt
� 1

2

�
G�n1� ÿ

1

tph

�
�1ÿ iR�e1 � ime2, (1)

qe2

qt
� 1

2

�
G�n2� ÿ

1

tph

�
�1ÿ iR�e2 � ime1. (2)

Here, G (n1;2) is the probability of induced photon emission
(ampliécation), which depends on the carrier density n1;2;
tph is the lifetime of cavity photons; m is the coupling
constant between the adjacent lasers; R is the anti-wave-
guide parameter, also known as the line enhancement fac-
tor. The parameter R is proportional to the ratio of the rate
of variation in the refractive index Z to the rate of variation
in the gain G during variation in the carrier density n:

R � ÿ2k0
�

qZ=qn
qG=qn

�
, (3)

where k0 � o=c is the wave number corresponding to the
central frequency of the wave mode of the laser. Usually,
qZ=qn < 0, and an increase in the number of carriers
reduces the real part of the refractive index, so that R > 0
(R � 2ÿ 6). If the lasing threshold is not greatly exceeded,
the gain can be written as G (n1;2) � G(nth)� (n1;2ÿ
nth)g, where nth is the threshold carrier density; G(nth) �
1=tph; g � qG=qn is the differential gain.

The carrier density is determined by the rate equations
[9]

qn1;2

qt
� pÿn1;2

ts
ÿ G�n1;2�je1;2j2, (4)

where p is the intensity of the pump and ts is the lifetime of
carriers. The term n1;2=ts in equation (4) describes the
carrier loss due to spontaneous emission. The loss due to
stimulated emission is described by the term containing the
squared éeld amplitude je1;2j2.

Let us renormalise the variables:

X1;2 �
�
gts
2

�1=2
e1;2; N1;2 �

1

2
gtph�n1;2 ÿnth�;

P � 1

2
gtph�pts ÿnth�; T � ts

tph
; t � t

tph
; M �mtph.

Here, X1;2 is the normalised éeld amplitude; N1;2 is the
normalised excess of the carrier density over the threshold
one; P is the normalised excess of the pumping intensity
over the threshold one. Equations (1), (2), and (4) then
assume the form

qX1;2

qt
� �1ÿ iR�N1;2X1;2 � iMX2;1 , (5)

T
qN1;2

qt
� PÿN1;2 ÿ �1� 2N1;2�jX1;2j2. (6)

The authors of Ref. [6] used the line enhancement factor R
=3, the carrier lifetime ts � 2000 ps, and the lifetime of the
cavity photons tp � 2:27 ps for the AlGaAs laser, which
yields T � 881. In the following, we will use the parameters
that are close to these values. To analyse the solutions
obtained, it is convenient to pass on to real variables ë the
amplitude and the phase. By representing the complex éelds
X1;2 as E1 exp (ij1) and E2 exp (ij2) and introducing the
phase difference j � j2 ÿ j1, we obtain the equations

qE1

qt
� N1E1 ÿME2 sinj , (7)
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Figure 1. Schematic of the two-emitter laser diode.
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qE2

qt
� N2E2 �ME1 sinj , (8)

qj
qt
� R�N1 ÿN2� �M

�
E1

E2
ÿ E2

E1

�
cosj , (9)

T
qN1

qt
� PÿN1 ÿ �1� 2N1�E 2

1 , (10)

T
qN2

qt
� PÿN2 ÿ �1� 2N2�E 2

2 . (11)

3. Analytical study of the possible regimes
in two-section lasers

By varying the strength of coupling between the lasers in a
single pair, the authors of Ref. [6] discovered several bifur-
cations, initially leading to regular pulsations and then, via
a series of period doublings, to chaos. To determine expli-
citly the parameter regions where one or other regime is ob-
served, we performed an approximate analysis based on the
numerical solution of system (7) ë (11). We varied the pump
intensity P, which was related to the current through the
diode, and the coupling constant M. For deéniteness, we
chose the normalised relaxation time T � ts=tp of the
carriers to be 1000 and the line enhancement factor to be
R � 3. For the éxed value of M, a variation in the pump
current changes the lasing dynamics of the two-section
laser.

Equations (7) ë (11) have two stationary solutions: E 2
1 �

E 2
2 � P, N1 � N2 � 0, j � 0 and p. By linearising the sys-

tem of equations near a stationary solution, we can
determine its stability to small perturbations of the éelds
e1 and e2, of the phase ~j, and of the carrier concentrations
n1 and n2. The matrix of the system of the éve linear
equations can be transformed to a 3
 2 block-diagonal
matrix in the basis of variables (e2 ÿ e1), ~j, (n2 ÿ n1) plus
(e1 � e2), (n1 � n2). The eigenvalues, which determine the
development of instabilities, are the roots of the third-order
characteristic polynomial (in the two-dimensional subspace,
the stationary solutions are stable):

X3
j�0

ajl
3ÿj � 0,

where

a0 � 1; a1 �
1� 2P

T
; a2 �

2P

T
� 4M 2 cos2 j;

a3 �
1� 2P

T
4M 2 cos2 jÿ 2PR

T
2M cosj.

According to the Routh ëHurwitz criterion, the system
is stable if a3 > 0 and a1a2 ÿ a0a3 > 0. These conditions are
different for the inphase and antiphase solutions [10]. The
inphase solution j � 0 is stable at

M >
PR

1� 2P
. (12)

The loss of stability is due to aperiodic growth of
perturbations. The antiphase solution j � p is stable at

M <
1� 2P

2TR
. (13)

In the latter case, the loss of stability results in oscillations
at the frequency O � (2P=T � 4M 2)1=2.

For the chosen values T � 1000 and R � 3, the anti-
phase solution becomes unstable at very weak coupling be-
tween the channels. For this reason, it is more interesting to
study the evolution of the inphase solution from a stationary
solution to self-oscillations. According to inequality (12),
the critical pump intensity is of the order of the coupling
constant: P �M=R. Note that, for the coupled-mode theory
to be applicable, we need M5 1. Thus, we can restrict
ourselves to studying the region where P5 1.

We found that upon crossing the stability boundary (12),
a stationary solution appears, which corresponds to differ-
ent éeld intensities E 2

1 and E 2
2 (spontaneous symmetry

breakdown), related by the expression

E 2
1 ÿ E 2

2

E 2
1 � E 2

2
� ÿ

�
PR

M
ÿ �1� 2P�

�1=2
. (14)

Simultaneously, a phase difference of the same order of
magnitude appears between the éelds:

j � 1

R

�
PR

M
ÿ �1� 2P�

�1=2
. (15)

As the pump intensity increases up to

P >
M

R

�
1� 2M

R
� R

4MT

�
(16)

the nonsymmetric solution also becomes unstable and leads
to self-oscillations.

For the further analysis of the self-oscillation regimes, it
is convenient to perform another transformation of the
equations. We can treat the amplitudes E1 > 0 and E2 > 0
of the éelds, as projections of the total éeld E � (E 2

1�
E 2
2 )

1=2 on two axes. In this case, we can change over to the
polar system of coordinates (the radius vector and the
angle). Equations (7) ë (11) assume a simpler form if we
introduce the total power r � E 2

1 � E 2
2 , the double angle c

satisfying sinc � 2E1E2=r > 0 and cosc � (E 2
1 ÿ E 2

2 �=r,
and make the following change of variables for the carrier
concentrations: 2N � N1 ÿN2 and 2n � N1 �N2. Renorm-
alising the time once again (tM � 2Mt), we obtain the
system of equations

_r � rN
M

�
cosc� n

N

�
, (17)

_j � R
N

M
� cosc

sinc
cosj, (18)

_c� N

M
sinc � sinj, (19)

4MT _N � ÿ2N�1� r� ÿ �1� 2n�r cosc, (20)

4MT _n � 2Pÿ 2nÿ r�1� 2n� 2N cosc�, (21)
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where the dot denotes the derivative with respect to the
time tM .

Obviously, r has the meaning of the total laser output
power; the angle c, lying within the érst quadrant, char-
acterises the difference between the output powers of the
lasers; 2n is the average inversion; and 2N is the difference
between the inversions in the sections. Fig. 2 shows a typical
calculated shape of the periodic self-oscillations (similar self-
oscillations were also studied in Ref. [6]). Figs 3 ë 5 show the
temporal behaviour of above quantities.

The conclusions we can draw from Figs 3 ë 5 allow us to
analyse approximately the bifurcations of the solutions. The
quantity k �M(1� 2P)=PR �M=PR, which equals unity
in the point of the spontaneous symmetry breakdown, will
serve as the controlling parameter. For a given coupling
constant M; k decreases with increasing pumping intensity,
giving rise to self-oscillations which change with the further
reduction in k. In Figs 2 ë 5, the parameter k � 0:35. The
variation in the phase difference remains énite but increases
with decreasing k.

The total laser power (Fig. 4) is almost constant, where-
as the difference between the éeld intensities varies greatly.
Note that the average inversion always remains close to zero
(Fig. 5), while the difference between the inversions slightly
oscillates near a positive value. (This means that the érst
laser is always in the above-threshold regime, whereas the
second laser is always in the below-threshold regime, N2 <
0). Thus, the spontaneous symmetry breakdown is also pre-
served in the self-oscillation regime. Based on the calcula-
tion results shown in Figs 3 ë 5, we can write down a useful
system of inequalities:

n5N5P5 1. (22)

In addition, it follows from Fig. 5 that N=M5 1.
Our numerical calculations (see also Ref. [6]) have

shown that another bifurcation occurs with increasing

pump intensity, after which the phase difference between
the éelds begins to grow inénitely, corresponding to the
appearance of a énite (nonzero) average frequency differ-
ence. The main purpose of our analysis is to énd the critical
parameters at which this bifurcation occurs.

One can see from Figs 3 ë 5 that the degrees of mod-
ulation of the total power r and the inversion difference 2N

are small with respect to their average values. The latter can
be related by averaging equations (17), (20), and (21) over
one period:

�r � 2�Pÿ �n� � 2P, (23)

cosc � ÿ
�N

P
� ÿ�n

�N
. (24)

Thus, the relative average power difference jcoscj (the
bar denotes averaging over the period) plays the role of a
small parameter for the system of inequalities (22). The
further calculations are rather involved; therefore, we will
omit them and present directly the énal approximate
relations, which provide a complete parametric description
of the behaviour of the system of two lasers. The approxi-
mate analysis allows us to obtain the dependence of the
average inversion difference on the pump intensity,

�N '
�

P

4T

�1=2
, (25)

0 200 400 600 800 t

E1;2����
P
p

E2����
P
p

E1����
P
p0.3

0.6

0.9

1.2

Figure 2. Time dependences of the éeld amplitudes E1 and E2 for P �
0.02 and M � 0:02.
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ÿ0:6
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Figure 3. Time evolution of the frequency difference j between the sec-
tions for P � 0:02 and M � 0:02.
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Figure 4. Time dependences of the total power r and the power diffe-
rence r cosc for P � 0:02 and M � 0:02.
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Figure 5. Time evolution of the half-sum n and the half-difference N
between the inversions for P � 0:02 and M � 0:02.
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and to determine the average power difference cosc �
ÿ(4PT )ÿ1=2 from equation (24).

In addition, one can show that the combination

C � sinc cosjÿ R
N

M
cosc (26)

also varies very little with time, whereas the variations of its
individual terms are much larger than the corresponding
average values. Assuming C � const, eliminating cosj from
relation (26), and using equation (19) and the smallness of
the ratio N=M, we can derive the equation for cosc, which
turns out to be the Newton equation for the motion in a
parabolic potential and can easily be solved. The solution
of this equation yields the explicit expression for the self-
oscillation frequency O:

O �
�
1� R 2P

4M 2T

�1=2
. (27)

This solution also yields another relation for the relative
average population inversion: cosc � ÿCR �N=M. Compar-
ing it to relation (24), we obtain the expression for the
average C:

C � M

RP
� k. (28)

Our numerical calculations show that, as the pump
intensity increases, the phase difference begins to grow
indeénitely at some moment, corresponding to the appear-
ance of a nonzero average frequency difference between the
éelds. On the phase diagram in coordinates j and c, this
phenomenon appears as the transformation of the closed
curve shown in Fig. 6 (the limiting cycle) to the open curve
(shown in Fig. 7) accompanied by a change in the j by 2p.
The critical point of this transformation corresponds to the
vanishing of cosj, i.e., to the condition C � Ccr ' R �N=M
(one can see from Fig. 6 that cosc � ÿ1 when the limiting
cycle opens). Using expressions (25) and (28), we énd the
critical pump intensity

Pcr '
M

R

�
4TM

R

�1=3

. (29)

Note that expression (27) for the self-oscillation frequency
also agrees with the numerical results obtained for the
pump intensity above the threshold.

4. Numerical results

4.1 Dynamics of the two-section laser

We solved equations (7) ë (11) numerically for several values
of M5 1 and various pump intensities P. In this
discussion, we will restrict ourselves to the case of M �
0.02. According to (12), at P < 0:0068 the two-emitter laser
operates in the stationary regime, with the output intensities
of the both sections being equal. At P � 0:007, there is a
stationary solution but the output intensities of the two
channels differ already. With a good accuracy, the differ-
ences between the intensities and the phases are described
by expressions (14) and (15). At P > 0:007, the stationary
nonsymmetric solution becomes unstable and transforms to
regular pulsations, also in agreement with the theoretical
estimate (16).

Analytic expressions for the frequency of self-oscillations
(27) and the average total power (23) agree well with the
numerical results. (Note that the normalised times tM in
expression (27) and in Figs 2 ë 5, t, differ by factor of 2M).
We also observed the numerical results to agree well with
the expressions for the average relative power difference
cosc, the average inversion difference, and the average
inversions in the sections (see (24) and (25)). According to
the numerical calculations, the degree of modulation of the
total output power r is 9.2% (� �N=M) (Fig. 4), of the
average inversion is 17.7% (� 2 �NPM ÿ2) (Fig. 5), and of
the average inversion difference is 20% (� 2 �N=M) (Fig. 5).

Upon crossing the critical point, the behaviour of the
phase difference changes dramatically, as shown in Figs 3,
6 ë 8. Note that the phase difference varies exactly by 2p per

ÿ0:6 ÿ0:2 0.2 j=p
0.1

0.3

0.5

0.7

0.9

c=p

Figure 6. Phase portrait c (j) for P � 0:02 and M � 0:02.

ÿ1:0 ÿ0:6 ÿ0:2 0.2 0.6 j=p
0
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0.6

0.8

1.0

c=p

Figure 7. Phase portrait c (j) for P � 0:04 and M � 0:02.

j=p

0 200 400 600 800 t

ÿ0:6

ÿ0:2

0.2
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ÿ1:0

Figure 8. Time evolution of the phase difference j (in modulus 2p)
between the éelds of the sections for P � 0:04 and M � 0:02.
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period, preserving the coherence of the interaction between
the éelds, despite the difference between their average freq-
uencies. According to (29), the bifurcation to a two-freq-
uency periodic solution occurs at P � 0:022. Calculations
performed for P � 0:022 yielded the phase-difference oscil-
lations less than p=2, whereas at P � 0:025, j increased
indeénitely. The further increase in P to 0.14 doubles the
period, as shown in Figs 9 and 10 for the dependences c(j)
and E2 (E1). In this case, the phase incursion per period is
4p. The period quadruples at P � 0:154, and the chaotic
lasing begins at P � 0:159. Note that the number of positive
Lyapunov exponents changes abruptly from zero to two,
whereas in the case of a periodic pump, only one exponent
becomes positive [5]. Figs 11 and 12 show the chaotic lasing
regime at P � 0:2. Thus, the dimensionality of the chaos in
the system considered is approximately two times greater
than in the case of a periodic pump.

4.2 Conéguration with the signal injection
from one two-section laser to another

We studied the synchronisation of the chaotic two-section
lasers experiencing unidirectional coupling (injection) by
solving numerically equations (7) ë (11) for the controlling
laser (sections 1 and 2) and the equations for the slave semi-
conductor laser (sections 3 and 4, j42 � j43 ÿ j� j31)

qE3

qt
� N3E3 ÿME4 sinj43 � KE1 sinj31, (30)

qE4

qt
� N4E4 �ME3 sinj43 � KE2 sinj42, (31)

qj43

qt
� R�N3 ÿN4� �M

�
E3

E4
ÿ E4

E3

�
cosj43

�K

�
E2

E4
cosj42 ÿ

E1

E3
cosj31

�
, (32)

qj31

qt
� R�N1 ÿN3� �M

�
E4

E3
cosj43 ÿ

E2

E1
cosj

�

�K

�
E1

E3
cosj31 ÿ 1

�
, (33)

T
qN3

qt
� PÿN3 ÿ �1� 2N3�E 2

3 , (34)

T
qN4

qt
� PÿN4 ÿ �1� 2N4�E 2

4 . (35)

Here, Ei are the éeld amplitudes; jij is a difference between
the phases ji of the éelds; the coupling constant K des-
cribes the radiation injection from section 1 to section 3 and
from section 2 to section 4. Equations for the inversion in
the slave laser coincide with equations (10) and (11) up to
the subscript replacement.

We studied the synchronisation of the two laser pairs
operating in the chaotic regime by varying the constant K of
the unidirectional coupling for éxed M � 0:02 and P � 0:2.
The controlling laser operated in the chaotic regime (see
Figs 11 and 12) with two positive and three negative Lya-
punov exponents. The entire system of the two two-section

ÿ1:0 ÿ0:6 ÿ0:2 0.2 0.6 j=p
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c=p

Figure 9. Phase portrait c (j) for P � 0:14 and M � 0:02.
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Figure 10. Phase portrait E2 (E1) for P � 0:14 and M � 0:02.
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Figure 11. Phase portrait E2 (E1) for P � 0:2 and M � 0:02.
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Figure 12. Phase portrait c (j) for P � 0:2 and M � 0:02.

152 A P Napartovich, A G Sukharev



lasers is described by 11 variables. The resulting space of the
Lyapunov exponents has the dimensionality 11, and the
number of positive exponents in the chaotic lasing regime is
determined by the coupling constant. At K � 0:01, there are
four positive exponents, at K � 0:02 there are three, and at
K � 0:03 and higher, only two positive exponents remain.

Since the number of positive Lyapunov exponents of the
controlling laser is independent of K and equal to two, the
synchronisation of the lasers can take place at K5 0:03.
The coupling constant in Figs 13 and 14 is K � 0:04. One
can see from Fig. 12 that the éelds in the two sections of the
controlling laser on average oscillate at different frequencies.
Nevertheless, the pairs of sections of different lasers (1 ë 3,
2 ë 4) become synchronised. Fig. 13 shows the dependence
of the real and imaginary parts of the éeld E3 exp (ij31) on
E1. One can see that the variation is localised in narrow
regions along two straight lines. Fig. 14 shows the time
dependence of these éeld amplitudes, demonstrating their
strong correlation. In this case, the phase difference j of the
controlling laser and the phase difference j43 of the
controlled laser are virtually equal: jÿ j43 � 0 with a
root-mean-square variance of 0.14.

5. Conclusions

The investigation of the chaos synchronisation calls for a
detailed study of the behaviour of a single semiconductor
laser operating in various regimes. For the regime of peri-
odic oscillations, we have derived analytic expressions for

the frequency of the self-oscillations and for the threshold
pump intensity, at which the transition to two-frequency
periodic regimes takes place. We have determined the para-
meter regions where the doubling and quadrupling of the
period occurs, as well as the regions of chaotic lasing of a
single two-section laser. We have studied the synchronisa-
tion of two two-section chaotic lasers in the controlling
laser-slave laser conéguration. Our numerical analysis has
demonstrated the appearance of an incomplete chaos syn-
chronisation at a certain strength of optical coupling
between the lasers. The possibility of utilising partially
synchronised chaos for secure data communication requires
further investigation.
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