
Abstract. The transverse modes of a submillimetre laser
cavity that contains waveguides and open parts were studied
theoretically and experimentally with the purpose of énding
methods for mode selection. Two methods based on the
éltering of the Fourier spectra of the waveguide modes and
the use of their interference were substantiated numerically
and realised in experiment. Special attention was paid to the
mode selection in tunable lasers. Scaling laws allowing one to
use the obtained results in a wide range of the cavity para-
meters and wavelengths are presented.

Keywords: cavity, mode selection, deêecting mirrors, waveguide
elements.

1. Introduction

The recent years have witnessed a widespread use of quasi-
optical cavities that contain both open and waveguide
parts, each of which signiécantly inêuences the formation
of types of oscillations. Such combined cavities are used in
capillary gas-discharge lasers [1], so-called folded waveguide
lasers [2], submillimetre (smm) free-electron lasers [3], etc.
In a molecular optically pumped laser (OPL), a combined
cavity based on a circular metal waveguide was used to
realise a broad tuning range (from 0.1 to 1 mm) without
replacing the cavity elements and to halve the size of the
device [4].

Oversize (multimode) metal waveguides are used in the
cavities of millimetre and submillimetre generators to in-
crease the output power, which makes transverse mode
selection and realisation of single-mode lasing in such gene-
rators an important problem. One can solve this problem by
introducing selective losses caused by diffraction in the open
parts of the cavity. The authors [5, 6] experimentally studied
the mode selection in a smm OPL in the case when a plane
mirror was placed in the near-éeld zone or the Fresnel dif-
fraction zone. It was shown that one could select the mode
that was mostly formed by the TE01 mode of the metal
waveguide. The selective properties of a cavity with spher-

ical mirrors were studied in Ref. [7], where the radii of
curvature of the mirrors and the distances between the
mirrors and the waveguides that were optimal for selecting
the TE01 and TE02 modes were calculated. However, the
main purpose of Ref. [7] was the mode selection with respect
to the longitudinal index.

For lasers with a broad tuning range, one should develop
methods that would allow technically simple mode selection
during the cavity tuning. In this work, we study the
transverse mode selection in combined cavities both theo-
retically and experimentally, using the example of a wide-
range compact cavity for a smm OPL that we proposed in
Refs [4, 8]. We pay special attention to mode selection in
tunable lasers.

2. Theoretical model

The theoretical model of a folded combined cavity (Fig. 1)
contains circular metal waveguides 1 and 2, closed at one
end with plane mirrors. The waveguides are optically coup-
led to each other by a system of deêecting mirrors (SDM),
which consists of two spherical and one plane mirrors. To
simplify the problem, we will consider a cavity that is sym-
metric with respect to the reêection from the plane mirror
of the SDM. The transverse dimensions of the cavity ele-
ments are assumed to satisfy the conditions of the quasi-
optical and paraxial approximations: ( kai)

2 4 1 (i � 1; 2; 3),
where k � 2p=l; l is the wavelength; ai is the radius of the
ith mirror; kjj4 k? (the longitudinal wave number is much
greater than the transverse one). We will assume that the
spherical mirrors are axially symmetric quadratic phase
correctors with a focal distance f .

The technique of the numerical calculation of the cha-
racteristics of lower cavity modes represents the éeld in the
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Figure 1. Theoretical model of the combined cavity under study; (1 and 2
are the waveguides).



waveguides by a superposition of natural waves and the éeld
in the open parts of the cavity by the diffraction integral in
the Fresnel approximation. We have performed the calcu-
lations for the TE0n and TE1n waves because these waves
usually form the output radiation observed in experiments
[9, 10].

Up to insigniécant constants, the complex amplitudes of
the electromagnetic éeld of the TE0n and TE1n natural waves
have the following form at z � 0 (the z-axis is directed along
the optical axis of the cavity):

V0n�r1;j� � ÿx0A0nJ1�w0nr1� sinj

� y0A0nJ1�w0nr1� cosj, (1)

V1n�r1;j� � x0A1nJ2�w1nr1� sin 2j

� y0A1n�J0�w1nr1� ÿ J2�w1nr1� cos 2j�, (2)

where x0 and y0 are the unit vectors of the Cartesian coor-
dinate axes; r1 � r=a1; r and j are the cylindrical coor-
dinates;

A0n �
1

J0�w0n�
���
p
p ; A1n �

1

J2�w1n�
�
2p
ÿ
w 2
1n ÿ 1

��1=2
are normalisation factors; Jj is the jth-order Bessel function
of the érst kind; wmn is the nth root of the equation J 0m( w ) �
0; j � 0; 1; 2; m � 0, 1.

Functions Vmn satisfy the normalisation condition:� 2p

0

� 1

0

Vmn�r1;j�Vkp�r1;j�r1dr1dj

� 1; m � k; n � p;
0; m 6� k ili n 6� p

�
. (3)

The dependence of the amplitudes on z is given by

Vmn�r1;j; z� � Vmn�r1;j� exp�igmnz�, (4)

where gmn � bmn � iamn is the propagation constant of the
natural wave.

Following Ref. [9], we write the expressions for bmn and
amn in the form

bmn �
��

2p
l

�2
ÿ
�
wmn

a1

�2 �1=2
,

(5)

amn �
Rs

Za1

�
m 2

w 2
mn ÿm 2

�
�
l
2

wmn

pa1

�2 ��
1ÿ

�
l
2

wmn

pa1

�2�ÿ1=2
,

where Z � 376:73 O is the wave impedance of free space; Rs

is the surface resistance of the waveguide material; equal to
2:61� 10ÿ7(c=l)1=2 O for copper; c is the speed of light in
vacuum.

We will search for the éeld amplitude of the beam inci-
dent on the open end of waveguide 1 (z � 0) in the form

U�r1;j� �
XN
n

CnVmn�r1;j�. (6)

Owing to the axial symmetry of the cavity elements,
coefécients Cn can be found independently for each class of

natural waves. Since the cavity is symmetrical with respect
to the plane mirror of the SDM, the initial éeld distribution
of natural oscillations is reproduced with a coefécient m
upon a round trip inside waveguide 1 and the following trip
to the open end of waveguide 2. From the condition of the
éeld reproduction we derive the following system of linear
equations for each class of natural waves:

XN
n

Cnbqn exp�i2gmnLw� � mCq; q � 1; . . . ;N, (7)

where

bqn � 2pA0qA0n

� 1

0

� 1

0

J1�w0q r10 �Q1�r1; r10 �

� J1�w0nr1�r1dr1r10dr10; m � 0;
(8)

bqn � 2pA1qA1n

� 1

0

� 1

0

�J0�w1q r10 �Q0�r1; r10 �J0�w1nr1�r1

� J2�w1q r10 �Q2�r1; r10 �J2�w1nr1��r1dr1r10dr10; m � 1;

Qj�r1; r10 � �
� 1

0

Qj�r2; r10 �Qj�r1; r2�r2dr2; (9)

where r1
0 � r=a1 is the dimensionless coordinate at the open

end of waveguide 2. Up to a constant phase factor, the
kernels of the integral transformations are given by

Qj�rp; r3ÿp� � ÿ4p 2N0
Np

1ÿ g3ÿp
exp

�
ip
ÿ
N1r

2
1 �N2r

2
2

��
(10)

�
� 1

0
exp

ÿ
ipN0Zr

2
3

�
Jj�2pN1x1r1r3�Jj�2pN2x2r2r3�r3dr3,

where r2 � r=a2 and r3 � r=a3 are the dimensionless coor-
dinates on the plane and spherical mirrors;

N0 �
a 2
3

lf
; Np �

a 2
p

lLp

; Z � 1ÿ g1g2
�1ÿ g1��1ÿ g2�

;

gp � 1ÿ Lp

f
; xp �

a3
ap

; p � 1; 2 .

By solving system of equations (7), we obtain N eigen-
values m and as many eigenvectors, whose components are
the coefécients of the expansion of the cavity modes in
waveguide modes. The magnitude of jCnj2 determines the
fraction of the mode energy that is transferred by the TEmn

wave. The relative energy loss and the additional round-trip
phase shift, which is to be added to the geometrical-optical
phase, are given by expressions

d � 1ÿ jmj4; F � 2 arctan
Imm
Rem

, (11)

respectively.
It can be shown that if we set L1 � L2 � f in expressions

(9) and (10) and let the upper integral limits (apertures of
mirrors) tend to inénity, the éeld distribution of the beam
will be transferred distortion-free from one waveguide to the
other [8]. This is because each of the phase correctors
performs the exact Fourier ëBessel integral transformation
of the beam during its transfer from one focal plane to the
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other [11]. The characteristic size of the beam on the plane
mirror of the SDM (in the region of the Fourier transform)
equals the product of the angle of divergence of the beam in
the far-éeld diffraction zone, which is proportional to l=a1,
and the focal distance f. By decreasing the radius of the
plane mirror a2, we can expect the suppresssion of modes
formed by higher waves of the waveguide because the angle
of divergence of these waves increases with increasing
transverse indices m and n.

If we set L2 � f, L1 5 f in (9) and (10) for inénite mirror
apertures, the plane of the initial distribution of the beam
and the plane of its reproduction will shift from waveguides
1 and 2, respectively, by a distance of L1 ÿ f. Thus, the effect
of the SDM on the cavity modes will be equivalent to that of
a stretch of free space of length 2 (L1 ÿ f ) inserted between
the waveguides. Since the energy loss due to the diffraction
in this stretch increases with increasing transverse mode
indices [10], one should expect the selection of lower modes.

3. Results of calculations

The dependence of the energy loss of cavity modes on a2
and L1 was calculated numerically according to formulas
(7) ë (11). We chose the model geometrical dimensions of
the cavity to be close to those of a cavity of a small wide-
range smm OPL (a1 � 9:9 mm, Lw � 425 mm, f � 80 mm,
a3 � 21 mm, and the material of the waveguides is copper).

We performed the calculation for the extreme wave-
lengths of the smm range at l � 0:1 and 1 mm, and also at
l � 0:4326 mm, which is the lasing wavelength of the for-
mic-acid OPL pumped by a CO2 laser on the 9R (20)
transition. The number N of expansion terms in formula
(7) is determined by the required accuracy of the calculation
and was chosen to be 20.

Fig. 2 shows the calculated losses for the four modes
that have the highest Q factors as functions of the dimen-
sionless parameter N12 � a1a2=lf for L1 � L2 � f. The cal-
culation of jCnj2 has shown that more than 99.5% of each
cavity mode is formed by one of the waveguide eigenmodes.
This is why we labelled the types of cavity oscillations by the
designations of the corresponding waveguide modes. The
losses curves that correspond to different l are not identical
owing to the difference in the waveguide losses and the
limitation of the beam by the apertures of the spherical
mirrors. The greatest difference is observed for the TE11

mode, whose waveguide losses are maximum.

At N12 < 0:8, the TE11 mode is selected; however, the
losses for this mode exceed 25%. They can be reduced by
increasing the waveguide diameter, but the applicability
conditions of the Fresnel approximation will then require
such an increase in the system size that all advantages of a
waveguide cavity will be lost.

To select the TE01 mode, the parameter N12 should be
between 0.9 and 1.1. One can increase the losses for the TE11

mode, which has the second-best Q factor, by increasing the
waveguide losses. As the frequency of the cavity is tuned, the
radius of the plane mirror of the SDM should change
proportionally to l, which can be easily done with the help
of an iris diaphragm.

In the case of such a selection of the TE01 mode, its
losses amount to 6%, whereas the losses of the mode with
the closest Q factor are greater by approximately 20%. This
difference can be increased substantially by adjusting the
length L1 of the free-space stretch.

For L1 > f, a suféciently large aperture a3, and N12=
const, the behaviour of the oscillation types of the combined
cavity is determined by two dimensionless parameters
Nw � lLw=a

2
1 and NL � l (L1 ÿ f )=a 2

1 . The parameter Nw

determines the difference between the phase shifts of the
natural waves that is acquired upon a round trip in the
waveguide. If ( wmn 0=ka1)

2 5 1, this difference is approx-
imately given by [9]

Djmn;mn 0 �
Nw

2p

ÿ
w 2
mn 0 ÿ w 2

mn

�
. (12)

The parameter NL is the inverse of the Fresnel number
of the free-space stretch of length L1 ÿ f, which is the
conventional parameter of diffraction problems. It charac-
terises the beam diffraction inside the SDM. Cavities with
coincident parameters Nw and NL are similar. The possible
differences between the characteristics of their modes are
due to the same factors as in the case of the above-
considered scaling law determined by the parameter N12.

Fig. 3 shows the losses of lower cavity modes as func-
tions of the parameter NL for different values of the parame-
ter Nw. Note that as NL increases the cavity modes become
less pure, i.e., the number of other natural waves that carry a
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Figure 2. Theoretical (curves) and experimental (points) dependences of
the losses for the TE11, TE01, TE12, and TE02 modes on N12 for l � 0:1
(solid curves), 0.4326 (dashed curves and points), and 1.0 mm (dot-and-
dash curves).
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Figure 3. Losses of the TE11 and TE01 modes as functions of NL for
different Nw.
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signiécant fraction of the mode energy increases in expan-
sion (6). The cavity modes are labelled by the indices of the
waves that make the greatest contribution. Without signié-
cantly limiting the generality of the results, we could perform
the calculations for l � 0:4326 mm, a1 � 9.9 mm, a2 � 10
mm, a3 � 1 mm, f � 80 mm, and varying values of L1 and Lw.

The general tendency of the obtained dependences is the
increase in the losses with increasing NL, (i.e., with increa-
sing length of the free-space stretch L1). However, these
dependences feature local minima, which are particularly
pronounced in the case of the TE01 mode. By our study of
the wave content of the TE01 mode showed that, in these
minima, the mode is mostly formed by two natural waves.
In the rightmost minimum, approximately 20% (in energy)
of the TE02 wave is admixed to the TE01 natural wave; in the
next minimum to the left, by about 7% of the TE03 wave; in
the next one, by about 3% of the TE04 wave, and so on.

The reason for the appearance of minima in the losses is
as follows. At some phase shifts of the waveguide modes
(12), a convergent beam is formed at the open end of the
waveguide. If the curvature of the phase front compensates
for the divergence of the beam during its propagation in the
free-space stretch of length 2 (L1 ÿ f ), a minimum in the
losses is observed. Our calculations of the phase front con-
érmed that the losses are minimal when the convergent
beam leaving the open end of the waveguide has a spherical
phase front, while the entering beam has a plane phase
front.

To select the TE01 mode, it is most reasonable to use the
minimum with the largest NL because this maximises the
losses of other modes. Since this minimum is mostly
determined by the difference between the phase shifts of
the TE01 and TE02 waves, we calculated the losses of the
cavity modes for Dj01;02 changing from 2p to 4p with a step
of 0:1p, which corresponds to the variation in Nw by 0.0572.
We found that if Dj01;02 lies in the interval between 3:1p and
3:7p (Nw between 1.772 and 2.114), the losses of the TE01

mode in the rightmost minimum of the curve are between 6
and 0.2%, that is, not larger than in the case of the selection
using a diaphragm. As Nw changes from the upper to the
lower limit of the interval, the position of the minimum Nmin

L

shifts from 0.165 to 0.450. In this case, the losses for the

TE11 mode, which has the second-best Q factor, at points
NL � Nmin

L increase almost monotonically from 25 to 45%.
Thus, compared to the selection using a diaphragm, the
selection with the help of a free-space stretch makes it
possible to either decrease the losses of the selected mode or
suppress the other modes more strongly.

We tested the scaling laws at different wavelengths of the
smm range, accordingly changing Lw. Fig. 4 shows the
losses of the TE01 mode as a function of NL for l � 0:1,
0.4326, and 1 mm, or N12 � 6:19, 2.86, and 1.86, respec-
tively, and Nw � 2:07. Within the rightmost minimum, even
the curves that correspond to different values of N12 are
close. As N12 decreases, the contribution of the upper waves
to the cavity mode decreases, and the minima caused by the
interference between these waves and the TE01 natural wave
gradually disappear.

4. Results of experiment

Fig. 5 shows the structural scheme of the experimental
setup for studying the transverse modes of a passive com-
bined cavity and the methods for their selection. The cavity
under study 5, with Lw � 465 mm, a1 � 10 mm, and a3 �
21 mm, was operated in the transmission regime. An iris
diaphragm 7 was used to vary the radius a2 of the plane
mirror of the SDM. All cavity elements were mounted on a
IZA-2 measuring line. An electric drive 12 shifted either the
semitransparent end reêectors or the SDM precisely along
the optical axis, with the misalignment not exceeding 1''.
Grids made of 25-mm-wide, 17-mm-thick nickel bands with
a period of 100 mm served as the semitransparent reêectors.
At a wavelength of 0.4326 mm, where the measurements were
performed, the transmission coefécient of the grids was 6%.

The cavity was driven through one of the semitranspa-
rent reêectors by the emission of a smm OPL, which con-
sisted of a pumping CO2 laser 1 and a smm cell 2. The
exciting beam was modulated by a beam chopper 3 and
matched to the cavity by a quasi-optical circuit and a teêon
lens 4 with a focal distance of 30 cm. The radiation trans-
mitted by the cavity was detected by devices 8 ë 11.

The measurement technique was similar to that des-
cribed in Ref. [10]. The eigenmode spectrum of the cavity
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Figure 4. Losses of the TE01 mode as a function of NL for different N12

and Nw � 2:07.
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Figure 5. Experimental setup: ( 1 ) CO2 laser, ( 2 ) smm cell, ( 3 ) beam
chopper, ( 4 ) lens, ( 5 ) combined cavity, ( 6 ) SDM, ( 7 ) iris diaphragm,
( 8 ) pyroelectric transducer, ( 9 ) ampliéer, ( 10 ) oscillograph, ( 11 )
recorder, ( 12 ) electric drive for the displacement of reêectors and SDM.
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was detected by changing the cavity length with the help of
the electric drive 12. The transverse modes were identiéed
using the intermodal intervals calculated from the phase
shifts (11) and the well-known theoretical transverse dis-
tributions of the intensity and polarisation of waveguide
modes. By displacing lens 4 along and perpendicularly to the
exciting beam, we maximised the transfer coefécient of the
cavity for any given mode. The total energy loss dS per
cavity round trip was determined by measuring the width of
the resonance curve. The relative error of the loss measure-
ments did not exceed � 5%.

From the total losses we distinguished the part d, given
by formula (11), that was due to the diffraction and wave-
guide losses, and the constant part dc that was due to the
losses in the reêectors, misalignment of the SDM, etc. The
quantity of interest, d, was calculated from the expression

d � dS ÿ dc
1ÿ dc

. (13)

Obviously, at d! 0 the unknown quantity dc coincides
with the measured total losses. In the experiment, this was
realised by making the diaphragm suféciently large, so that
it no longer contributed to the losses of the TE01 mode (the
region of N12 > 1:8 in Fig. 2). The measured value was dc �
23.5%.

The dots in Fig. 2 show the values of d obtained by mea-
suring the total losses of the TE01, TE11, and TE12 modes for
the diaphragm radius a2 varying from 1.5 to 5 mm, which
corresponds to the variation in N12 from 0.43 to 1.43. At the
same time, L1 and L2 remained equal to f. The experimental
dots are in good agreement with the theoretical curves.

To verify the dependence of the losses on parameter NL

in experiment, we varied the distance L1 by shifting the
SDM as a whole with respect to the waveguides. The dia-
meter of the diaphragm was 10 mm. The dots in Fig. 6 show
the measured losses for the TE01 and TE11 modes. Because
of the smallness of the parameter N12, the curve of losses for
the TE01 mode has one minimum. For comparison, Fig. 6
also shows the theoretical curves. Because the radii of actual
waveguides in different sections are known with a low
precision, we performed the calculations for a1 � 9:9, 10,
and 10.1 mm. One can see that the concomitant variation in
Nw by � 2% signiécantly shifts the minimum of the losses

along the NL axis. In this case and also in the case of the
frequency tuning of the cavity, the distance L1 should be
optimised to minimise the losses. Generally, the results of
the calculation and the experiment are fairly close to each
other. The small discrepancy may be caused by the fact that
in the calculations we neglected the beam aberrations due to
the oblique incidence on the spherical mirrors, imperfections
of the waveguides and mirrors, etc.

5. Conclusions

We have proposed and studied two methods for the selec-
tion of transverse modes of a combined cavity that are rela-
tively easy to realise in practice. The main advantage of the
selection method that uses an iris diaphragm is the possibi-
lity to apply this method in a wide range of wavelengths
without replacing the cavity elements. The selection method
that uses a stretch of free space allows one to increase the
eféciency of selecting the TE01 mode; however, it is appli-
cable in a limited range of wavelengths that is determined
by the waveguide size. Despite the fact that we used the
diffraction integral in the Fresnel approximation for the
theoretical description of the modes, the results obtained
for NL ! 0 can be interpreted for cavities that contain
arbitrarily small stretches of free space. They are also valid
for arbitrary cavity sizes and wavelengths provided that the
approximations and scaling laws used in this work hold.
The underlying principles of the selection methods ë the
éltering of the spatial Fourier spectrum of waveguide modes
and the utilisation of their interference ë can be extended to
cavities that contain any waveguides.

Note that a selector that consists of a quadratic phase
corrector and a back-reêecting plane mirror is in fact sufé-
cient to realise the selection of transverse modes. However,
the cavity described above operating in the transmission
regime proved to be more convenient for both the experi-
mental studies and the creation of a compact smm laser with
optical pumping.
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