
Abstract. A theory of self-organisation of periodic surface
thermodeformation (TD) éelds in crystals irradiated by laser
pulses is developed. The period of the TD structure is obta-
ined as a function of the pulse duration and the temperature
of the medium. The theoretical results are in a good agree-
ment with the experimental data on quasi-periodic damage of
Si surfaces by laser pulses of various durations.

Keywords: self-organisation of surface éelds, laser-induced
surface damage, thermodeformation structures.

1. Introduction

Laser-induced formation of micro- and nanometre periodic
defect-deformation (DD) structures on surfaces of strongly
absorbing solids is a topical problem of laser physics. To
date, the formation of DD structures involving vacancies,
interstitials, and electron ë hole pairs has been studied (see
review [1]).

The universal mechanism of the laser-induced formation
of surface DD structures is the diffusion-deformation insta-
bility, which appears when the concentration of laser-in-
duced defects exceeds the critical one, so that the deforma-
tion-induced êow of defects becomes greater than counter
diffusion êow, resulting in self-localisation of defects in self-
consistent deformation wells. A positive DD feedback auto-
matically appears for laser-induced point defects, whose
energy of interaction with the self-consistent (defect-indu-
ced) deformation éeld is given by [2]

H � ÿydx , (1)

where yd is the deformation potential of the defect; x � divu
is the deformation, and u is the displacement vector of the
medium.

Apart from creating point defects, laser radiation heats
the surface. The radiation-induced thermal éeld can be
treated as consisting of `defects' of an ideal lattice ë thermal
phonons. Owing to the cubic anharmonicity of an elastic
continuum, thermal phonons create a self-consistent static
deformation x in a solid. The energy density of the cubic
anharmonic interaction between thermal phonons and the

deformation x is given by the expression

Uunh � ÿKax2phx, (2)

where K is the modulus of elasticity; a is a dimensionless
positive constant of anharmonicity; and xph is the time-
oscillating deformation caused by the displacement of
medium in the phonon wave. It was shown in Ref. [3]
that the coupling energy between a thermal phonon and the
deformation éeld x obtained from Eqn (2) coincides with
energy (1). Therefore, thermal phonons belong to the class
of lattice defects that can produce DD instability. This
instability can be conveniently described in terms of the
temperature éeld T � x2ph. The temperature-deformation
coupling, described by expression (2), then gives rise to a
positive feedback between the éelds of temperature and
deformation. This can lead to the development of thermo-
deformation (TD) instability, which is similar to surface
DD instability [1].

In this work, we construct the theory of laser-induced
TD instability leading to the formation of periodic TD éelds
on solid surfaces. We consider the `anisotropic élm on a
substrate' model, in which the near-surface layer heated by a
laser pulse is treated as the `élm' connected with the lower
part of the sample (the `substrate'). We take into account the
elastic anisotropy of the crystal surface, which leads to the
formation of periodic TD structures (TD lattices) whose
geometry corresponds to the crystallographic symmetry of
the crystal.

2. Model of a heated elastically anisotropic élm
on a substrate

Consider a laser pulse of duration tp incident on the (100)
surface of a strongly absorbing cubic crystal (with an
optical absorption coefécient a0). The z � 0 plane coincides
with this surface, and the z axis is directed inside the
medium. When the pulse ends, the temperature distribution
along the z axis is given by [4]

T�z� � T0 i erfc
z

2�wtp�1=2
� T0 exp ÿgz� �, (3)

where w is the temperature diffusivity; g � 2�wtp�ÿ1=2, and
T0 is a spatially uniform surface temperature which is assu-
med a éxed (externally controlled) parameter. Expression
(3) is valid if (wtp)

1=2 4 aÿ10 .
Let us deéne the effective thickness h of the heated near

surface layer by the condition

T�z � h� � Tc, (4)
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where Tc is the critical temperature of the appearance of the
TD instability (see expression (31) below). Then, equations
(3) and (4) yield

h � wtp
ÿ �1=2

ln
T0

Tc
. (5)

We will treat this heated layer of thickness h as a élm,
having density r and elasticity modulus K, that is rigidly
connected with the `substrate', i.e., the remaining part of the
crystal, which is characterised by parameters rs and Ks. For
convenience, we shift the coordinate origin z � 0 to the
plane of the élmësubstrate interface (Fig. 1) and direct the x
and y axes along the [100] and [010] crystallographic
directions, respectively. If ltp 4 1, where l is the increment
(growth rate) of the TD instability, we can neglect the heat
redistribution along the z axis at lengths of the order of the
élm thickness h. Then, assuming that at times of the
instability development (t � lÿ1) the heat redistributes
along the élm only, and using Eqn (3), we obtain

T�r; z; t� � T�r; t� exp�ÿg�zÿ h��.

The êow of heat along the surface consists of a diffusion
part and a deformation-induced part. Based on the results of
Ref. [3] and using of Eqn (2), we can express the heat êow
as

Q � ÿwgradkTÿ wagradk�Tdiv uf�. (6)

Hereafter, the jj subscript denotes differentiation with res-
pect to x and y; uf is the displacement vector of the medium
in the élm. Starting from the equation of continuity for the
heat êow, using expression (6), and taking the deformation-
induced êow into account, we arrive at

qT
qt
� wDk�T� ÿ awdivk�Tgradk�div uf��. (7)

The deformation of the élm div uf � xf can be expressed
in terms of the bending coordinate z of the élm, which
speciées the displacement of the élm's middle plane from its
equilibrium position along the z axis (Fig. 1):

xf � ÿn
�
z� h

2

�
Dkz, (8)

where n � �1ÿ 2s�=�1ÿ s�; and s is Poisson's ratio of the
élm.

For a élm parallel to the (100) plane, the coordinate z
satisées the equation which can be derived by generalising
the conventional bending equation of an elastically aniso-
tropic free élm [5, 6]:

q2z
qt2
� l 20c

2 q4

qx4
� 2A

q4

qx2qy2
� q4

qy4

!
z

 
(9)

� nyT
rh

�0
ÿh

z� h

2

�
DkTdz �

s?
rh

�
,

where l 20 � h2=12; c 2 � S11S44=r S 2
11 ÿ S 2

12

� �
S44;A � c 23 =c

2

is the coefécient of elastic anisotropy; c 2
3 � ÿS12S44��

2S 2
11�=r S 2

11 ÿ S 2
12

� �
S44; yT � akBn; n is the concentration of

atoms; kB is the Boltzmann constant; and s? is the stress
normal to the élm surface (substrate reaction). The elastic
compliance constants Sij can be expressed in terms of the
constants of elastic hardness c11; c12, and c44, which are
usually given in the literature:

c44 � Sÿ144 ; c11 ÿ c12 � �S11 ÿ S12�ÿ1;

c11 � 2c12 � �S11 � 2S12�ÿ1:
The bending of the élm induces displacements in the

substrate. Neglecting the anharmonicity, the displacement
vector u satisées the equation

q2u
qt 2
� c 2

?D u� c 2
jj ÿ c 2

?
� �

grad�div u�. (10)

We have the following boundary conditions at the élm-
substrate interface. The displacement along the z axis is
continuous:

uz�z � 0� � z. (11)

The tangential stress due to the spatially uniform tem-
perature distribution in the élm is compensated by the
shearing stress in the substrate at z � 0:�

quxi
qz
� quz

qxi

�
z�0
� yT

ms

q
qxi

�0
ÿh

Tdz, (12)

where x1 � x; x2 � y; and ms is the sheer modulus of the
crystal near the substrate-élm interface.

The normal stress in the substrate determines the force
acting on the élm along its normal

quz
qz
� �1ÿ 2b� qux

qx
� quy

qy

� �� �
z�0
� s?�x; y�

rsc
2
k

, (13)

where b � c 2
?=c

2
k; ck and c?are the transverse and lon-

gitudinal sound speeds in the substrate, respectively.
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Figure 1. `Heated élm on a substrate' model: (a) initial state in which the
élm is undistorted and the thermal phonons are distributed uniformly.
(b) Owing to the TD instability, the élm bends periodically, with the
regions of maximum heating (dark) coinciding with the regions of
maximum extension. The arrows show the periodic displacements of
surface points that give rise to the periodic damage (cracking) of the
surface (see Eqn (36) in the text).
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Starting from Eqn (7) and using Eqn (8), we derive the
equation for the temperature T (r; t) on the free surface z �
ÿh:
qT�r; t�

qt
�wDk�T�r; t��ÿawdivk

�
T�r; t�gradkn

h

2
Dkz�r; t�

�
. (14)

The system of equations (9) ë (14), together with relati-
ons (8) and T (r; z; t) � T (r; t) exp�ÿg(zÿ h)�, represents a
closed system of equations, which describes the TD ins-
tability in the model of an elastically anisotropic élm on a
substrate.

3. System of kinetic thermodeformation
equations in mode representation

Let us expand the bending deformation of the élm in a
Fourier series:

z�r; t� �
X
q

zq exp�iqr� �zq � zÿq; zq � zq�t��. (15)

Here, q � fqx; qyg is the wave vector, whose modulus lies in
the interval 04 q4 qc, where qc � p=h is the maximum
wave number. Similarly, we represent T (r; t) in the form

T�r; t� � T0 �
X
q 6�0

T�q� exp�iqr� (16)

where �T�q� � T�ÿq�; and T�q� � T�q; t��. Inserting
Eqns (15) and (16) in Eqn (14), we obtain the system of
nonlinear kinetic equations for the Fourier amplitudes:

qT�q�
qt
� g�q�T�q� �

(17)

ÿA
X
q1

q�qÿ q
1
�

h i
jqÿ q

1
j2T�q

1
�zqÿq1 ,

where

g�q� � wq2; A � nwa
h

2

yT
kBT

.

To close the system of equations (17), we will derive a
relation between T (q) Ë zq. To this end, we need to solve the
boundary value problem (10) ë (13) in the mode representa-
tion. In this representation, we have

s?�r; t� �
X
q

sq�t� exp�iqr� et�, (18)

in Eqn (13), where e is an auxiliary parameter [at the end of
the calculation we take the e! 0 limit (see below)].

The displacement vector in the substrate that satisées
equation (11) can be represented as the sum of transverse
and longitudinal parts,

u � ujj � u?,

which satisfy the conditions

rot ujj � 0; div u? � 0. (19)

We will write the components of the corresponding
solutions. For the longitudinal component we have

ujjxa � ÿiqxaR�t� exp�iqrÿ kjjz� et�,
(20)

ujjz � kjjR�t� exp�iqrÿ kjjz� et�,

for the transverse component,

u?za � ÿi
qxa
q

k?Q�t� exp�iqrÿ k?z� et�,
(21)

u?z �qQ�t� exp�iqrÿ k?z� et�,
where k2jj;? � q2 � e2=c 2jj;?, and R(t); and Q(t) are some
functions of time. The solution in the form (20), (21)
automatically satisées conditions (19). Note that for e �
ÿio, with o real, solution (20), (21) describes surface Ray-
leigh waves [5]. Here, we will consider a solution of another
type, when e! 0 (o! 0), i.e., the solution of the boundary
value problem (10) ë (13) in the adiabatic approximation.

To this end, we will érst express sq in terms of T (q) and
zq using the system of the following four equations. Starting
from Eqn (10) and using of Eqns (20) and (21), we derive
the érst equation

k2jj ÿ q2 � ÿk2? ÿ q2
�
b,

where b is deéned in (13). Inserting expressions (20) and
(21) in the boundary condition (11), we obtain the second
equation

Rkjj � qQ � zq.

The boundary condition (13) together with Eqns (19) ë (21)
yields the third equation

R
ÿ
k2? � q2

�� 2qk?Q � ÿ
sq
rsc

2
?
.

Finally, inserting Eqns (19) ë (21) to Eqn (12), we obtain
the fourth equation

2kjjqxaR�
ÿ
q2 � k2?

�
Q � yT

ms
hqxaT�q�.

Solving this system of four equations, we obtain the
relation

1

kjj

2kjjk? ÿ k2? ÿ q2

q2 ÿ k2?

"
yT
ms

hq2T�q� ÿ zq
ÿ
q2 � k2?

�#

ÿ2zqk? �
sq
rsc

2
?
.

Expanding the expression in the brackets in powers of
e2=c2jj;?q

2 (in the limit e! 0), we obtain the required
relation:

sq
rsc

2
?
� zq2q�bÿ 1� ÿ b

yT
ms

hqT�q�. (22)

Inserting Eqns (15), (16), and (18) in Eqn (9), we obtain

q2zq
qt2
� F�y�c2l 20q4zq �

nyT
2r

hq2T�q� � sq
rh

. (23)

Here, the factor F�y� � ÿ cos4 y� 2A cos2 y sin2 y� sin4 y
�

describes the angular dependence of the élm hardness, and
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y the angle between vector q and the x axis (the [100]-
direction in the plane of the élm).

Now, starting from Eqn (23), using the adiabatic app-
roximation (q2z=qt2 �0) and Eqn (22), we énd the relation
between zq and T�q�:

zq � T�q�Zd�q�, (24)

where the coefécient of the defect-bending coupling is given
by

Zd�q� � ÿ
yT
2ms

h�nqh� 2b�
�
2�1ÿ b� � rc2

ms
hl 20q

3F�y�
�ÿ1

.

We derived this expression, by using of the relation ms �
rsc

2
t .
Inserting (24) into Eqn (17), we obtain a closed system

of kinetic equations for the Fourier amplitudes T�q� of the
surface temperature:

qT�q�
qt
� g�q�T�q� � ÿ

X
q1

�
q�qÿ q1�

�jqÿ q1j2

�AZ�qÿ q1�T�q1�T�qÿ q1�. (25)
Below, we perform a linear analysis of the system of
equations (25) and compare the obtained theoretical results
with the experimental data.

4. Characteristics of surface TD lattices

Assuming that the amplitude of the zeroth harmonic of the
laser-induced surface temperature T0 is much greater than
the amplitudes of all other harmonics (T0 4T (q)) and
retaining the terms that are linear in T (q1 � 0) � T0 in
equation (25), we obtain

qT�q�
qt
� g�q�T�q� � ÿAT0Z�q�T�q�q4. (26)

By representing the solution of Eqn (26) in the form

T�q� � T�q; t� � const exp�lt�; zq � const exp�lt� (27)

and assuming that q5 hÿ1, we derive the expression for the
increment as a function of the modulus q and direction of
the wave vector q � fqx; qyg (qx � q cos y; qy � q sin y):

l�q� � ÿwq2 � wq4
h2

2
nabs

yTT0

2�1ÿ b�ms � rc2F�y�hl 20 q3
. (28)

Fig. 2 shows the dependence l(q) (28) of the increment
on the wave vector direction. The maximum increment is
achieved for modes whose wave vectors are directed along
the [110] and [010] crystallographic directions (along the x
and y axes).

The dependence l(q) of the increment of the TD lattice
given by formula (28) at y � 0, for the wave vector directed
along one of the [100] axis is plotted in Fig. 3. At temper-
atures T0 near the threshold of the TD lattice formation
(Tc � 900 K, see expression (31) below), the maximum value
l � lm is reached at q � qm (see Fig. 3a), where, taking into
account (5), we have

qm �
3nbsÿ

wtp
�1=2

ln�T0=Tc�
a2kBnT0

rc2
, (29)

and the maximum increment is

lm � wq2m. (30)

To estimate the critical temperature of the appearance of
the TD instability, we will use the relation lm � wq2m ÿ gT ,
instead of Eqn (30), where gT � w=h2 accounts for the heat
loss from the élm to the substrate. Then, it follows from the
critical condition lm 5 0 that the TD instability appears
when the spatially uniform temperature T0 exceeds the
critical temperature Tc:

T0 > Tc �
rc2

3nabsyT
� rc2

3a2nbskBn
. (31)

For the parameter values characteristic of Si n � 0:3;
bs � 0:4; w � 10ÿ1 cm2 sÿ1; rc2 � 1:2� 1012 erg cmÿ3; n �
1022 cmÿ3, a � 102), equation (31) yields the critical temper-
ature Tc � 900 K.

Thus, the development of the TD instability in a linear
regime (T0 5Tc) on a surface gives rise to a temperature
lattice (16), (27) and the concomitant deformation lattice
(15), (24), (27) with q lying inside the ampliécation band,
l(q) > 0 (Fig. 3a). The lattice with the greatest increment
has a period of d � 2p=qm.
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Figure 2. Dependence l(qx; qy) of the increment of the surface TD lattice
on the components of its wave vector calculated according to formula
(28) for the parameter values given in Section 4, T0 � 1500 K, and
tp � 10ÿ3 s.
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Figure 3. Dependence of the increment of the surface TD lattice on the
modulus of its wave vector l(q) calculated according to formula (28) for
y � 0, the parameter values given in Section 4, tp � 10ÿ3 s, T0 � 500 (a)
and 1500 K (b).
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Fig. 3b shows the dependence l(q) given by expression
(28) at higher laser heating temperatures (T0 4Tc). One can
see that qm > qc, so that the maximum increment is achieved
for the mode with q � qc � p=h. In this case, the period of
the TD lattices, taking into account (5), is

dc �
2p
qc
� 2h � 2

ÿ
wtp
�1=2

ln
T0

Tc
. (32)

Based on the above discussion, one should expect that
the TD self-organisation occurs at two stages. At the érst
stage, those TD modes are selected whose wave vectors are
directed along the two perpendicular [100] crystallographic
directions; at the second stage, the periods of the TD modes
are selected. Therefore, a two-dimensional TD lattice should
appear, which is described by a superposition of two
orthogonal lattices

T�xi� � T�q� cos�qxi�; z�xi� � zq cos�qxi�, (33)

where q � qc; xi � fx; yg. The relation between the Fourier
amplitudes of the bending coordinate zq and the temper-
ature T (q) is speciéed by expression (24) with the coupling
coefécient Z(q) taken in the limit q > hÿ1:

zq � ÿ
6yT�nqh� 2b�

rc2h2q3
T�q�. (34)

Therefore, the maxima of the élm relief (zq < 0) coincide
with the temperature maxima (see Fig. 1b).

According to Eqns (8), (33), and (34), the crystal surface
also features a two-dimensional deformation lattice repre-
senting the superposition of two lattices of the type

x�xi� � n
h

2

q2z
qx2i
� n

h

2
q2
��zq�� cos�qxi�. (35)

The component uxi (x1 � x; x2 � y) of the lateral displace-
ment vector of the surface is related to the deformation x by
the expression x � quxi=qxi. Taking into account (35), we
obtain

uxi �
�
xdxi � n

h

2
q
��zq�� sin�qxi�. (36)

Therefore, the lines of zero lateral displacement of the
surface, determined by expression (36), coincide with the
lines of maximum temperature determined by Eqn (33), so
that the displacements on the two sides of these lines are
oppositely directed (see Fig. 1b).

5. Comparison with experiment and conclusions

Thus, as the critical temperature Tc (31) is exceeded, two
lattices of temperature variation are formed on the crystal
surface. Their grooves are perpendicular to the [100] crys-
tallographic axes and the distance between the maximum
temperature lines is speciéed by formula (32). Simulta-
neously, two deformation lattices of the type (35) are for-
med on the surface, with the lines of zero displacement of
the medium directed along the [100] axes and being coi-
ncident with the lines of maximum temperature [cf. (36) and
(33)]. For this reason, upon the development of the TD
instability, when the wave amplitude of static lateral dis-
placements of the surface becomes suféciently large, the
periodic damage (cracking) of the surface occurs along the
lines of maximum temperature.

The theory of TD instability predicts two-dimensional
cracking (into square fragments) of the irradiated surface at
temperatures close to the melting temperature. The sides of
these square fragments should be parallel to the [001]
crystallographic axes, and their linear size should increase
with increasing laser pulse duration in accordance with
Eqn (32).

In connection with this prediction, note that the authors
of Ref. [7] have observed quasi-periodic laser-induced
éssuring of crystalline Si, with the characteristic period
(the fragment size) increasing with the laser pulse duration
tp. In the experiments, the radiation intensity was close to
the melting intensity. Fig. 4 shows the dependence of the
period of the TD structure calculated from (32), as well as
the experimental data of Ref. [7]. One can see that the
predictions of the theory of TD instability agree with the

experimental data.
The geometry of TD structures (lattices) considered in

this paper is determined by the crystallographic symmetry of
the surface. In the case of polycrystals or amorphous media,
the geometry of the structures can be determined by the
symmetry of the external inêuence, namely, the symmetry of
the original surface stresses or the symmetry of the trans-
verse intensity distribution of the laser beam. Depending on
the speciéc symmetry of the external inêuence, one can
expect the formation of periodic TD éelds having the form
of one- or two-dimensional lattices, concentric circles, or
radial structures.
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