
Abstract. The polarisation properties of a reference-free ho-
logram inside which the diffraction of the recording depola-
rised radiation from the speckle inhomogeneities is insignié-
cant, are studied. It is shown that such a hologram, used as
the output mirror of a ring laser, has selective properties for
the specklon waves comprising the lasing mode. The beha-
viour of the fundamental mode of a holographic laser with an
inhomogeneous birefringent medium inside the cavity is ana-
lysed. Conditions for attaining amplitude-phase relations be-
tween mode specklons, which are required for vector phase
conjugation of depolarised speckle signal, are determined.

Keywords: vector phase conjugation, depolarisation, speckle éeld,
reference-free hologram, holographic laser

1. Introduction

There are two main techniques for realising vector phase
conjugation (VPC) of depolarised radiation. These techni-
ques are based on the application of degenerate four-wave
mixing with two circularly polarised reference pumping
waves [1, 2] and induced backscattering [1, 3, 4]. In investi-
gations relating to phase conjugation and the construction
of lasers self-adapted to phase-polarisation distortions, con-
siderable attention has been paid in recent years to the
creation of the so-called holographic laser in which one of
the mirrors is a dynamic hologram [5 ë 17]. There are two
possible ways of constructing such lasers. In the more tra-
ditional version, the holographic mirror as well as the ring
cavity are formed by the controlling radiation injected into
the loop circuit [5 ë 9, 13 ë 17], while a self-starting laser
adapted to intracavity aberrations is realised in the other
version [10 ë 12].

In most works devoted to the investigation of such
lasers, the possibility of correction for phase distortions
along the path of the laser radiation was considered. In
Ref. [12], the compensation for depolarisation in a self-star-
ting loop circuit was reported. The polarisation properties of
a hologram formed by an external depolarised speckle signal
were analysed for the érst time in Ref. [13]. The model

proposed in Ref. [13] is developed in the present work which
aims at determining the conditions for vector phase con-
jugation of depolarised speckle radiation in the mode of the
holographic laser formed by this radiation.

2. Mode structure in the polarisation model
of a holographic laser with a short hologram
and an inhomogeneous birefringent plate

A holographic ring cavity is formed as a result of recording
of a hologram by the waves E1 and E3 (Fig. 1), where E1 is
the signal wave arriving at the input of the loop circuit, and
E3 is the signal wave obtained from wave E1 as a result of
its traversal of the loop circuit elements. If the recording
beams E1 and E3 (in particular, speckle beams) are essen-
tially inhomogeneous, one has to deal with a reference-free
hologram, when neither of the waves recording it can be a
reference wave for the other, i.e., spatially homogeneous on
the scale of its envelope. It is practically impossible to sati-
sfy the traditional reference holographic appro-ximation in
creating a holographic laser using the speckle beams E1 and
E3. This would require the focusing of wave E3 at a speckle
inhomogeneity of wave E1, leading to a considerable in-
crease in the losses for the mode at the aperture of the holo-
graphic mirror formed in this way and thereby substantially
increasing the excitation threshold of the holographic laser
which even otherwise has a low Q-factor.

The ability of the reference-free hologram to single out
from the noise of a ring laser a wave conjugated relative to
the signal E1 ÿ E3 in its mode E mod

2 ÿ E mod
4 counterpro-

pagating to the signal was analysed in Refs [14 ë 16]. In
particular, we considered in Refs [15, 16] the case of a
nondiffraction (or short) hologram, over whose thickness lh
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Figure 1. Ring laser with a holographic mirror formed by an external
spatially inhomogeneous optical signal E1 ÿ E3.
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we can disregard the diffraction spreading of characteristic
transverse inhomogeneities r1:3 of the recording speckle
éeld: lh< kr 2

1;3, where k � 2p=l, l being the wavelength of
the recording éeld. In view of the less stringent requirements
on the thick-ness of the holographic medium, this approx-
imation has obvious advantages over the reference-free
diffraction hologram approximation considered earlier [14].

The selectivity of a short hologram is manifested in the
case of a noncollinear convergence (at an angle j) of the
speckle beams E1 and E3 recording it, and is deéned by the
parameter m � r1=(lh sinj) characterising the extent to
which their speckles are intermixed in the hologram. For
the optimal angle jopt � a1=lh (a1 is the radius of the caustic
cross section of the recording wave E1) for which such a
mixing is most efécient, the parameter m is approximately
equal to the speckling factor r1=a1 of the signal éeld, and
has a small value in the case of a developed speckle structure
of this éeld (when r1=a1 5 1).

For a short hologram [15], the following selection me-
chanisms are operative. First, a short hologram discrimi-
nates the noise waves E2n which are uncorrelated in éne
speckle structure with a signal éeld E1. This is due to their
poorer reêection (by a factor of about 1=m) from the selec-
tive hologram (m5 1) in comparison with the reêection of
the conjugate component of the readout éeld E2c � E �1 .
Second, the small parameter m also determines the relative
fraction of the uncorrelated noise component E4n which al-
ways appears, together with the conjugate component E4c
� E �3 , in the scattered wave E4 upon reêection of even an
exactly conjugated wave E2c � E �1 from the reference-free
hologram.

Taking into account these properties of the short holo-
gram used as the output mirror of a ring laser, the conjuga-
ted component Emod

2c;4c � E �1;3 in its fundamental transverse
mode Emod

2;4 (with the highest Q-factor) is only slightly noise-
polluted by the uncorrelated field Emod

2n;4n [15, 16]:

Emod
2;4 � Emod

2c;4c � Emod
2n;4n,

� ��Emod
2n;4n

��2dr� ��Emod
2c;4c

��2dr � o�m�. (1)

The latter relations are valid in the `scalar' approxima-
tion, when the polarisation is uniform in the signal beam
E1 ÿ E3. This means that the wave fronts of the scalar éelds
E1x, E1y (where E1 � E1xx0 � E1yy0), obtained in the
expansion of the vector éeld E1 in an arbitrary linear basis
(x0; y0), have the same structure: K1x;1y � 1, where

K1x;1y �
hE1x�r�E �1y�r�iÿhI1xihI1yi�1=2

is the transverse correlation function of the éelds E1x and
E1y, the angle brackets indicate averaging over a statistical
ensemble of realisations of the signal speckle radiation
[1, 18]. In the polarisation-nondegenerate case, the funda-
mental mode under certain approximations [13] can be
represented in the form of the superposition

Emod
2;4 �

X4
i�1

E �i�2;4. (2)

In this equation, the weak uncorrelated waves Emod
2n;4n have

been omitted, and E �i�2 are linearly polarised waves (or
specklons) which are correlated exactly with one of the two
scalar éelds E1x and E1y and are deéned as follows:

E �1�2 � a?E
�
1yy0, E

�2�
2 � akE

�
1xx0,

E �3�2 � b?E
�
1xy0, E

�4�
2 � bkE

�
1yx0, (3)

where ak, a?, bk and b? are complex constants which will be
used in the following to refer to these waves as specklons of
type ak, a?, bk and b?, respectively (or specklons of type a
and b).

Upon reêection from the reference-free hologram,
specklons E �i�2 will make contributions to analogous speck-
lons E � j�4 of the scattered wave E4 (E �1�4 � E �3yy0, E �2�4 �
E �3xx0, E

�3�
4 � E �3xy0, E

�4�
4 � E �3yx0), as well as to the wave

E4n that is not correlated with the signal wave E3

(hE4nE3i � 0) and participates in the formation of the
weak nonconjugate component of mode Emod

2n;4n.
In the following analysis, we shall take into account the

assumption used by us earlier [13] on the existence of a pair
of unit vectors x0, y0 for which the scalar éelds E1x and E1y

are completely uncorrelated: K1x;1y � 0. In particular, such a
situation is realised when the signal wave E1 is formed in the
presence of a randomly inhomogeneous birefringent plate at
the input of the loop circuit (Fig. 2), which introduces for its
ordinary and extraordinary waves deep (hco;e(r)ÿ hco;eii5
2p), independent (hco(r) ÿ ce(r)i � 0) and rapidly varying
over the cross section of the laser beam E0 êuctuations of
the phase. In this case, one of the vectors x0 and y0 in the
basis separated in this way will be collinear with the optical
axis of the birefringent element.

Thus, in the case under consideration, the spatially
polarised mode structure depends strongly on the ampli-
tude-phase relations between its constituent specklons. For
realisation of the VPC, the following relations must be
satiséed: ak � a?, bk � b? � 0. For this purpose, the feed-
back loop must contain a polarisation element providing an
effective energy exchange between specklons during mode
formation (Fig. 2). The birefringent medium plays the role
of such an element. The amplitude-phase relations between
specklons in a mode are determined by solving the system of
equations

g
pol
ij ej � gei, (4)

where e1 � a?, e2 � ak, e3 � b?, e4 � bk; g is the mode
eigenvalue; g pol

ij are elements of the 4� 4 matrix Ĝ pol which
determines the action of the polarisation elements on a- and
b-specklons and is equal to the product of matrices:

g
x

E3

E1
E0

Mirror

Birefringent plate
at the loop input

Holographic
mirror

Birefringent plate
in the loop

c1

c2

y

Figure 2. Holographic cavity with inhomogeneous birefringent plates at
the input and at the feedback loop (the érst plate is used for generating
the depolarised input speckle-signal, while the second one is used for
mode formation.
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Ĝ pol � T̂R̂, where T̂ is the operator of a birefringent plate,
and R̂ is the operator of reêection of specklons E �i�2 from
the holographic mirror.

In the above-described method of formation of depo-
larised radiation of the wave E1 (when K1x;1y � 0), the mat-
rix R̂ is diagonal: r11 � r44 � p, r22 � r33 � 1ÿ p, where p �� hI1yidr= � hI1idr is a parameter characterising the integral
polarisation of the signal beam E1 in the basis x0, y0. In the
present case, this parameter is the differential polarisation
of the beam E1: p � hI1y(r)i=hI1(r)i.

The introduction of a homogeneous birefringent plate
into the feedback loop does not solve the VPC problem in
the holographic laser mode. It was shown in Ref. [13] that
this obstruction is caused by a number of negative factors,
notable among which is the presence of an equal number of
`parasitic' b-specklons along with the `useful' ones in the
fundamental mode. Attempts to neutralise these negative
factors by introducing the dependence of the birefringent
plate parameters g(r) and c(r) (where g is the angle at which
the optical axis of this plate is oriented relative to a selected
basis, and c � c2 ÿ c1 is the phase shift between its normal
waves) on the transverse coordinate r complicates the
model.

Obviously, the eféciency of the proposed approach will
depend on the characteristic scale of variation of these
parameters in the cross section of the plate, as well as on the
absolute magnitude of their êuctuations around a certain
mean value. Consider the limiting case when the selected
parameter (g or c) is distributed uniformly (in the interval
[0, 2p]) and homogeneously over the coordinate r, and the
characteristic scale of its variation over the birefringent plate
cross section is much smaller than the diameter of the signal
beam in the same cross section. In this case, we can use the
statistical approach. We will deal with the ensemble of
realisations of a holographic laser in which a transition from
one realisation to another is accompanied by a change in the
éne structure of the holographic mirror determined by the
speckle structure of the signal radiation forming it, as well as
in the spatial distribution of the selected parameter of the
birefringent plate, which randomly êuctuate in its cross sec-
tion. Our aim is to determine the mean statistical mode
parameters as functions of the determinate parameters of
the holographic cavity.

In order to determine the fundamental mode parameters
within the framework of the proposed model, we must énd
the modiéed matrix T̂ new using the expression for operator
�T in the case of a homogeneous birefringent element [13]:

T̂ �
A1 A2 B1 B �1
A2 A1 ÿB1 ÿB �1
B1 ÿB1 B2 A2

B �1 ÿB �1 A2 B �2

2664
3775, (5)

where

A1 � 1ÿ A2; A2 �
sin2 2g

2
�1ÿ cosc�;

B1 �
sin 2g
2

�
cos 2gÿ cos2 g exp�ic� � sin2 g exp�ÿic��; (6)

B2 �
sin2 2g

2
� cos4 g exp�ic� � sin4 g exp�ÿic�.

For this purpose, we consider the result of a round trip in

the holographic ring cavity for the wave E �0�2 which is a
superposition of four specklons:

E �0�2 �
X4
j�1

E �0�2j �
X4
j�1

e
�0�
j Ej,

where e
�0�
1 � a?, e

�0�
2 � ak, e

�0�
3 � b?, e

�0�
4 � bk; E1 � E �1yy0,

E2 � E �1xx0, E3 � E �1xy0, E4 � E �1yx0. After a round trip in
the cavity, the wave E �0�2 is transformed into the wave

E �1�2 �
X4
i�1

E �1�2i �
X4
i�1

e
�1�
i �r�Ei,

where

e
�1�
i �r� �

X4
j�1

tij�r�rje �0�j ,

tij being the elements of the operator T̂. Thus, the spatial
structure of the waves E �1�2i � e

�1�
i Ei formed as a result of

the action of the operator Ĝ pol(r) (inhomogeneous in the
present case) on the wave E �0�2 , which is identical to the
structure of the corresponding specklon Ei, is modulated
considerably by the inhomogeneous function e

�1�
i (r). In

order to obtain the elements t new
ij of the modiéed matrix

T̂ new, we must calculate the projections of waves E �1�2i on Ei:

E �1�2i � c0iEi � E2ni,

�
E2niE

�
i dr � 0, (7)

where

c0i �
�
e
�1�
i �r�Iidr 2�
Iidr 2

�
� he �1�i �r�ihIiidr 2� hIiidr 2 � he �1�i i. (8)

The derivation of this equation is based on the principle of
ergodicity which allows the replacement of the integrals of
random functions with respect to transverse coordinates in
each speciéc realisation from the ensemble by their mean
integrals.

The ergodicity postulate is valid completely only for
homogeneous statistics [18], which would be observed for an
inénite envelope of the signal speckle éeld which makes the
integration domain inénite. In the case of aperture-restricted
speckle beam considered here, the applicability of the
ergodicity postulate stems from the smallness of the speckle
cross section in the signal éeld (and, hence, in the functions
Ii(r)) and of the typical scale of variation of the function
ei(r) � tij(r) over the integration domain.

Formula (8) was derived taking into consideration the
statistical independence of the random functions ei(r) and
Ii(r) in the generalised ensemble, as well as the homogeneity
of statistics of function ei(r) which leads to the independence
of hei(r)i of the coordinate r. Taking this into account, we
can reduce the procedure of determining the elements t newij of
the modiéed matrix T̂ new to averaging of the corresponding
matrix elements of the original operator T̂ (5) over the
spatially inhomogeneous parameter:

t newij � 1

2p

� 2p

0

tij�o�do, (9)

where o � c or g. Thus, the above expression also takes
into account the uniform distribution of the selected
parameter o in the interval [0, 2p].
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Let us now elucidate the physical meaning of the
procedure implemented in (7). The waves E2ni obtained
as a result of such a procedure, which are orthogonal to the
corresponding specklons E2ci � Ei, satisfy the requirement
(which is quite signiécant) that they are not correlated with
these specklons in the éne speckle structure: hE2niE

�
i i � 0.

This means that upon reêection from the reference-free
hologram, waves E2ni will contribute only to the uncorre-
lated components E4 of the scattered wave. Thus, waves E2ni
will also participate in the formation of the uncorrelated
mode component Emod

2n as a result of superposition with the
noise waves formed upon reêection from the reference-free
hologram of specklons E2ci.

However, waves of the type E2ni formed as a result of
passage of specklons E4ci through the inhomogeneous medi-
um in the cavity fundamentally differe from the noise waves
generated by specklons E2ci reêected from the reference-free
hologram. The difference is that the noise waves do not af-
fect the absolute magnitude of the coefécient of transfor-
mation of the conjugate component of the mode Emod

2c into
itself upon a round trip of the resonator by the mode, which
is manifested in the independence of the mode Q-factor on
the selectivity of the hologram (on the parameter m). The lat-
ter determines only the relative contribution of the noise
component Emod

2n in the mode [15 ^17].
On the contrary, the emergence of the waves E2ni efé-

ciently decreases the above transformation coefécient, thus
altering directly the mode Q-factor. For this reason, the
mode striving to attain the maximum Q-factor tends to
acquire the minimum possible amplitude of the noise wave
E2ni [see (7)], which is ensured by certain amplitude-phase
relations between a- and b-type specklons in the conjugate
component Emod

2c .

3. Cavity with a birefringent plate
inhomogeneous in phase shift between its normal
waves

Consider now the situation when c is a random quantity
and g assumes a determinate value. The matrix T̂ new

c differs
from T̂ in that the terms with factors exp (� ic) and cosc
must be `nulliéed' in elements tij. As a result, the solution of
the system of equations (4) yields to the following
expressions for specklon coupling in modes and for their
eigenvalues:

ak � a?
pÿ g

gÿ �1ÿ p� , bk � b?, b? � a?
A2�1ÿ 2g�

2B1�1ÿ pÿ g� , (10)

g1;2 � 0, g3;4 �
1� j2ej�A1 ÿ A2�1=2

2
, (11)

where e � pÿ 0:5. For further analysis of the conditions for
VPC, it is convenient to introduce dimensionless parameters
characterising the amplitude-phase relations in the mode
between `useful' a-specklons and the relative energy cont-
ribution of `parasitic' b-specklons to it: w1 � ja?j2=(ja?j2�
jakj2), w2 � jarg (ak=a?)j, w3 � (jb?j2 � jbkj2)=(ja?j2 � jakj2�
jb?j2 � jbkj2). Parameters w1, w2, w3 for the mode with the largest
Q-factor (with the eigenvalue g3) assume the following form in
this case (see Fig. 3a):

w1 �
1

2
� sgn e

�A1 ÿ A2�1=2
2A1

, w2 � 0, w3 � A2. (12)

The obtained solution has the following characteristic
features. First, there is no phase shift between specklons
of the type ak and a? over the entire range of variation of
parameters g and e since w2 � 0 for the mode with the
highest Q-factor (with the eigenvalue g3) as well as for the
next nondegenerate mode (with eigenvalue g4). However, in
this case, the main drawback continues to be the presence
of `parasitic' specklons of the type bk and b? in the mode,
on a par with the useful modes, at the point g � 45 8 at
which the parameter w1 has its optimal value 0.5 for VPC.

4. Cavity with a birefringent plate
inhomogeneous in the angle of orientation of its
optical axis

Consider now the case in which the angle g is a random
parameter for a éxed value of the parameter c. After
averaging, we go over to the matrix T̂ new

g which is analo-
gous to the matrix T̂ if we put A1 � 3=4� (1=4) cosc,
A2 � 1ÿ A1, B1 � 0, B2 � 1=4 � (3=4) cosc in (6). Solving
the system of equations (4), we obtain the following expres-
sions connecting the specklons

ak � a?
pÿ g

gÿ �1ÿ p� (13)

with a pair of eigenvalues

g1;2 �
A1 �

�
A 2

1 ÿ
ÿ
1ÿ 4e 2

��A1 ÿ A2�
�1=2

2
(14)

and

bk � b?
gÿ �1ÿ p�B2

pA2

(15)

with another pair of eigenvalues

a

b

p/4

p

0 1 2 3 4 5 c
�
rad
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ÿ0:25
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Figure 3. Dependences w1(g) (for e < 0) and w3(g) for a birefringent plate
with a random distribution of the phase shift c between an ordinary and
an extraordinary waves (a), and dependences w1(c; e) for a birefringent
medium with a strongly random deviation g of its optical axis in the plate
cross section (b).
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g3;4 �
B2 �

�
B 2
2 ÿ

ÿ
1ÿ 4e 2

�ÿ
B 2
2 ÿ A 2

2

��1=2
2

. (16)

In this case, the problem of discrimination of parasitic
specklons of the type bk and b? is solved a priori since, érst,
these specklons are independent of specklons of type ak and
a? (the modes containing a-type specklons do not contain
specklons of type b, and vice versa). Second, the mode with
the highest Q-factor (with the eigenvalue g1) always contains
only those a-specklons that are required for VPC and
obviously satisfy the equality w3 � 0. The phasing between
specklons of the type ak and a? required in this mode is also
always ensured (w2 � 0). Fig. 3b shows the functions
w1(c; e).

However, a practical realisation of the model situation
described above is not easy. Thus, while inhomogeneity in
parameter c is ensured by etching the homogeneous element
in acid, a plate inhomogeneous in parameter g (which is vital
for VPC) can be formed only by breaking a thin homoge-
neous plate into fragments of size several hundred
micrometers and then `gluing' these pieces together. The
optical axis, which always remains parallel to the face of the
element formed in this way, will be oriented randomly in
each fragment.

In actual practice, such a situation can be simulated, for
example, with the help of two etched plates that are
inhomogeneous in the parameter c(r). Solving the corre-
sponding system of equations (4) for this model situation in
the case of a mode with the highest Q-factor, we arrive at the
dependences w1;3(g; dg; e) shown in Fig. 4 (where dg � g2ÿg1,
g � g1; g1 and g2 are the angles deéning the orientation of
the optical axes relative to the normal to the plane of the
loop circuit in each of the two plates). In this mode the
parameter w2(g; dg; e) is always equal to zero.

We must pay attention to two peculiarities of the
dependences w1;3(g; dg; e) in the vicinity of point dg � p=4,
which are of fundamental importance for VPC. The
peculiarity of point dg � p=4 is that parameters w1;3, which
have optimal values for VPC at this point, are independent
of e as well as angle g. The result depends only on mutual
orientation of the optical axes of two etched plates, but not
on their connection with the selected basis. It should be
recalled that the selection of the latter depends on the extent
to which the scalar éelds E1x and E1y obtained in this basis
for the signal éeld are mutually uncorrelated.

Thus, the attainment of the required amplitude-phase
relations between `useful' a-specklons in the fundamental
mode and the suppression of `parasitic' b-specklons in it at
the point dg � p=4 do not depend on the polarisation of the
signal wave (parameter e) or on the nature of depolarisation,
i.e., on the extent of correlation between the scalar éelds E1x

and E1y, which may not be equal to zero, assuming arbitrary
values between 0 and 1: min jhE1x(r)E

�
1y(r)ij=( I1xI1y )1=2E

[0, 1]. In other words, absolute `polarisation capture' of
signal radiation by the mode of spatially polarised structure
occurs at the point dg � p=4.

5. Conclusions

Consider now the reasons for such a behaviour of the mode
in a cavity with two etched plates in the vicinity of the point
dg � p=4. As the value of dg increases from zero to p=4, the
normal waves of such a composite birefringent medium will
become more and more elliptical. The eccentricity and ori-

entation of the ellipses of polarisation of normal waves are
highly random over the cross section of such a medium, but
there exists an eccentricity of normal waves averaged over
the ensemble, which has the same value at all points over
the cross section.

While the point dg � 0 corresponds to the limiting case
when the cavity contains an inhomogeneous birefringent
medium with linearly polarised normal (ordinary and
extraordinary) waves and a random distribution of the
parameter c(r), the point dg � p=4 corresponds to the other
limit where the mean eccentricity of normal waves is
`nulliéed'. This limiting case is completely identical to the
model situation considered above for a birefringent medium
which is inhomogeneous in the parameter g(r) distributed
uniformly in the interval [0, 2p]. Physically, this means that
the interaction between a- and b-specklons in the polar-
isation element is weakened substantially with increasing dg
and vanishes at the point dg � p=4 (the intensity of energy
exchange between a?- and ak-specklons remains unchanged
in this case, and does not depend on the extent and nature of
inhomogeneity of the birefringent medium). This is the
reason behind the independent existence of modes at the
point dg � p=4, which contain either a-specklons or b-
specklons only.

The reason behind the attainment of optimal amplitude-
phase relations between `useful' a?- and ak-specklons in the
mode with the highest Q-factor at the point dg � p=4 is the
tendency of the mode to minimise the losses during passage
through the feedback loop. Indeed, as the amplitude-phase
`misalignment' occurs between these specklons in the mode
(relative to the signal éeld), the specklons passing through
the birefringent medium in the cavity will impart a fraction
of their energy to uncorrelated components E2ni emerging
on account of the inhomogeneity of the medium. This leads
to a strong decrease in the coefécient of transformation of
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Figure 4. Dependences of w1 and w3 on g, dg, and e for two birefringent
plates random in the parameter c in the feedback loop of a holographic
cavity.
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the conjugate mode component into itself upon a round trip
in the ring cavity.

In the absence of such a `misalignment' (and in the
absence of any interaction between a- and b-specklons), the
above-mentioned uncorrelated éeld components do not
appear. This circumstance results in a decrease in the total
losses for the fundamental mode in the cavity, the minimum
losses at the point dg � p=4 being achieved when the `useful'
a-specklons satisfy the amplitude-phase relations required
for VPC.
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