
Abstract. The analysis and experimental testing of dispersion
cavities with volume holographic transmission gratings are
performed. Depending on the angular selectivity and dis-
persion of the gratings, which determine the lasing linewidth,
the required tuning range is accessible by rotating only one of
the cavity mirrors or the grating ë mirror unit about a given
axis. The angular selectivity of the volume gratings is shown
to play a decisive role in determining the lasing linewidth,
making it possible to realise single-mode lasing in nanosecond
lasers without using telescopic optics.
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Volume holographic gratings (VHGs) belong to the class of
elements whose diffraction follows the Bragg condition [1].
There are several kinds of phase holographic materials that
can be used to record optical diffraction elements (dichro-
mated gelatin, photopolymers, and photorefractive crys-
tals). For the purposes of creating transmission diffraction
gratings, self-developing photopolymers are clearly the
most promising materials ë both in the real-time recording
technology and the actual characteristics [2, 3].

Within the framework of the two-wave theory [1], the
angular selectivity of transmission VHGs with a harmonic
modulation of the refractive index can be determined from
the expression for the diffraction eféciency:

Z � sin2�x2 � n2�1=2
1� x2=n2

; (1)

where n � pn1T=l cos y0 is the power of the transmission
phase grating; n1 is the modulation amplitude of the
refractive index in the photopolymer of thickness T ; y0 is
the Bragg angle in the medium;

x � 2pT
l
�sin y0�Dy

is the detuning from the angle ëwavelength resonance, with
Dy being the detuning from the Bragg angle in the medium.
At n � p=2 and Dy � 0, the transmission grating has the
maximum eféciency of 100%.

A detuning reduces Zmax; at Z=Zmax � 0:5 the angular
and spectral FWHMs are given by

2Dy � L
T
; 2Dl � l0

L
T
coty0; (2)

where L is the spatial period of the grating.
One can see that the thickness T of a VHG is the key

parameter for controlling the spectral and angular selectivity
of such gratings. Regarding the possibility of varying T ,
photopolymers are favourably distinguished among other
recording materials [4]. Accordingly, transmission VHGs
differ from relief gratings by their variable spectral-angular
selectivity.

The condition for the diffraction of light from a grating,
L(sin y� sinj) � ml (with j the angle of diffraction and
m � 1; 2; :::), in general does not limit the angle of incidence,
y (with the exception of the Littrow autocollimation moun-
ting and diffraction gratings). Therefore, such gratings do
not produce any monochromatisation of light unless the
incident light is collimated. This is the paramount condition
for the practical utilisation of diffraction gratings in spectral
devices.

The angular dispersion of a grating can be determined
from the above diffraction equation for y � const, yielding
dj=dl � m=L cosj. For a beam divergence of 2dj, the
spectral width of the selected line is dl�2djL cosj=m and
the resolution is l=dl � Nm, with N being the spatial
frequency of the grating rulings that are illuminated by
this collimated beam. To minimise the lasing linewidth of a
tunable laser, one therefore either employs dispersion
cavities that contain telescopic beam-expansion systems
[5] or increases N by employing grazing incidence of the
beam on the grating [6].

The situation is different for Bragg gratings whose selec-
tivity is based on the angular dispersion. Since in this case
sin y � sinj, the angular dispersion of the grating is

dy
dl
� 1

2L cos y
� 1

l
tan y: (3)

However, in this case there is no need to illuminate the
grating by a collimated beam because, due to its intrinsic
angular selectivity, the grating itself collimates the analysed
radiation. Assume only that the divergence of a beam that

E A Tikhonov, V I Bezrodnyi, T N Smirnova, O V Sakhno Institute of
Physics, National Academy of Sciences of Ukraine, prosp. Nauki 46,
03028 Kiev, Ukraine;
tel. +380 (44) 2650292, e-mail: etikh@iop.kiev.ua; etikh@zeos.net

Received 11 October 2000
Kvantovaya Elektronika 31 (3) 227 ë 230 (2001)
Translated by I V Bargatin

PACSnumbers:42.60.Da; 42.40.EqCONTROL OF LASER RADIATION PARAMETERS

DOI:10.1070/QE2001v031n03ABEH001922

Dispersion cavities with volume holographic gratings

E A Tikhonov, V I Bezrodnyi, T N Smirnova, O V Sakhno

637/911 ëKAI ë 1/vi-01 ë SVERKA ë 4 ÒÑÎÑÔ ÍÑÏÒ. å 3

Quantum Electronics 31 (3) 227 ë 230 (2001) ß2001 Kvantovaya Elektronika and Turpion Ltd



is formed by this grating is given by relations (2). Then, the
spectral width of the selected line is

2dl � 2L2 cos y
T

: (4)

The resolution of a spectral device containing such a
grating is deéned as

l
dl
� Tl

2L2 cos y
� T

L
tan y: (5)

It follows from Eqn (5) that the resolution of a VHG is
the inverse angular selectivity multiplied by the tangent of
the angle of incidence, which coincides with the Bragg angle.
Like in the case of relief gratings, the resolution equals the
effective number of phase planes of the grating that are
involved in the diffraction. One can see that the resolution
of a transmission Bragg grating is independent of the
transverse dimensions of the beam. Therefore, the use of
such gratings in spectral devices in general and in dispersion
cavities in particular does not require recording large-area
gratings and illuminating them completely with a collimated
beam.

As yet, VHGs are not routinely used in optical devices
because of the absence of data indicating their advantages
over relief reêection gratings based on reêection-coated
photoresists (Jobin-Yvon, France). The latter are widely
used in spectral and laser devices instead of ruled gratings,
allowing one to preserve the developed optical schemes
while offering higher spatial frequencies and the absence of
Rowland ghosts.

In this work, we employ volume phase gratings in the
dispersion cavity of a tunable laser. The main goal of
creating such cavities is to realise single-frequency lasing
along with a simple mechanism for the frequency tuning
within the gain proéle of the laser medium. This goal was
achieved by employing a reêection grating together with a
Fabri ë Perot etalon, or two gratings one of which operates
in the grazing-incidence geometry [5, 6].

Cavities employing reêection gratings in the Littrow
scheme [5] were historically the érst and still are the most
popular due to the technical simplicity of their tuning. The
érst volume transmission gratings based on dichromated
gelatine also used the geometry of the Littrow scheme. To
this end, transmission gratings with a diffraction eféciency
of Z � 50% were converted into autocollimation gratings
with Z � 100% by installing a reêection mirror or a total
internal reêection prism at the back side of the grating [7, 8].
To minimise the lasing linewidth and realise single-mode
lasing, the beam in a dispersion cavity with such a grating
was expanded with the help of an optical telescope. Since the
thickness of a dichromated gelatine layer is limited to
� 20 mm by a number of technological reasons, this variant
of utilising transmission phase gratings in dispersion reso-
nators is justiéed.

In Ref. [4], we demonstrated a possibility of the holo-
graphic recording of transmission VHGs the recording layer
with thicknesses up to 1 mm, while the angular selectivity
was of the order of a few angular minutes and Z � 100%.
Note that the thickness of a self-developing photopolymer
layer was limited not by the photopolymerisation, but by the
ampliécation of noise holograms, which intensiéed with in-
creasing layer thickness. The accumulated eféciency of holo-

graphic light scattering by these noise holograms reduced
the diffraction eféciency of the main hologram-grating.

In the case of the self-developing FPK-488 polymers,
the thickness can vary from 10 to 1000 mm while preserving
Z � 100%, thereby changing the angular and spectral
FWHMs, 2dy and 2dl, by orders of magnitude. Changing
T , one can realise both weakly and strongly selective gra-
tings. For example, in the case of l � 600 nm, L � 1 mm,
y � 258, 2dy � 5:38, and T � 10 and 200 mm, we have 2dl
= 60 and 3 nm, respectively. For a grating with T � 10
mm whose Bragg angle is in resonance with the centre of the
gain proéle, the tuning range of Dl �� 300 nm can be
scanned by rotating the mirror by �4:58.

For a grating with T � 200 mm, this tuning range re-
quires the same mirror rotation. However, the angular in-
terval of �4:58 exceeds the angular selectivity of the grating,
0:268, by one and a half orders of magnitude. This means
that, with this grating, one cannot realise a tuning range of
60 nm by rotating only the mirror ë the entire mirror ë
grating unit should be rotated instead. In the general case,
these two tuning possibilities are described by the following
two inequalities:

Dl
2L cos y

<
L
T

(6)

for rotating a single mirror and

Dl
2L cos y

>
L
T

(7)

for rotating the mirror ë grating unit.
Fig. 1 shows the scheme of a laser with a dispersion

cavity that is based on a volume transmission grating. In the
case described by inequality (6), the lasing frequency is
tuned by rotating one of mirrors, 1 or 2, while keeping the
grating éxed. The laser emission can be traditionally
decoupled from the cavity through a semitransparent mir-
ror. However, even best volume transmission gratings have
Z9100%. Choosing a grating with the optimal Z is similar
to choosing a mirror with the optimal transmission, which
reduces to the problem of optimising the eféciency over the
transmission of the cavity mirrors for a given pump power.
Thus, the beam that remains éxed during the frequency
tuning can be decoupled in the zeroth order of diffraction
(output 1, Fig. 1), whereas the beam that scans the tuning
angle can be decoupled in the érst order of diffraction
(output 2, Fig. 1).

If the angle of the Bragg diffraction is smaller than the
Brewster angle, the laser can emit linearly polarised light,

$$ Axis of rotation

Output 1

Pump

Output 2

1
Active

medium

VHG

2

a

Figure 1. Optical scheme of a polymer laser with a dispersion cavity
based on a volume holographic transmission grating.
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with the polarisation determined by the inclination of the
active medium and the polarisation of the pump. In the case
of a circularly polarised pump, the laser can emit unpo-
larised light.

The case described by inequality (7) is realised for larger
grating thicknesses T , when the lasing linewidth should be
ultimately reduced to the linewidth of the lasing on a single
longitudinal mode. The lasing frequency can then be tuned
over the gain proéle of the laser medium by simultaneously
rotating a mirror and the grating. The kinematics of this
rotation is simple due to a linear relation between the Bragg
angle and the angle of diffraction and the resulting equality
of their increments, � dy � � dj. For the resonator to stay
aligned, the angle of incidence of the diffracted beam on
mirror 2 should remain equal to 908 during the frequency
tuning.

This tuning kinematics is realised when the mirror and
the grating are rigidly connected (a= const), and the mirror
ë grating unit is rotated about the axis that is indicated by a
star in Fig. 1 and is perpendicular to the plane of the égure.

Fig. 2 shows typical tuning spectra of a laser on dyes in a
polymer matrix. The laser was longitudinally pumped by the
second harmonic of a Nd3� : YAG laser and contained a
1200-mmÿ1 volume phase grating with T � 10 mm. The
angular selectivity of the grating satiséed inequality (6);
therefore, the frequency was tuned by rotating mirror 2
only, and the emission was decoupled in the zeroth order of
diffraction.

Fig. 3 shows the angular selectivity of the volume phase
gratings that were recorded in the FPK-488 polymer we
developed. The measurements were performed for the s- and
p-polarisations using the emission of a HeÿNe laser (632.8
nm). The diffraction eféciency was deéned as the ratio of the
radiation power diffracted to the érst order, to the power of
the incident radiation, that is, without subtracting the reêec-
tion losses. For a power of the diffracted radiation equal to
half the power of the incident radiation, the full angular
width was 1:68 and 3:18 for T � 25 and 20 mm, N�2000
and 1200 mmÿ1, respectively. These results agree with the
predictions of the two-wave theory [1]; however, the maxi-
mum eféciency remained the same for both polarisations.

This result, observed systematically for polymers of vari-
ous compositions, contradicts the theory [1], which was

developed for the case of the harmonic modulation of the
refractive index of an isotropic material and which predicts
different Z for the s- and p-polarisations. We attribute this
fact to the anisotropy induced during the recording, when
the addition n1 to the isotropic refractive index of the
photopolymer layer that is due to the recording ë polymer-
isation process in a gradient light éeld gives rise to the
birefringence.

A dispersion cavity with a VHG already differs signié-
cantly from a similar cavity with a relief reêection grating.
For example, comparing the angular divergence averaged
over the � 20-ns pulse durations of the lasers with equally
long 25-cm cavities, we have found that the laser employing
a cavity with a volume holographic grating (1200 mmÿ1, T
20 mm) has a systematically lower divergence than the laser
employing a cavity with a relief diffraction grating (1200
mmÿ1). For the laser with a relief reêection grating, the
divergence of the output beam was 3.5 mrad at the thres-
hold and 4.5 mrad in the case of the tenfold excess of the
pump intensity over the threshold. For the laser with a
VHG, the respective quantities were 2 and 2.5 mrad. None
of the lasers contained telescopic systems. This result con-
érms the conjecture that the angular selectivity of the VHG
acts as a telescopic system on the beam in the cavity, redu-
cing its divergence.

The combined effect of the angular dispersion of the
VHG and its angular selectivity signiécantly increases the
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Figure 2. Tuning curves of the polymer laser.
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Figure 3. Angular selectivity of the transmission VHGs with N � 2000
(a) and 1200 mmë1 (b), T � 25 (a) and 20 mm (b).
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Figure 4. Dependence of the lasing linewidth on the power density of the
pump in the case of a cavity with a ruled grating ( 1 ) and a VHG ( 2 ).
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spectral selectivity of the cavity by weakening the depen-
dence of the linewidth on the divergence. For equal
dispersions of the 1200-mmÿ1 gratings, the linewidth of a
pulsed dye laser was narrowed by approximately an order of
magnitude. The relevant results are shown in Fig. 4.

As we changed over to a 2000-mmÿ1 VHG with an
angular selectivity of 1:68, the lasing linewidth reduced to
below 1 pm, becoming comparable to the mode spacing. We
will present a detailed analysis of single-mode lasing in
VHG-based cavities in a separate communication.

Due to the high selectivity of the Bragg resonance in a
VHG, one can even abandon dispersion cavities altogether,
using instead an arrangement of two equivalent gratings
with the dispersion subtraction. Earlier, we have described a
similar scheme for an optical monochromator based on
volume holographic gratings [9].
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