
Abstract. Formation of periodic structures in a transverse
cross section of the emission of vertical-cavity surface-
emitting semiconductor lasers is studied. It is shown that
spatial Fourier modes of the emission are selected not only
through the well-known mechanism related to the gain dis-
persion, but also through the dependence of the reêection
coefécient of Bragg mirrors on the angle of incidence of the
wave. This mechanism gives rise to the selection of standing
transverse waves, whose direction is determined by the pola-
risation vector of the radiation. The effect of the laser cavity
symmetry with respect to the active layer on the mode
selection is studied.
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Vertical-cavity surface-emitting lasers (VCSELs) are prom-
ising light sources for optical data processing and optical
ébre communication systems owing to the advantages
brought by their geometry: compactness, a circularly sym-
metric beam proéle, the possibility of being densely packed
in a surface-emitting system, and single-mode lasing [1]. A
special feature of these lasers is a large Fresnel number,
which can reach a few tens without any need to use curved
mirrors, as in the case of lasers with long cavities [2].

In their transverse beam sections, wide-aperture lasers
with plane cavities can form periodic structures, such as
travelling or standing waves, optical vortex-like localised
structures, or spatial solitons [3 ë 7]. This makes VCSELs
ideal candidates for studying these processes, which is
important for diversifying their applications and under-
standing the fundamental aspects of spatial structure
formation in dissipative systems.

Theoretical analysis of lasers with large Fresnel numbers
is usually based on the semiclassical description of the lasing
process with the help the Maxwell ë Bloch equations for the
éeld and medium characteristics that are averaged over the
longitudinal cavity dimension [3 ë 5]. In this model, the
discrimination of spatial Fourier modes (oblique cavity
waves) is caused by the dispersion of the medium gain

and is determined by the detuning, d � oa ÿ oc of the
transition frequency oa of the medium from the cavity
frequency oc. An inhomogeneous radiation proéle can be
formed only if d > 0, when travelling transverse waves
appear.

In this work, we show that the dependence of the reêec-
tion coefécient of Bragg mirrors on the angle of incidence of
the wave also causes the selection of spatial éeld harmonics
in the emission of a VCSEL. The inclusion of this mecha-
nism in the theoretical treatment gives rise to the selection of
transverse standing waves whose direction depends on the
polarisation of the radiation. The resulting structures are
then similar to those observed experimentally [8].

The mode selection process can become more complex if
we take into account the polarisation of the emission,
characteristic of this type of lasers due to their weak
anisotropy [9, 10]. In this work, however, we will consider
a laser operating near the lasing threshold, when the
radiation with a certain linear polarisation is stable to
orthogonally polarised perturbations (the scalar case).

In our model, the VCSEL is a thin-élm system [11, 12]
with the radiation consecutively passing through individual
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Figure 1. Model of the vertical-cavity laser: (A) thin active layer of
thickness l, (B1, B2) Bragg reêectors at distances L1 and L2 from the
active layer. Each of the Bragg reêectors consists ofMi (i � 1, 2) periods,
which, in turn, consist of quarter-wave layers with n�i�3 and n�i�4 . The
spaces between the Bragg reêectors and the active medium are élled with
media whose refractive indices are n1 and n2, respectively. Ein1 and Ein2

are the éelds incident on the active layer; Et1 and Et2 are the transmitted
éelds.



elements of the resonator (Fig. 1). We assume that the active
layer of thickness l is located between two linear media with
refractive indices n1 and n2. The cavity is formed by the
upper and lower Bragg reêectors, which consist of Mi pairs
of alternating layers with refractive indices n

�i�
3 and n

�i�
4

(i � 1, 2). In many devices used, the thickness l of the active
layeris smaller than the radiation wavelength. In this case,
we can neglect the diffraction in the active layer and
represent the éeld inside it as the sum of the two incident
waves E in1 and E in2 and the secondary wave produced by
the polarisation of the medium [13]:

E�t; r?� � E in1�t; r?� � E in2�t; r?� �
2piol
c

P�t; r?�. (1)

Here, E (E in) and P are the slowly varying (on the wave-
length scale) amplitudes of the electromagnetic éelds and
polarisation of the active medium, respectively; o is the
wavelength of the emission, usually coinciding with the ca-
vity frequency oc; r? � ( x, y ) is the coordinate in the plane
of the transverse cross section (the active layer). The éelds
Et1 and Et2 transmitted by the active layer are related to the
incident éelds by

E t1;2�t; r?� � E in1;2�t; r?� �
2piol
c

P�t; r?�. (2)

The propagation of the radiation inside the cavity can be
written in the operator form:

E in1;2�t; r?� � F̂1;2E t1;2�t; r?�, (3)

where

F̂1;2 � r1;2 exp�i2kL1;2� exp
�
i
D?
k

L1;2

�
R̂1;2 (4)

are the propagators, r1;2 are the losses due to the passage of
radiation through the linear (in the general case, absorbing)
medium between the active layer and the reêector; L1;2 are
the thicknesses of the linear layers at the two sides of the
active medium; and D? is the transverse part of the Lap-
lacian.

The érst parts of the propagation operators, containing
exponents, describe the light propagation in the linear
medium between the active layer and the mirrors. It is a
formal solution of the equation of diffraction in the paraxial
approximation. Note that D? acts in the k? space so that
D? / jk?j2, where

k? � kx
ky

� �
is the transverse component of the total wave vector k of
the light éeld, and k � o=c � 2p=l is its modulus.

Operators R̂1;2 are deéned in the k?-space as the reêec-
tion coefécients R1;2 of the Bragg mirrors for each plane
wave with the vector k?. They can be calculated by expan-
ding the éeld E ( k?) in TE and TM components, for which
the reêection coefécients of thin-élm systems are known
[14], and then changing back to the ( x, y) basis [15]. Assum-
ing that the radiation éeld is polarised along the x axis, we
obtain

Ri�k?� � rs;i �k?�e 2sx ÿ rp;i �k?�e 2sy , (5)

where esx � ÿky=k?, esy � kx=k?; rs and rp are the reêec-
tion coefécients for the TE and TM modes, respectively,
and i � 1; 2.

Combining relations (1) ë (3), one can easily derive the
recurrent relation expressing the radiation éeld inside the
active medium in terms of the cavity round-trip time t �
t1 � t2:

E�t; r?� � F̂1F̂2E�tÿ t; r?� �
2piol
c
�P�t; r?�

�F̂1P�tÿ t1; r?� � F̂2P�tÿ t2; r?� � F̂1F̂2P�tÿ t; r?��. (6)
In the derivation of Eqn (6), we used the fact that

operators F̂1 and F̂2 commute, which can be easily proven in
the considered case (i.e., the speciéc sequence in which the
light passes through different parts of the cavity is insig-
niécant). The time delays t1 and t2 due to the énite time of
the light transit through different parts of the cavity are
determined by the effective lengths of these parts, including
the penetration depth of the radiation into the Bragg reêec-
tors [16].

The response of the active semiconductor medium is
described by the Bloch equations for the polarisation and
the charge carrier density for each optical transition from
the conduction band to the valence band, which is char-
acterised by the wave vector [17]. Using rather general
assumptions, the equations for the total polarisations and
the carrier density can be reduced to equations similar to
those describing a two-level medium. The parameters of this
medium depend on the carrier density and the temperature
[18]. We will assume that, near the lasing threshold, the
susceptibility of the medium linearly depends on the carrier
density at the maximum of the gain proéle, and that the
remaining parameters, which determine the Lorentzian
shape of the gain proéle, are virtually constant. Our starting
point will be the two-level Bloch equations, which, in the
limit of a broad gain proéle, reduce to the phenomeno-
logical rate equations, which adequately describe many
lasing properties of semiconductor lasers. This considerably
simpliées our analysis and numerical experiment while pre-
serving the main features of the process under study and
offering an insight into the roles of the gain dispersion and
losses in the formation of the spatial structure of the emis-
sion.

The Bloch equations for the polarisation P and the
carrier density N have the form

dP

dt
� ÿ

�
1

T2

� id
�
Pÿ jdj

2

3�h
i�NÿN0�E ,

(7)

dN

dt
� ÿNÿ J

T1

ÿ i

2�h
�E �Pÿ EP �� ,

where T1 and T2 are the relaxation times of the carrier
density and the polarisation, respectively, N0 is the carrier
density necessary to reach the state of transparency, jdj is
the modulus of the transition dipole moment, and J is the
pump parameter.

The conditions for each of the transverse éeld harmonics
k? � ( kx, ky) of the cavity are different, and so are the shifts
of their frequencies from the transition frequency of the
active medium and from the cavity frequency for the zero
mode with k? � 0. Therefore, we will look for the solution
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of system (6), (7) by expanding the éeld E ( t; r?) and the
polarisation P ( t; r?) in the spatial harmonics:

E�t; r?� �
�
E�t; k?� exp�ÿi r?k?�dk? ,

P�t; r?� �
�
P�t; k?� exp�ÿi r?k?�dk? .

We will assume that relatively fast temporal variations on
the scale of the cavity round-trip time are due exclusively to
the adjustment of the radiation phase, whereas the amplitu-
des of the spatial harmonics vary relatively slowly. Then,
these harmonics can be treated as quasi-plane waves:

E�t; k?� � e�t; k?� expfÿi�O�k?�tÿ k?r?�g,
(8)

P�t; k?� � p�t; k?� expfÿi�O�k?�tÿ k?r?�g.
Considering the case of a stationary state, i.e., time-in-

dependent amplitudes e and p, we insert Eqn (8) into Eqns
(6) and (7), arriving at

1 � ~r1�k?�~r2�k?� �
2pol jdj2T2

3c�h
lo�k?�f�1� ia�

�D�1� ~r1�k?�~r2�k?� � ~r1�k?� � ~r2�k?��

ÿ iaD0�1� r1�0�r2�0� � r1�0� � r2�0��g,

p � ÿ jdj
2T2

3�h
lo�k?��iÿ a�De, (9)

e 2 � 3�h 2�JÿD�
jdj2T1T2LoD

.

Here, D � N ÿN0; J is the appropriately redeéned pump
parameter; lo( k?) � 1=

�
1� �(dÿ O( k?)T2�2

	
is the Lor-

entzian gain proéle; ~rj( k?) � rj( k?) exp�iyj ( k?)�; ri ( k?) �
jRij are the moduli of the reêection coefécients of the Bragg
structures; and si ( k?) are their phases, which enter the
expressions for the total phases: yj ( k?) � si ( k?)� 2kLi
ÿjk?j2Li=k� O( k?)ti. The quantity a characterises the
relative variation in the refractive index and the gain caused
by a variation in the number of carriers. In contrast to the
case of a two-level model, where a � ÿdT2, in semiconduc-
tors this parameter is independent of the sign of the freq-
uency detuning from the maximum of the gain proéle, and
remains nonzero at d � 0. We use this fact in the following
discussion.

The last term in the érst equation of system (9) was
introduced to remove the frequency shift of the zero har-
monic ( k? � 0) at its lasing threshold (D � D0), which is
caused by the variation in the refractive index of the active
medium produced by the change in the number of carriers.
A similar term should also be added to equation (6). When
the active layer is located at an antinode of the cavity's
standing wave, we have si (0)� 2kLi � jip, where ji integers.
Assuming that the resonance conditions are satiséed, i.e.
j1 � j2 is an integer number and, accordingly, O(0) � 0, we
obtain

D0 �
3c�h�1ÿ r1�0�r2�0��

2poljdj2T2lo�0��1� r1�0�r2�0� � r1�0� � r2�0��
. (10)

The values of D found from Eqn (9) determine the lasing
threshold for each transverse mode. Obviously, the modes
with the minimum D will be the érst to start lasing, and if
the transverse wave vectors of these harmonics are nonzero,
spatial structures will appear.

Consider érst the simplest case when the reêection coef-
écients of the mirrors are independent of the angle of
incidence. Then, the relative excitation threshold of a spatial
Fourier mode with a given wave vector is determined by its
frequency detuning from the maximum of the gain proéle:

D

D0

� lo�0�
lo�k?�

� f�dÿ O�k?��T2g2 � 1

�dT2�2 � 1
. (11)

Expression (11) yields the well-known result [2 ë 5] that,
in the case of a positive detuning, d > 0, the minimum exci-
tation threshold corresponds to the harmonic with O(k?) �
d. This mechanism of spatial mode selection is related to the
gain dispersion. The lasing threshold of each mode then
depends on jk?j only, i.e. there is no preferred direction for
the resulting spatial structures. The gain threshold m�J=D0

of every mode is shown for this case by the dash-dot curve in
Fig. 2 (the kx � 0 section is shown).

In the case of a negative detuning, the emission proéle
should be homogeneous near the lasing threshold. Assuming
that the susceptibility of the active medium is frequency-
independent, the selection is determined exclusively by the
dependence of the reêection coefécients of the Bragg mir-
rors on k?. Therefore, we have

D

D0
� �1ÿ~r1�k?�~r2�k?���1� r1�0�r2�0� � r1�0� � r2�0��
�1ÿ r1�0�r2�0���1�~r1�k?�~r2�k?�� �~r1�k?� �~r1�k?��

.

(12)

As is well known, the reêection coefécient ri (k?) is an
anisotropic function in the case of linearly polarised light.
The harmonics whose wave vector is perpendicular to the
polarisation vector, kx�0, ky 6�0, have the best reêection
conditions (Figs 3a,b). This anisotropy gives rise to minima
of the lasing threshold at nonzero spatial frequencies. In
accordance with the reêection coefécients, these lasing thres-
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Figure 2. Dependence of the gain threshold m on the parameter ky=k,
describing the slope of the spatial mode to the cavity axis. The curves are
for the kx � 0 section and parameter dT2 � 0:5 with ordinary (non-
Bragg) mirrors with the same reêection coefécient (dash-dot curve), 0.1
(solid curved), 0.5 (dashed curve), and 0.5 with an asymmetric cavity
(dotted curve). The remaining parameters were a � 3, k � T1t

ÿ1�1ÿ
r1(0)r2(0)� � 300, L1 � L2 � l, n1 � n2 � 3:2, n�1�3 � n�2�3 � 3:0, n�1�4 �
n�2�4 � 3:56, n�1�l � n�2�l � 3:2, and M1 �M2 � 16. All curves are sym-
metric with respect to the origin ky � 0.
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hold minima correspond to the harmonics that are perpen-
dicular to the radiation polarisation (Figs 3c,d). As com-
pared to previous case of the gain dispersion mechanism, the
mode selection near the lasing threshold is softer, i.e, the
minima are much shallower.

The interplay between the two mechanisms of the spatial
harmonics selection can be either constructive, with both
mechanisms enhancing each other, or destructive. Fig. 2
shows the dependence of the gain threshold for the spatial
harmonics of the kx � 0 section (where the lasing threshold
reaches its absolute minimum) for various parameters of the
system. In the case of the exact resonance (d � 0) or a
negative detuning, the minima due to the Bragg mechanism
of the spatial mode selection disappear if the gain proéle is
suféciently narrow. In the case of a broad gain proéle, they
merely shift towards ky � 0 and become shallower (Fig. 2,
solid curve).

The dashed curve in Fig. 2 shows an example of the
constructive interplay in the case of d > 0. The lasing
threshold minimum deepens and shifts towards larger ky,
where the maximum of the mirror reêection coefécients is
located when the Bragg dispersion mechanism is neglected
(see Fig. 2, dash-dot line). Note that the lasing threshold for
the zero spatial harmonic remains unchanged. Fig. 4 shows

the complete spatial dependence of the lasing threshold in
this case. One can see that the strong anisotropy that is
characteristic of the Bragg mechanism remains when both
mechanisms are active, whereas the depth of the minima and
their positions in the ( kx, ky) plane are mainly determined
by the dispersion mechanism. Thus, under the combined
inêuence of the two mechanisms, the anisotropy introduced
by the Bragg mirrors is enhanced by the dispersion.

Now consider how the position of the active layer in the
cavity affects the lasing threshold of transverse modes. The
analysis of the system of equations (9) shows that, if the
reêection coefécients of the two Bragg structures are the
same, a small displacement of the active layer from the
antinode of the cavity's standing wave changes only ampli-
tudes, proportionally increasing the lasing threshold of all
harmonics. A stronger symmetry violation, which can be
produced, for example, by introducing an absorbing layer in
one part of the cavity, gives rise to a phase mismatch and
shifts the frequencies of all spatial harmonics. As a result,
the effective detuning dÿ O( k?) of a sideband mode can
become smaller than the effective detuning of the zero har-
monic even when d < 0. This mode will have the minimum
lasing threshold. In the case of a positive d, the minima of
the function D( k?) become more pronounced (see the dash-
dot and dotted curves in Fig. 2), while the threshold for the
zero mode rises because it no longer experiences the best
lasing conditions.

To simplify the numerical integration of equations (1) ë
(7), we will use the hierarchy of characteristic times that is
typical for a system formed by a semiconductor medium and
a microcavity. In particular, the characteristic cavity round-
trip time is t � 10ÿ14 s, the relaxation time of the polar-
isation is T2 � 10ÿ12 s, and the relaxation time of the carrier
population is T1 � 10ÿ9 s.

To exclude the time scale of the cavity round-trip from
the equations, we evoke the above assumption that the éeld
amplitude changes little over time t. Then, e ( t� t) � e ( t )�
tde ( t )=dt, and the difference equation (6) reduces to a
differential one.

Assuming also that the short relaxation time of the
polarisation of a semiconductor medium makes it possible
to use the quasi-stationary approximation for each of its
spatial components, we replace the equation for the polar-
isation by relation

P � ÿ jdj
2T2

3�h
�iÿ a�l̂o�DE �. (13)

Within these approximations, the equations for the
normalised amplitude of the emission éeld, E! (jdj2�
T2=3�h2)1=2E, and the normalised carrier density, D!
D=D0, take the form

dE�t; r?�
dt

� ÿkM̂E�t; r?� ÿ iÔE�t; r?� ÿ ikaE�t; r?�

� k�1� ia�Ĝ�DE�t; r?��, (14)

dD�t; r?�
dt

� ÿD�t; r?� � mÿ Im
��iÿ a�E ��t; r?�

�l̂o
ÿ
D�t; r?�E�t; r?�

��
.
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Figure 3. Angular dependences of the reêection coefécient of the Bragg
mirrors (a, b) and the threshold pumping current in the absence of the
Lorentzian gain dispersion (c, d) in sections kx � 0 (a, c) and ky � 0
(b, d). The curves are symmetric with respect to the origin ky � 0.
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Figure 4. Angular dependence of the threshold pumping current in the
(kx, ky) plane with the parameters as in Fig. 2 and dT2 � 0:5.

224 N A Loiko, I V Babushkin



Here, time t is normalised by the relaxation time T1 of the
carrier density and k � T1t

ÿ1�1ÿ r1(0)r2(0)�.
The operators entering system of equations (14) act as

follows:

Ô / O�k?�; M̂ / 1ÿ ~r1�k?�~r2�k?�
1ÿ r1�0�r2�0�

;

(15)

Ĝ / 1� ~r1�k?� � ~r2�k?� � ~r1�k?�~r2�k?�
1� r1�0� � r2�0� � r1�0�r2�0�

lo�k?�
lo�0�

.

The frequencies O ( k?) are assumed to coincide with their
steady-state values; l̂o /lo(k?).

If the spatial effects are neglected, system of equations
(14) for a single mode with k? � 0 reduces to the ordinary
system of rate equations, widely used to describe the emis-
sion dynamics. When all spatial modes are taken into ac-
count, the intermodal competition considered above gives
rise to a minimum of the threshold at k? 6� 0. The spatially
homogeneous state (E � 0, D � m) then yields its stability to
a state with k? 6� 0. In the immediate vicinity of the lasing
threshold, the anisotropy of the system should give rise to
the transverse waves whose k? corresponds to the lasing
threshold minimum [19].

For the numerical integration of system (14), we used the
Runge ëKutta method, performing the fast Fourier trans-
form at each integration step in order to calculate the action
of the operators that appear in the right-hand side of Eqns
(14). We assumed periodic boundary conditions.

For a pump intensity near the lasing threshold, the
system reached its steady state after some transition process,
and formed the spatial structures shown in the near éeld in
Fig. 5a. The patterns averaged over the largest oscillation
period, t � 10, are shown in Figs 5b and 5c (the near- and
far-éeld zones). These structures are standing waves, whose
period corresponds to the modes having the minimum lasing
threshold. The orientation of these structures coincides with
the polarisation of the emission, in agreement with the
experimental data of Ref. [8].

The stripes shown in Fig. 5a exhibit small-amplitude
steady-state oscillations, shown in Figs 6a and 6b for a
single point of the cross section. One can see that these
oscillations have three characteristic frequencies. The oscil-
lations with a period of �10ÿ1 are due to the beating of
spatial modes k? with different frequencies O ( k?). This

beating is virtually absent in the dynamics of D. Oscillations
with periods of � 1 and � 10 describe the longitudinal and
transverse oscillations of the entire spatial structure. The
period of � 1 is close to the period of relaxation oscillations.
Note that the intensity peaks in the far-éeld zone (Fig. 5c)
oscillate with this period too, with the two peaks having
opposite phases. Interestingly, a weak longitudinal and
transverse modulation of the spatial structures was also
observed in experiment.

Ref. [8] does not provide the values of k? for the resul-
ting spatial structures. However, its authors have shown
that in the case of a varying cavity length (which is equi-
valent to a variation in d), at d > 0 the frequency of the
emitted light coincides with the transition frequency of the
semiconductor medium, whereas at d < 0 the lasing fre-
quency follows the variation in the cavity length. This agrees
with the dispersive mechanism of the spatial structure
formation. Since in our system the depth and the position
of the lasing threshold minimum are also mainly determined
by the detuning d, we observe a similar behaviour. Fig. 7
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Figure 5. Stripes calculated by the numerical integration of the system in the near-éeld zone at a éxed time instant (a), as well as the near- (b) and far-
éeld (c) structures averaged over a time interval of t=T1 � 10. The parameters are as in Fig. 4; m � 0:8.
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Figure 6. Fig. 6. Steady-state temporal dynamics of the éeld intensity (a)
and carrier density (b) in a point of the transverse structure shown in
Fig. 5.
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shows the dependence of the lasing frequency on the cavity
length. One can see that at d < 0 (DL=L < 0) the lasing
frequency follows the cavity frequency, whereas at DL=L >
0.0005 it coincides with the transition frequency. The devi-
ation from this behaviour in the narrow interval 0.0005
> DL=L >0 is due to the Bragg dispersion mechanism,
which is not completely suppressed by the Lorentzian proéle
in this interval.

Thus, we have shown in this work that the selection of
spatial Fourier modes in a wide-aperture VCSEL can be a
result of the well-known gain dispersion mechanism as well
as of the reêection coefécient dispersion of the Bragg mir-
rors of the laser cavity. The érst dispersion mechanism pri-
marily determines the position and the depth of the lasing
threshold minimum for spatial harmonics, whereas the
Bragg dispersion mechanism gives rise to an anisotropy
of spatial dependence of the lasing threshold. The lowest
threshold corresponds to spatial harmonics whose wave
vector is perpendicular to the polarisation of the emission.

The gain dispersion considerably depends on the posi-
tion of the active layer inside the cavity. This is due to the
dependence of the phase incursion in various parts of the
cavity, which determines the frequency shifts of the spatial
harmonics, on the longitudinal dimension of these parts.
The two selection mechanisms can either suppress or en-
hance each other, leading to more or less pronounced selec-
tion of spatial harmonics.

The results of the numerical simulation show stationary
transverse structures appearing near the lasing threshold.
These are stripes parallel to the polarisation vector of the
emission. The analysis of higher pump intensities requires
considering the vector nature of the emission éeld as well as
a more adequate description of the interaction between the
semiconductor medium and radiation.
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Figure 7. Dependence of the frequency shift, O, on the change in the
resonator length, DL. O and DL are shown in relative units.
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