
Abstract. The problem of detection of weak classical forces
by an optomechanical transducer with modulated pump is
considered. For increasing the sensitivity of the scheme, it is
proposed to realise the parametric regeneration of the optical
cavity by introducing an additional quadratic nonlinear ele-
ment driven at the doubled frequency. The ultimate sensitivity
of such a transducer is estimated, and the prospects of its
practical realisation are discussed.
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1. Introduction

The problem of detection of weak perturbations of mecha-
nical systems that have vanishingly small dissipation is
extremely important for experiments with test bodies. Usu-
ally, an electromechanical [1 ë 3] or optomechanical [4 ë 7]
transducer is used to detect classical forces. The opto-
mechanical transducer has a higher potential for increasing
the sensitivity because in the optical region the noise in the
transducer is quantum and therefore of fundamental natu-
re, whereas in the UHF and even more so in the radio
frequency range, the noise is mostly thermal, with the
energy �ho of a quantum being orders of magnitude lower
than the energy kT of thermal motion.

In the traditional phase-insensitive regime, electrody-
namic transducers can detect external perturbations whose
amplitude is not below the standard quantum limit [1, 2],

Fsql � �z=t̂��M�hom�1=2, (1)

where t̂ is the duration of the external perturbation (force);
M and om are the mass and frequency of the mechanic
oscillator, respectively; and z is a parameter of the order of
a few units. According to the postulates of quantum mech-
anics, a classical variable (force) can be measured with
arbitrary precision. Therefore, the phase-insensitive regime
of the optomechanical transducer is not optimal for detec-
ting a classical external force.

To improve the sensitivity of electrodynamic trans-
ducers, authors [1, 2] proposed to use a modulated (two-
component) pump of the form

E�t� � Elas cos�omt� j� coso0t �
Elas

2
fcos��o0 � om�t� j�

� cos��o0 ÿ om�tÿ j�g, (2)

where o0 is the frequency of the optical (electrical) circuit.
This pump consists of two modes tuned to the both sides of
the resonance curve of the high-frequency circuit. A cons-
tant phase shift j, appearing in expression (2), was intro-
duced to compensate for the retardation of the response of
the circuit with respect to the driving force for the two
modes. A pump of this form leads to phase-sensitive
detection of the external perturbation because only one
quadrature of the external force, determined by the form of
the pump, is measured, which enhances the sensitivity of the
system. In this case, the minimum detectable amplitude of
the external force is given by [1, 2, 4]

F0 5Fsql
de
2om

� �1=2
, (3)

where de is the width of the resonance curve of the optical
(electrical) circuit. The sensitivity is increased at the expense
of the capability to reconstruct the shape of the external
force since the information about one of the quadrature
components is lost in the measurement process. (At least
two identical systems detecting different quadrature com-
ponents of the external force are needed for the exact
reconstruction of its shape.)

According to expression (3), the potential for increasing
the sensitivity is determined by the de=2om factor. In the case
of electromechanical transducers, one can make the decay
rate of the high-frequency circuit, de, several orders of
magnitude smaller than the resonance frequency of the
mechanical oscillator, om. In the optical region, in contrast,
it is extremely difécult to make de much less than om for
technical reasons [6]. Even for the best available mirrors
with reêection coefécient r � 1ÿ 10ÿ6, the decay rate de is
comparable to om. In this connection, alternative methods
for increasing the sensitivity of optomechanical transducers
with modulated pump are of interest.

The sensitivity of schemes with two-component pump is
limited by the noise at frequencies o0 � 2om that the
transducer introduces into the mechanical system. Accord-
ing to Eqn. (3), the improvement factor is exactly the degree
to which this noise is suppressed by the narrow-band
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resonance curve of the high-frequency circuit. Therefore, by
decreasing somehow the decay rate of the high-frequency
circuit (e.g., with the help of parametric regeneration), we
can improve the sensitivity of the setup to external forces.

The purpose of this work is to analyse the sensitivity of
an optomechanical (electromechanical) transducer with
modulated pump that operates in the regenerative regime
(below the generation threshold) for detecting an external
classical force acting on a high Q mechanical oscillator.

For the deéniteness, we will perform the analysis for the
case of optomechanical transducers, although all conclu-
sions and results apply equally to electromechanical
transducers with correspondingly adjusted parameters.

2. Model and basic equations

Fig. 1 shows the scheme of the measuring system. The
optomechanical transducer includes a high Q oscillator with
the resonance frequency om, decay rate dm, and mass M.
The movable mirror 1 of the Fabri ë Perot interferometer is
attached to the oscillator, whereas mirror 2 of the optical
cavity is rigidly éxed [6]. The mechanical oscillator expe-
riences the force to be measured, Fs, as well as a Nyquist
force, Fm, characterising the thermal oscillation of the oscil-
lator within the Langevin approach.

For simplicity, we assume that mirror 1 is almost
perfectly reêecting and the interferometer is pumped
through the unmoveable mirror 2. To realise the parametric
regeneration, an optical element with quadratic nonlinear-
ity, driven by electromagnetic éeld at frequency 2o0, is
placed inside the cavity. For determinacy, we assume that,
for a complex éeld amplitude, the coefécient of reêection
from the outer surface of mirror 2 is positive, r2 > 0,
whereas the coefécient of reêection from the inner surface
is negative and equal to ÿr2. The transmission coefécient, t2,
is then a positive quantity [8]. Obviously, this case corre-
sponds to a high-énesse optical cavity in which the inner
surfaces of mirrors are covered with multilayer dielectric
coatings and the outer surface of mirror 2 is covered with an
antireêection coating.

Suppose that the éeld Ein(t) incident on the system has
the form

Ein�t� � E 0c�t� coso0tÿ E 0s�t� sino0t, (4)

where E 0c(t) and E 0s(t) are the quadrature components.
Within the single-mode approximation, the éeld Ei(t) inside
the interferometer (a travelling wave) satisées the following
equation [9]:

�Ei�t� � 2de _Ei�t� � o2
1�1�m sin 2o0t�Ei�t�

� 2o0t2t
ÿ1
i �ÿE 0s�t� coso0t� E 0c�t� sino0t�. (5)

Here, m5 1 is the degree of modulation, determined by the
characteristics of the quadratic nonlinear optical element
and the driving éeld of the doubled frequency; ti � 2L=c is
the round-trip time of the optical cavity of length L; c is the
speed of light; de � (1ÿ r2)t

ÿ1
i � c (1ÿ r2)=(2L) is the decay

rate of the cavity (assuming that r2 � 1); o0 � npc=L is the
resonance frequency of the Fabri ë Perot interferometer
with mirror 1 éxed in the equilibrium position (the excur-
sion x � 0); and o1 � npc=(L� x) ' o0(1ÿ x=L) is the
slowly varying frequency of the interferometer for moving
mirror 1 (the ratio x=L5 1). In experiment, one can realise
the degeneration of the optical cavity using, for example,
the scheme of Ref. [10].

The éeld entering the measuring device (a homodyne
detector) is given by

Em�t� � t2Ei�t� � Ein�t�, (6)

where the érst term in the right-hand side is the radiation
decoupled from the cavity, whereas the second term arises
from the direct reêection of the incident éeld from mirror 2
(again, we assume r2 � 1).

Suppose that the emission of the pumping laser is of the
form (2). Then, the quadrature components, E 0c(t) and E 0s(t),
read

E 0c�t� � Elas cos�omt� j� � Ec�t�, E 0s�t� � Es�t�, (7)

where operators Ec(t) and Es(t) describe the quantum
êuctuations of the quadrature components of the éeld that
is incident on the interferometer. If this éeld is in a coherent
state, Ec(o) and Es(o) are uncorrelated, and their spectral
densities are given by [11, 12]

hjE 2
c �o�ji � hjE 2

s �o�ji � N0, (8)

where N0 � p�ho0=(cS ); S is the cross section of the
pumping beam. For simplicity, we neglect the excess
noise of the emission of the pumping laser and the proper
noise of the nonlinear element in the following.

The éeld equation (5) should be complemented by the
equation of motion of the mechanical oscillator,

�x� 2dm _x� o2
mx �

Fpr

M
� Fs

M
� Fm

M
� fpr � fs � fm, (9)

where

Fpr �
SE 2

i �1� r2�
4p

' SE 2
i

2p
(10)

3
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Figure 1. Scheme of the measuring system: ( 1, 2) mirrors of the Fabri ë
Perot interferometer, ( 3 ) nonlinear optical element.
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is the light pressure that the intracavity éeld exerts on
mirror 1.

In a coherent state, the êuctuations of the quadrature
components of the éeld, Ec(t) and Es(t), are usually much
smaller than the oscillation amplitude of the pumping laser,
Elas, allowing us to linearise equations of motion (5), (9),
and (10) in the êuctuations.

The driving éeld inside the interferometer satisées
equation

�Ep�t� � 2de _Ep�t� � o2
0�1�m sin 2o0t�Ep�t�

� 2o0t2t
ÿ1
i Elas cos�omt� j� sino0t. (11)

The éeld of the induced oscillation is then given by

Ep�t� �
ÿt2Elas

ti��de ÿmo0=4�2 � o2
m�1=2

� cos�omt� j� W� coso0t, (12)

where W � arctan�om=(de ÿmo0=4)� is the retardation of the
response (the intracavity éeld) with respect to the driving
force (the pumping éeld). Choosing for determinacy
j� W � 0, we obtain the éeld of induced oscillations inside
the interferometer

Ep�t� �
ÿt2Elas

ti��de ÿmo0=4�2 � o2
m�1=2

cosomt coso0t

� E0 cosomt coso0t. (13)

Linearising expressions (5), (9), and (10), we énally
arrive at the following system of equations (E � Ei ÿ Ep):

�E�t� � 2de _E�t� � o2
0�1�m sin 2o0t�E�t�

� ÿ2o2
0xL

ÿ1E0 cosomt coso0t

� 2o0t2t
ÿ1
i �Es�t� coso0t� Ec�t� sino0t�,

(14)

�x� 2dm _x� o2
mx � ÿSE0�pM�ÿ1 cosomt E�t� coso0t

� fs�t� � fm�t�,

Em�t� � t2Ei�t� � Ein�t�,

where the line over expression E(t) coso0t denotes time
averaging.

3. Sensitivity of optomechanical transducer

To solve system (14), we will use the method of slowly
varying amplitudes. Suppose that the éeld E(t) inside the
interferometer can be written as

E�t� � E1�t� coso0tÿ E2�t� sino0t, (15)

where E1 and E2 are the quadrature components of the
éeld. Then, according to Eqn. (14) the optomechanical
transducer is described by the following reduced equations
of motion:

_E1�t� � d1E1�t� � ÿt2tÿ1i Ec�t�,

_E2�t� � d2E2�t� � ÿt2tÿ1i Es�t� � o0L
ÿ1E0x cosomt, (16)

�x� 2dm _x� o2
mx � ÿSE0�2pM�ÿ1E1 cosomt� fs � fm,

with d1 � de ÿmo0=4 and d2 � de �mo0=4. As seen from
equations (16), the equivalent decay rate is different for the
two quadrature components of the éeld inside the inter-
ferometer, which is a consequence of the parametric
regeneration of the optical cavity. The information about
the x-coordinate of the mechanical oscillator is acquired by
component E2 of the éeld inside the interferometer (and,
accordingly, the same quadrature component of the output
éeld), while component E1 introduces êuctuations into the
mechanical system.

Suppose that the signal, f (t), has the form:

f �t� � f0 sinomt, 04 t4t̂, omt̂5 1 (17)

and f (t) � 0 at all other instants of time. Changing over to
the frequency representation, we derive the following
equations for the coordinate of the mechanical oscillator
and the quadrature components of the éeld, E1 and E2,
from system (16):

E1�o� � ÿt2tÿ1i Ec�o��d1 ÿ io�ÿ1,

E2�o� � ÿt2tÿ1i Es�o��d2 ÿ io�ÿ1

�o0L
ÿ1E0�d1 ÿ io�ÿ1�x�o� om� � x�oÿ om��, (18)

x�o� � G�o�
�
SE0t2�4pMti�ÿ1

� Ec�oÿ om�
d1 ÿ i�oÿ om�

� Ec�o� om�
d1 ÿ i�o� om�

� �
� fs�o� � fm�o�

�
,

where G(o) � (o2
m ÿ o2 ÿ 2idmo)

ÿ1 is the transfer function
of the mechanical oscillator. Then, inserting the expression
for x(o) from the third equation of system (18) to the
second equation, and making use of relation (6), we obtain
the following expression for the sine quadrature component
of the measured éeld:

Em2�o� � ÿEs�o�
d1 � io
d2 ÿ io

� So0E
2
0 de

2pML�d2 ÿ io�

�
�

Ec�o�
d1 ÿ io

G�o� om� � G�oÿ om�
� ��

� G�oÿom�
d1ÿi�oÿ2om�

Ec�oÿ2om� �
G�o�om�

d1ÿi�o�2om�
Ec�o�2om�

�

� o0E0t2
L�d2 ÿ io�

�
fs�o� om� � fm�o� om�
� �

G�o� om�

� fs�oÿ om� � fm�oÿ om�
� �

G�oÿ om�
	
. (19)
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Suppose that the measurement employs the low-fre-
quency part, o5om, of the spectrum of quadrature
component Em2. For simplicity, we will also assume that
the decay rate, dm, of the mechanical system is vanishingly
small, so that we can neglect the terms containing dm as well
as the êuctuation forces, fm, in the equations. Then, simple
transformations of expression (19) yield the modulus
squared of the spectrum of quadrature component Em2,

jE s
m2�o�j2 �

o0E0t2f0t̂
4pLomo

� �2
d 2
2 � o2

ÿ �ÿ1
, (20)

as well as the spectral density of noise in Em2,

hjEn
m2�o�j2i � N0

�
d 2
1 � o2

d 2
2 � o2

� S 2o2
0E

4
0 d

2
e

16p2M 2L2o2
m�d 2

2 � o2�

� oÿ2m d 2
1 � o2

ÿ �ÿ1�2oÿ2 d21 � 4o2
m

ÿ �ÿ1h i�
. (21)

The appearance of frequency o in the denominators of
expressions (20) and (21) does not mean that the expres-
sions diverge as o! 0: For simplicity, we have omitted the
terms containing dm, which limit the increase in the signal
and noise intensities at low frequencies.

Let us deéne the signal-to-noise ratio m in the usual way
[13]:

m � pÿ1
�1
0

jE s
m2�o�j2do=hjEn

m2�o�j2i. (22)

Then, inserting expressions (20) and (21) in Eqn (22), we
obtain

m � o0E0t2f0t̂
4pLom

� �2
�N0p�ÿ1

�
�1
0

do
�
o4 �

�
d21 �

a

�d 2
1 � o2�o2

m

�
o2 � 2a

d 2
1 � 4o2

m

�ÿ1
, (23)

where we introduce the simpliéed notation a � �So0E
2
0

�de=(4pMLom)�2. One can easily see that the current fre-
quency cancels out in the denominators.

In the general case, the signal-to-noise ratio (23) cannot
be calculated analytically. Note, however, that m increases
with decreasing amplitude E0 of the pump (decreasing
parameter a). In addition, a decrease in E0 narrows the
éltering band. Therefore, it is natural to assume that the
éltering band is narrower than d1 (we will verify this
condition in the following) or, in other words, we can
choose the principal value of the integral in the expression
for m from near-zero frequencies, o4d1. In this case, we
can neglect o 2 with respect to d 2

1 in the denominator of the
expression in square brackets in Eqn (23). (The resulting
value of m is smaller than the actual one and therefore
provides a lower bound on the signal-to-noise ratio).

The expression for m then becomes a standard integral,
yielding

m � o0E0t2f0t̂
4pLom

� �2
�4N0�ÿ1

�
a

d 2
1 � 4o2

m

�
d 2
1 �

a

d 2
1o2

m

�
�

2a

d 2
1 � 4o2

m

�1=2 ��ÿ1=2
. (24)

The structure of expression (24) shows explicitly that with
increasing amplitude of the pump, E0, the signal-to-noise
ratio érst increases and then remains virtually constant.
This takes place at

a4d 4
1o

2
m. (25)

Therefore, optimising the pump in accordance with
condition (25), we énd the maximum signal-to-noise ratio
to be

m � msql

�
1� 4o2

m

d 2
1

�1=2
� msql

�
1� 4o2

m

�de ÿmo0=4�2
�1=2

, (26)

where msql is the signal-to-noise ratio for the measurements
at the level of the standard quantum limit (1). Thus, para-
metric regeneration in an optomechanical detector with
modulated pump can indeed enhance the signal-to-noise
ratio, and the stronger is the regeneration, the smaller is
the minimum detectable amplitude of the force: F0�
Fsqld1=(2om) � Fsql(1ÿR)de=(2om) with R � mo0=(4de) the
coefécient of regeneration.

Interestingly, for the amplitude of the pump given by
expression (25) one can simultaneously realise a near-
maximal signal-to-noise ratio m and the broadest éltering
band. Indeed, the éltering band, Dof, is deéned as the
frequency span between the points where the integrand
reaches a certain fraction of its maximum (one half, for
example). Then, expressions (23) and (25) yield

Do2
f � 2ao2

md
2
1 d 2

1 � 4o2
m

ÿ �
a� d 4

1o
2
m

ÿ �� �ÿ1
. (27)

As parameter a (pumping amplitude E0) increases to
approximately d 4

1o
2
m, the éltering band Dof érst broadens

and then saturates at d1=2 with d1 5om, conérming the
assumption made during the estimation of the signal-to-
noise ratio (23). All other things being equal, the max-
imisation of the éltering band is necessary to reduce the
inêuence of the thermal noise Fm, which was neglected in the
present analysis for simplicity. Thus, the optimal amplitude
of the pump is determined by the equality in expression (25).

4. Discussion

The practical realisation of the proposed method for
increasing the sensitivity of the optomechanical transducer
involves the problem of suppressing the excess noise rather
than that of attaining the required degree of regeneration,
R, of the optical cavity. The experimental realisation of
optical parametric oscillators [14] leaves no doubts that
R � 1 can be reached, and formally as R! 1, the gain in
the sensitivity can become arbitrarily large, as seen from
expression (26).

Note, however, that our scheme requires not only to
increase coefécient R to unity, but also to preserve the
minimum possible level of various types of excess noise,
which can arise, for example, from a mismatch between the
wave fronts of the optical beams, nonoptimal phase
matching, various losses in the system etc. Similar difécul-
ties arise in the problem of generating squeezed states of
light (a decrease in the noise dispersion of one quadrature
éeld component at the expense of the other) [10, 15].
Although there are no fundamental limits on the degree
of squeezing, only relatively weak squeezing has been
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realised in experiment because of the limitations of the
presently available technology.

To estimate the sensitivity gain that is feasible with the
presently available technology, it is reasonable to use the
results of experiments on the generation of squeezed states
of light. For the parameters of the optical scheme that was
used in Ref. [10] (the interferometer pumped at 532 nm, the
LiNbO3 nonlinear element pumped at 1064 nm, and the
effective number of reêections in the cavity of the order of
100), we can expect a gain in the sensitivity of the order of a
few decibel [10, 15]. Therefore, the margin is relatively
small. However, one cannot ignore the fundamental impor-
tance of the experimental proof of the possibility to detect a
classical force with a sensitivity that surpasses the standard
quantum limit (1), as this problem has not been solved so
far.

Note that the parametric regeneration in an optome-
chanical transducer with modulated pump is in some sense
similar the situation when squeezed light, which can come,
for example, from a degenerate parametric ampliéer [10], is
used to pump an optical cavity [16]. Indeed, in this work we
analyse the case when nonclassical (squeezed) states of the
éeld are automatically created inside the optical cavity of
the transducer owing to the parametric regeneration. This
may constitute an advantage of our scheme over the one
considered in Ref. [16], since in our case there is no need to
pass the fragile squeezed state through numerous optical
elements of the setup. At the same time, the scheme with
external squeezing is more êexible and, in principle, allows
squeezing of different quadrature components at mixed
frequencies o0 and o0 � 2om, which further enhances the
sensitivity [16]. The latter approach cannot be realised in the
scheme with parametric regeneration because the same
quadrature component is squeezed at frequencies o0 and
o0 � 2om (ÿE2 in our case, see Eqns (18) and (19)).

In conclusion, we note that the method proposed for
increasing the sensitivity of an electrodynamic transducer
can be especially interesting in the optical region, where the
possibilities to decrease the decay rate of the cavity below
the frequency of the mechanical oscillator are much limited.
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