
Abstract. A new approach to developing simple analytical
models in multidimensional theory of light scattering in turbid
media is proposed. The approach generalises the one-dimen-
sional Kubelka ëMunk model to the cases of two and three
spatial dimensions, allowing one to solve some problems
explicitly with the precision that is sufécient for practical
applications.
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The widespread application of advanced laser location
systems and methods of optical (laser) diagnostics to
biology and medicine [1 ë 3] revived the interest in the
theoretical description of light propagation in turbid media
and, in particular, the so-called transport theory (TT) [4].
Simple analytical models allowing straightforward analysis
of the inêuence of the parameters of the medium on the
behaviour of the scattered radiation éeld are of special inte-
rest, for example, to medical diagnostics. A special feature
of such models is that they should describe the propagation
of light under the conditions of strong multiple scattering.
They should also yield the solution for the light êux
escaping the medium through the illuminated surface, since
most diagnostic techniques detect reêected (backscattered)
light.

However, despite the long-term development of optical
methods for light-scattering media, there are virtually no
models that allow analytical solution of actual (especially
multidimensional) problems. The Monte-Carlo method of
statistical modelling lacks clarity and consumes a lot of
computer time. The diffusion approximation, most popular
in TT, lacks the required precision under the speciéed
conditions (near the surface) and even violates proper
boundary conditions [4, 5].

In this connection, many specialists devote their efforts
to the improvement of existing models and analysis of their
regions of applicability [5 ë 7]. For example, interesting
approaches to the improvement of small-angle approxima-
tion [7] with the help of approximating functions have been
found. Recently, we have shown [8] that one-dimensional
TT problems can be solved with a good precision using the

well-known two-êux Kubelka ëMunk (KM) models pro-
vided that the original equations are corrected at the stage of
their phenomenological formulation. This approach, involv-
ing also the general problem of the ill-posed formulation of
transport theory equations, can be generalised to the case of
two and more spatial dimensions.

The classical TT describes the radiation inside a medium
by an angle-dependent intensity whose ray derivative is
deéned using a priori arguments. Even in the case of two
spatial dimensions, the resulting system of equations for the
intensity distribution is inénitely incomplete, and as yet its
explicit solution is unknown. At the same time, most prac-
tical problems require the knowledge of the entire spatial
distribution of the intensity éeld over the bulk and surface
of the medium, rather than the knowledge of the variation in
the intensity along some direction x. Thus, in the case of a
two-dimensional semiinénite medium with x > 0 (Fig. 1),
we would be interested in a three-dimensional function
R(x; y; y), which varies in the medium and characterises the
intensity distribution of the radiation inside the medium.

When the form of this function cannot be immediately
determined, the general approach of the TT is to attempt to
determine the derivative of this function using `low-level'
arguments about the physics of the process. After that, the
function itself can be found with the help of purely
mathematical operations. Then, to énd the distribution
of R(x; y; y), over the x-axis, one should specify the partial
derivative qR(x; y; y)=qx and énd the required function
using a trivial integration. The question is how to specify
the derivative.
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Figure 1. Intensity function in a two-dimensional problem.



The general approach of the KM method is to split the
radiation éeld inside the medium into two counterpropagat-
ing êuxes [4]. However, according to Ref. [8], the derivative
of the intensity with respect to a coordinate can be properly
deéned only by calculating explicitly the increment of the
function over an element of length Dx and varying Dx in
accordance with the conditions of the problem. In our
opinion, it is reasonable to use a similar method of
counterpropagating functions in the case of two or more
dimensions as well (Fig. 2). Since the main diféculty arises
from specifying the derivative rather than solving the
equations, we will consider only one of the êuxes, R�
for example, and ignore Rÿ for the moment to illustrate the
proposed approach. According to the deénition of a partial
derivative,

qR��x; y 0; y�
qx

� lim
Dx!0

R��x� Dx; y 0; y� ÿ R��x; y 0; y�
Dx

: (1)

Following the method for deéning the derivative used in
Ref. [8] and taking into account that the absorption and
scattering events are separated in space (Fig. 2), we write

R��x�Dx; y 0; y��
�p=2
ÿp=2

R��x; y 00; y 0�eÿkDx= cos y
0
r�y; y 0�dy 0;(2)

where k is the linear absorption coefécient of the medium; r
is the phase (angular) function of scattering; and variable
y 00 can be represented as

y 00 � y 0 � Dx tan y 0: (3)

Since the physics of the process is invariant along the
coordinate x, the function R�(x; y; y) appearing in Eqn (1)
obviously satisées the following integral equality:

R��x; y 0; y� �
�p=2
ÿp=2

R��x; y 0; y 0�r�y; y 0�dy 0: (4)

Then, inserting expression (3) into Eqn (2) and further to
Eqn (1) and inserting (4) to Eqn (1), we obtain an inde-
terminacy of the 0/0 type at Dx! 0. Removing the

indeterminacy with the help of the L'Hospital rule and
using the fact that the limit of a function equals the fun-
ction of a limit [9], we obtain for R�(x; y

0; y) the required
érst-order partial differential equation:

qR��x; y 0; y�
qx

�
�p=2
ÿp=2

�
qR��x; y 0; y 0�

qy
tan y 0

ÿ k

cos y 0
R��x; y 0; y 0�

�
r�y; y 0�dy 0: (5)

If we take êux Rÿ(x; y; y), in consideration, an integral
of Rÿ(x; y; y) appears in the right-hand side of Eqn (5),
similarly to the KM method. In addition, the general
equation (5) should be complemented by a coupled inte-
gro-differential equation for the êux Rÿ(x; y; y). In other
words, in the general case of a multidimensional problem,
one should solve a system of two integro-differential
equations containing érst partial derivatives.

In our opinion, the approach based on equation (5) is
remarkable in two ways. First, the radiation éeld R(x; y; y)
in the two-dimensional space is described by a function that
does not allow separation of variables. Note that today the
general equations of mathematical physics are solved with
the help of the Fourier method (separation of variables).
Our approach makes it possible to describe radiation éelds
by functions whose variables do not separate. Second, the
use of equation (5) implies the appearance of an explicit
multidimensional function of boundary conditions at x � 0,
function R0(y; y).

Concerning the methods for solving multidimensional
problems of TT that are based on a system of linear
equations for discrete one-dimensional directions (e.g.,
the method of discrete ordinates), note that they involve
boundary conditions in the form of discrete numbers for
each direction, which alters the dimensionality of the
problem. In addition, these discrete numbers are sometimes
unknown when the problem is stated. In our case, the
boundary conditions are formulated most naturally in the
form of a distributed function.

The validity of the proposed approach can be demon-
strated, for example, in the simplest case of a homogeneous
nonscattering medium. The absence of scattering will result
in the disappearance of the integral from the original
equation (2). Equation (5) then reads

qR��x; y 0; y�
qx

� qR��x; y 0; y�
qy

tan yÿ k

cos y
R��x; y 0; y�:(6)

which is a quasi-linear equation of the type [9,10]:

a
qF
qx
� b

qF
qy
� cF: (7)

The Monge cone for this equation degenerates to a
Monge axis, so that each of its points corresponds to a
single characteristic direction [9]. Therefore, the solution of
equation (6) should not pose any serious diféculties (equa-
tions of type (7) have tabulated solutions [10]). In the special
case of a x > 0 semispace that is uniformly illuminated by
êux R0(x � 0; y; y) � R0(y), the solution is independent of
the coordinate y and is given by

R�x; y� � R0�y�eÿkx= cos y: (8)
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Figure 2. Method of counterpropagating functions in multidimensional
problems.
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One can easily see that in the case of k � 0, the original êux
will propagate unchanged in the medium, as indeed it
should. In the case of a one-dimensional problem, we have
y � 0, and formula (8) reduces to the trivial Bouguer law,
also in agreement with the logic of the problem.
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