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Multicore fibre laser phase locking by an external mirror

D V Vysotskii, A P Napartovich

Abstract. A theory of phase locking of radiation emitted by
individual fibres of a multicore fibre laser with the help of an
external mirror is developed. The Talbot effect in radiation
from an annular set of emitters is described analytically. The
theoretical results are compared with the results of experi-
ments and numerical calculations. The method of collective
mode selection in the multicore set with the help of a spherical
mirror producing a nearly concentric cavity is analysed.
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1. Introduction

Modern technology makes it possible to produce optical
multicore fibres (MCFs) containing a set of microcores
circularly arranged [1] within the main fibre which serves as
a waveguide for the pump radiation. Each microcore is a
single-mode waveguide doped with Nd** ions. The absorp-
tion of diode pump radiation in such a structure is much
more efficient than in a conventional fibre laser. The possi-
bility of attaining a high output power easily suggests that
MCF can be used as the basis for a compact fibre laser in
which the set of microcores can operate in the regime of
phase locking. We elaborated a mathematical program des-
cribing the propagation of radiation in the MCF to under-
stand the mechanism of the development of supermodes
in the set of microcores and to estimate the possibility of
single-mode lasing of the entire set. The results of calcula-
tions of the field in the MCF excited by the radiation
injection into one fibre are presented in [2].

The authors of [3] described an experiment on phase
locking of radiation emitted by individual fibres in the MCF
using the Talbot effect. Phase locking of radiation emitted
by the fibre set was carried out using an external mirror
placed at a certain distance from the output face of the
MCF. The coincidence of the experimental data with the
results of numerical calculations for the supermodes of the
fibre set for certain distances between the mirror and the
MCEF confirmed at least partial phase locking of radiation
emitted by the set of fibres.
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2. Analysis of the system consisting
of the MCF and a plane mirror

Consider a cavity consisting of the MCF, containing N
microfibres arranged along a circle of radius R, and of two
plane mirrors. One of the mirrors, which is transparent for
pump radiation and reflects laser radiation, is in contact
with the end of the MCF, while the mirror opaque to pump
radiation and semitransparent for laser radiation is at a
distance L from the output end of the MCF (Fig. 1).

MCF

Figure 1. Schematic of the cavity.

To analyse phase locking of radiation from individual
fibres of the MCF, we must consider the manifestation of
the Talbot effect in the circular geometry. Some authors [4—
8] applied the Talbot effect for phase locking of combina-
tions of various types of lasers. In the given configuration,
the classical Talbot effect is obviously absent. The annular
set of emitters is similar, at short propagation lengths, to a
certain extent to an infinite linear set, but diffraction in the
radial direction leads to irreversible expansion of the region
occupied by the field in this direction [9, 10]. In this con-
nection, it is natural to expect that the self-reproducibility of
the field distribution rapidly disappears when radiation pro-
pagates in empty space. However, after the diffracting field
reaches the beam axis, further evolution of the field distri-
bution cannot be analysed in analogy with a linear set of
emitters. Our aim is to determine the conditions for a partial
self-reproduction at various propagation lengths.

The simplest approach is to use the approximation in
which the radiation emitted from the MCF is approximated
by a combination of Gaussian beams having axes parallel to
the axes of the waveguides and determined by the values of
their phases. The transformation of Gaussian beams in
empty space is well known: the normalised field amplitude
distribution of a Gaussian beam after its propagation over a
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distance z from the waist can be written in the form
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where w, is the waist radius and k is the modulus of the
wave vector of radiation in vacuum. The radiation field
amplitude distribution at the MCF output and after reflec-
tion from the external mirror leading to the return to the
plane of the output end can be written in the form
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Here, C,, is the amplitude of the Gaussian beam emitted by
the mth microfibre; r are two-dimensional coordinates in
the plane of the MCF end; R,, are the coordinates of the
mth microfibre. The coupling coefficient of the radiation
field arriving from the jth microfibre with the field in the /-
th microfibre is equal to the projection of the incident beam
intensity distribution on the initial Gaussian distribution:

M;= l Uin (r, R;) Ugy(r, R))dr
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The expansion of the Gaussian beam due to diffraction
is characterized by the quantity kwg/(2L) = Ly /L, where
Ly is the Rayleigh length of the beam. The coupling of the
beams is characterised by the parameter kR> /L. The amp-
litudes of Gaussian beams (C coefficients) are eigenvectors
of the system of equations describing the condition for the
reproduction of the microfibre field distribution during the
round trip (MCF — plane mirror — MCF):

N-1
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Here, y is the eigenvalue of the mode of the cavity formed
by the MCF and the external plane mirror. It follows from
expression (3) that the matrix elements M depend on the
modulus of the difference between the microfibre numbers,
i.e., |/ —j|. Taking into account the periodicity condition
for the coefficients C, we have the solution of system (4)

Cj(m) = exp(&2ijmn/N), (5)
where m is the supermode number varying from zero to
(N—1)/2 (N is assumed to be odd). It should be noted that
all the supermodes of the MCF are degenerate (the
eigenvalues of modes with numbers +m and —m are
equal). The only exception is the synphase supermode of
the set, for which all microfibres generate radiation with
zero phase difference. In the case of an even N, the
antiphase supermode for which the phase difference
between adjacent waveguides is equal to m is also non-
degenerate. However, this mode does not satisfy the
periodicity condition C” () = C\")(0) for odd N.

The eigenvalues of supermodes can be obtained by
substituting Eqn (5) into the system of equations (4):

T = D M(j) exp(2ijmn/N). (6)

J

In particular, for the synphase mode (m = 0), we have
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where Jy;(z) is the Bessel function of the N/th order. The
estimate of the Rayleigh length for the beam emitted by
a microfibre for wy=15pum, R.=140 um and N =61
amounts approximately to 75 pm. On the other hand,
the Rayleigh length for a beam with a waist radius of 140
pm is equal to 5.9 cm. With increasing L, the argument of
Bessel functions in expression (7) decreases. For fairly large
L> Ly ~ kR%/(2N) ~ 1 mm, the main contribution to the
sum on the right-hand side of relation (7) comes from the
term with the zeroth-order Bessel function. At such dis-
tances, we can write the following simple expression for the
eigenvalue of the synphase mode:
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In the limit of large distances, we have J, [kRg /(L) — 1.
After traversing the critical distance L., when the argument
of the Bessel function in Eqn (8) is equal to the first zero, the
eigenvalue oscillations described by expression (8) disap-
pear. In the range of distances from Ly to L, the Bessel
function can be replaced by an asymptotic expression with
oscillations. At large distances L > kR2 /2, the eigenvalue
amplitude can be approximately written as |y)| = NLg/L.

For the experimental conditions described in [3], the
propagation of a synphase mode in the MCF was calculated
numerically using the method described in [2]. Numerical
simulation makes it possible to determine the parameters of
the emitted mode for the real profile of the refractive index.
The obtained field distribution was taken as the initial distri-
bution for calculating the propagation of radiation in
vacuum. For each distance 2L, the eigenvalue for the syn-
phase mode was determined by projecting the distribution of
the field being returned onto the distribution of the field
generated by the MCF.

The application of the analytical model to the experi-
ment in the actual MCF geometry gives rise to the problem
of determining the parameters appearing in the approxima-
tion. Roughly speaking, we must determine the waist radius
for the Gaussian beam imitating the actual field distribution
in the microfibre. The eigenvalue was calculated by formula
(7) as a function of the length of propagation in free space.
The waist radius w, was used as a fitting parameter used for
comparing the values of |y,(L)| obtained analytically and
numerically. It was found that the waist radius mainly deter-
mines the maxima in the dependence of the eigenvalue
amplitude on 2L. The result of matching the numerical
calculations to the analytical model is presented in Fig. 2
(wg = 4.5 um). One can see that the matching is almost
perfect.

Formulas (3) and (6) lead to the following expression for
the eigenvalue of the mith supermode:
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Figure 2. Dependence of the modulus of the synphase mode eigenvalue
on the path length 2L calculated using formula (7); the results of
numerical simulation are shown by squares.
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This expression shows that the eigenvalues of modes with
m=1,2,... exhibit similar behavior as functions of the
propagation length. In the case of propagation over
distances of the order of Ly and larger, only the term
with / = 0 remains in the sum, and the corresponding Bessel
function in the range Ly < L < L, can be replaced by its
asymptotic expression. In particular, oscillations of Bessel’s
functions with even values of m occur in phase. Similarly,
all functions with odd values of m oscillate synchronously
with a 7/2 shift relative to functions with even values of m.

In the case of independent lasing by individual microfi-
bres, the feedback in the cavity is determined by the fraction
of the diffracted beam power returning to the same microfi-
bre. The corresponding eigenvalue is y;,q = M(0) = |1+
iL/Lg|™" for large distances to the mirrors. For large dis-
tances from the mirror, it is equal to kw%/L; i.e., it is equal
to the ratio of the squared waist radius to the squared radius
of the diffracted beam after its propagation over a distance
of 2L.

The good agreement between the analytical and numer-
ical approaches justifies the subsequent application of the
analytical model. Fig. 3 shows the obtained dependences of
the modulus of the supermode eigenvalues in the MCF on
the propagation length 2L for the synphase mode, the mode
with m = 1, and the ‘nearly antiphase’ mode (i.e., the closest
to the antiphase mode forbidden in the given configuration)
with m = (N — 1)/2 = 30. The same figure shows for com-
parison the amplitude of the eigenvalue corresponding to
the regime of independent lasing of microfibres as a function
of the propagation length. Since the threshold amplification
and the pumping power are proportional to In (|y|7'), the
independent lasing regime for microfibres is virtually ruled
out for a large distance from the mirror. A rapid decrease in
|yo(L)| with increasing distance can be attributed to a strong
two-dimensional diffraction of radiation emitted by an
individual Gaussian beam. The interference between various
beams modifies the field distribution only in the azimuthal

direction. In order to estimate the effect of interference, we
may consider the situation when diffraction is allowed only
in the radial direction (y;,4(1D) = [y;,q(2D)]"/?). Curve 5 in
Fig. 3, which describes the dependence of y;,4(1D) on the
propagation length 2L, is close to curve / for the ‘nearly
antiphase’ mode (m = (N — 1)/2) for 2L < 3 mm and passes
through the maxima of curve 2 for the synphase mode.

Fig. 3 illustrates the general features of the behavior of
the eigenvalues of modes with small numbers (m =0, 1):
these values oscillate in the region between curves 4 and 5
with a period decreasing to zero for L ~ Ly and increasing
upon a further increase in L. An analysis of the field profiles
at small path lengths indicates that the oscillations of y are a
manifestation of the Talbot effect. The eigenvalue of the
‘nearly antiphase’ mode also oscillates (although with a
small amplitude) with a half as large period as in the theory
of the Talbot effect for the 1D case.
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Figure 3. Eigenvalue moduli |y,,| for supermodes with m =30 (1), 0(2),
and 1 (3) and the eigenvalue moduli [y;,q| for unphased lasing of
microfibres in the 2D (4) and 1D (5) cases as functions of the path
length 2.

The modulation depth in the eigenvalue dependences is
determined by the filling factor which in the given case is
defined as the ratio of the microfibre diameter to the period
of the set: 2wyN/(2nR.) > 0.6. Such a large filling factor
leads to a small modulation depth. The decrease in the
period of self-reproduction of the field distribution in the
case of the propagation in empty space differs from that in
the 1D Talbot effect. At short distances, this period is
virtually equal to the well-known Talbot length Ly = 2d° /2,
where d is the separation between microfibres. During the
propagation in empty space, the radiation beams are effi-
ciently displaced towards the axis, thus reducing the sepa-
ration between the axes of individual beams, which leads to
a decrease in the self-reproduction length.

For L > Ly, the behavior of the curves in Fig. 3 changes
dramatically. According to our estimates, the radiation field
for a certain path length reaches the axis of the system as a
result of diffraction. The subsequent evolution of |y, | for
m=0,1,2,... with increasing L is well described by expres-
sion (8) and its generalization to the case when m # 0.
Oscillations with an increasing period are associated with
the asymptotic behavior of the corresponding Bessel func-
tions. The physical reason behind such a behavior of |y,,| is
the propagation of the radiation from the MCF to the
Fraunhofer diffraction region, leading to the formation of a
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system of concentric rings in the field distribution. These
rings expand during the propagation of radiation so that the
overlap integral of the system of rings with the ring of mic-
rocores oscillates. As regards the behavior of the mode with
m = 30, the corresponding Bessel function JN/Z[ka/(2L)]
has a maximum near L = 2L, ~ 2 mm and decreases rapid-
ly to zero during the further propagation in proportion to
~[kR2/2D)]™.

The difference in the field distributions in the far-field
zone for different supermodes is illustrated in Fig. 4, which
shows the cross sections of these distributions for the syn-
phase mode (m = 0), two adjacent modes (m = 1,2), and the
mode closest to the antiphase mode (m = 30). One can see
that all the lower-order supermodes are characterized by the
same order of the field distribution in the far-field zone. The
only distinction of the synphase mode is the ‘bright’ peak at
the axis. At the same time, the field distribution in the far-
field zone for the antiphase mode (m = 30) is a narrow ring
of radius 21/d ~ 38 mrad, where d = 2nR./N.
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Figure 4. Cross sections of the intensity distribution 7 in the far-field
zone for various supermodes of the MCF as functions of the observation
angle 0.

Thus, we developed an analytical model of phasing of
radiation emitted by individual fibres of the MCF by an
external mirror, which describes the experimental results
obtained in [3]. The perfect matching of the results of the
model and exact numerical calculations of the radiation field
propagation confirms the assumptions of the model. The
experimentally observed generation of lower-order collective
modes is in fact not a manifestation of the Talbot effect, but
rather a consequence of better overlapping of the field retur-
ning to the MCF as compared to the case of unphased
lasing. In this case, the selection of collective modes is
achieved by incurring high diffraction losses.

3. Analysis of a system consisting of the MCF
and a concave mirror

An analysis of a cavity with a plane external mirror shows
that in order to suppress the independent lasing of indi-
vidual waveguides, a considerable distance between the
MCF and the mirror is required. The losses in the funda-
mental mode are large in this case. One of the ways to
overcome this difficulty is to use a concave mirror with the
radius of curvature R instead of the plane mirror. The
expression for the coupling coefficients M) of the beams
with the Gaussian approximation, which are emitted by an
annular set of microfibres, can be written in the form

. —exp[-ikRZ/(AR)]
M =J) =— FiL/Lg

<o ikR2sin®(% (1 - )
PlAL 1 -iLg/L |

(10)

where 4 =1— (L —iLg)/R. Substituting expression (10)
into formula (6) for each supermode, we can again const-
ruct the dependence of the corresponding eigenvalue on the
distance to the mirror. Fig. 5 shows the dependences of
eigenvalues on L for the mirror radius R =25 mm.
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Figure 5. Dependence of the moduli of the eigenvalues for cavity
supermodes on the position L of the output mirror for the synphase
mode in a cavity with a plane mirror (/) as well as for the synphase
mode (2) and the mode with m = 30 (3) in a cavity with a mirror with
radius of curvature R = 25 mm.

A distinguishing feature of this system as compared to
the system with a plane mirror is the reconstruction of the
field distribution near L = R, which corresponds to a con-
centric cavity. For the exact equality, the distribution of the
field returning to the MCF is a mirror image of the distribu-
tion of the emitted field. Since the field distributions in all
microfibres for the synphase mode are identical, the syn-
phase distribution for an odd set is reconstructed by a
rotation through a half-period of the set. As a result, the
overlapping of the field being returned and the emitted field
is poor.

The situation can be improved if we recall that a system
of images associated with the Talbot effect in converging
beams is formed in the vicinity of the centre of the spherical
mirror provided that the paraxial optics approximation is
satisfied for periodic coherent emitters. The transition to the
convergent beam geometry indicates, on qualitative level,
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that the Talbot length is now a variable quantity since the
period of the arrangement of images on the circle decreases
as we approach the center. In order to obtain the maximum
degree of correlation, L must be detuned from L = R by a
quarter of the local Talbot length; then the field of the syn-
phase mode will be inverted relative to the axis of the system
and turned by half a period in the azimuthal direction after
the roundtrip in the cavity [11]. Thus, almost the entire field
emitted by the microfibre will fall into the microfibre located
at the opposite side of the MCF. The maximum eigenvalue
of the synphase mode, however, will be smaller than unity
since the cavity is no longer concentric and the distribution
of the field returned to the microfibre does not exactly
coincide with the waveguide mode. At the same time, in the
case of unphased lasing, the fields in symmetrically arranged
microfibres are not coupled and this mode is suppressed.

For the mode with m = 30, close to the antiphase mode,
the field distribution is reproduced almost completely with-
out a rotation by half a period in the azimuthal direction
upon a change in L by a quarter of the corresponding Tal-
bot distance. Thus, the peak of the distribution of the field
being returned to the MCF for the antiphase mode is loca-
ted between microfibres so that the generation of this mode
is strongly suppressed.

Upon a further detuning of L from the value correspon-
ding to a concentric cavity, the behavior of the eigenvalues
of lower-order supermodes is similar to that observed for a
plane mirror for small values of L. As a result of the Talbot
effect, the eigenvalues oscillate against the background of
their general decrease (see Fig. 6). For the L detuning
multiple to half the Talbot length, the value of |y, is larger
than the remaining eigenvalues, and the generation of a
single synphase mode can be expected. In this scheme, high
accuracy of alignment of the elements is required, whose
realization might be a serious problem.

24.0 24.5 25.0 25.5

L/mm

Figure 6. Dependence of the moduli of the eigenvalues for cavity super-
modes on the position L of the output mirror with radius of curvature
R =25 mm for the synphase mode (/) and modes with m =1 (2), 2
(3), and 30 (4).

4. Conclusions

An analysis of propagation of radiation emitted by an
MCEF in free space indicates that using an external mirror,
one can attain a considerable degree of mode discrimination
and obtain phase lasing from the MCF. The theory deve-
loped for a cavity formed by the MCF and a plane mirror is

consistent with the results of experiments and numerical
simulation. It is shown that when the plane mirror is
replaced by a concave one, the same phase locking can be
attained for much smaller parasitic losses (which makes it
possible to obtain radiation with a small angular diver-
gence). The main advantage of this system is the possibility
of considerable reduction of the losses inherent in the
scheme with a plane mirror.
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