
Abstract. The new design of a Faraday rotator is proposed
which allows one to compensate partially the radiation depo-
larisation in magneto-optical elements induced by heating due
to the laser radiation absorption. The new design is compared
analytically and numerically with a conventional design for
the cases of glass and crystal magneto-optical media. It is
shown that a rotator, which provides the compensation for
birefringence in active elements with the accuracy up to 1%
at the average laser radiation power of 1 kW in the rotator,
can be created.

Keywords: Faraday rotator, compensation for birefringence, depo-
larisation.

1. Introduction

In connection with an increase in the average laser power in
recent years, studies of heating effects caused by the laser
radiation absorption in Faraday isolators and rotators
become more and more important [1 ë 5]. In many appli-
cations, a combination of the high average power with a
low depolarisation ratio and low introduced aberrations is
required. The prominent examples are a laser interferometer
for detection of gravitational waves [6] and a laser driver
for laser fusion [7].

The radiation absorption in Faraday elements causes the
inhomogeneous distribution of temperature over the cross
section. This leads to a thermal lens, the inhomogeneous
distribution of the angle of rotation of polarisation plane
(because of the temperature dependence of the Verdet
constant) and a linear birefringence caused by the photoe-
lastic effect. Aberrations caused by the thermal lens do not
lead to polarisation distortions and can be eféciently
compensated by a phase-conjugate mirror [1, 2] or with
the help of spherical optics [4]. Below, we assume that
aberrations are absent, or are compensated.

Self-induced depolarisation of high-power radiation in a
magneto-active medium was érst studied in Refs [8 ë 11],
where it was shown that the photoelastic effect gives the
greatest contribution into the depolarisation ratio, while the

effect of the temperature dependence of the Verdet constant
can be neglected. This conclusion was conérmed experi-
mentally in Ref. [12].

In Ref. [10], two new designs of a Faraday isolator for
high average power lasers were proposed and theoretically
studied. They consist of two Faraday elements, each of
which rotates the polarisation plane through 22.58, and a
reciprocal optical element between them. In this case, the
polarisation distortions arising in a beam during its passage
through the érst element are partially compensated during
the beam passage through the second element. Subsequent
experiments [12] conérmed the high eféciency of these
designs. In Ref. [13], these two new designs were compared
with a conventional design from the viewpoint of obtaining
the maximum depolarisation ratio and decreasing the beam
aberration. The dependence of the isolation for different
designs of a Faraday isolator on the orientation of a
magneto-active crystal was studied in detail in Ref. [14].
The results of Refs [10 ë 14] show that a reliable Faraday
isolator for the average radiation power of 1 kW can be
created.

At the same time, the problem of compensation for
depolarisation in Faraday rotators has not been studied,
and even has not been discussed to date. In contrast to an
isolators, a Faraday rotator has no polarisers and is used
not for optical isolation but, as a rule, for compensation for
birefringence in active elements (AEs) of high-power laser
systems (Fig. 1a). Indeed, after two transits through a Fara-
day rotator and a repeated transit through an AE, the linear
polarisation of radiation is restored. Such a method of
compensation for birefringence in AEs has been long used in
ampliéers [1, 2, 7, 15], and recently was also used in oscil-
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Figure 1. Compensation for birefringence in the AE in the conventional
(a) and new (b) schemes of the Faraday isolator.



lators [4, 16] and regenerative ampliéers [16]. It is obvious
that, if a Faraday rotator itself introduces polarisation dis-
tortions (the depolarisation), the compensation for bire-
fringence in an AE will be incomplete. In this paper, the
dependences of the compensation eféciency on the laser
radiation power, the heat release power in AEs and on other
parameters are obtained.

In spite of a great similarity between a Faraday rotator
and a Faraday isolator, they differ in two important aspects,
which makes the use of new designs of the isolator, con-
sidered in [10] inefécient for the rotator. First, the isolation
is affected only by the depolarisation during the second
transit of radiation through the isolator, whereas in the
rotator the polarisation distortions are accumulated during
two transits. Aside from an obvious quantitative conseq-
uence, this fact has a more important qualitative conseq-
uence. In view of the nonreciprocity of the Faraday effect,
new designs of the isolator, which provide the efécient
compensation for depolarisation during the back transit,
almost do not decrease depolarisation during the érst transit
[13].

Second, the radiation incident on the isolator is always
polarised linearly (we assume that the polarisers are ideal)
along a deénite direction. Therefore, to achieve a good iso-
lation, it is sufécient that only this linear polarisation would
be slightly distorted during the back transit. However, the
radiation incident on the rotator is already depolarised in an
AE, and its polarisation at different points of the cross
section can be arbitrary in the case of strong depolarisation.
For this reason, to achieve an ideal compensation for bire-
fringence in the AE, the rotator should rotate the polar-
isation ellipce through 908 during two transitss without
distortion. An exact calculation shows that the use of new
isolator designs [10] for the rotator allows one only to im-
prove its parameters only slightly compared to the con-
ventional design. In this paper, the new design of a Faraday
rotator for high average power lasers is proposed and stu-
died. The eféciencies of compensation for birefringence in
an AE are compared for this design, a conventional design,
and a recent design, containing a l/4 plate [17].

2. New design of a Faraday rotator

The compensation for depolarisation in a Faraday rotator
is performed by replacing the 458 Faraday element by two
elements of different lengths and a reciprocal rotator of
polarisation between them. In this case, two new free
parameters appear: the angle b of rotation by the reciprocal
rotator and the ratio t of the angle of rotation by the érst
Faraday element to the total angle F0 of rotation by both
Faraday elements, which is equal to 458. The angle b can
take any value from zero to p, and the parameter t can take
any value from zero to one.

Fig. 1 illustrates the compensation for birefringence in
an AE using a conventional design of a Faraday rotator and
the new design with compensation for polarisation dis-
tortion produced by the rotator itself. The combination of a
Faraday rotator with a mirror (dashed rectangle in Fig.
1a, b) is called Faraday mirror. The radiation at the point A
is polarised horizontally (in the plane of the égure). Because
of the birefringence in an AE, the radiation at the point B
becomes depolarised (the state of polarisation is constant in
time, but changes over the cross section). In both of these
designs in the absence of thermal effects in Faraday ele-

ments, the polarisation ellipse at the point C rotates through
908 after a beam reêection from a Faraday mirror, the ellip-
ticity and the direction of polarisation rotation being un-
changed (in the laboratory reference system). In this case,
the radiation at the point D becomes vertically polarised
(normally to the plane of égure) after a repeated transit
through the AE and is reêected completely by the polarizer.
This leads to a complete compensation for birefringence in
the AE. However, the polarisation distortions induced by a
temperature gradient in a magneto-active medium result in
an incomplete compensation for birefringence in the AE,
i.e., radiation with horizontal polarisation appears at the
point D, which passes through the polariser.

It is obvious that the greater the Jones matrix M of the
Faraday mirror differs from the matrix of rotation through
908, which is the matrix of an ideal Faraday mirror, the
greater the effect of depolarisation of radiation in a mag-
neto-active medium. According to Fig. 1, the Jones matrices
of the Faraday mirror for the conventional (the subscript
`old') and the new (the subscript `new') Faraday rotators are

Mold � F�F0; d1�F�F0; d1�, (1)

Mnew � F�tF0; td1�R�ÿb�F��1ÿ t�F0; �1ÿ t�d1�

�F��1ÿ t�F0; �1ÿ t�d1�R�b�F�tF0; td1�, (2)

where

R�b� � cos b sin b
ÿ sin b cos b

� �
,
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2
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are the Jones matrices of a reciprocal quartz polarisation
rotator and of the Faraday element, respectively, taking
into account the linear birefringence induced additionally to
the circular one [9, 18, 19]; d1 and C are the phase diffe-
rence and the slope of the direction of intrinsic polarisation
(Fig. 2) of the thermally induced linear birefringence to the
x axis; F is the angle of rotation of polarisation plane for
the Faraday element; F0 � p=4 � dc=2; and d 2 � d 2

1 � d 2
c .
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Figure 2. Cross section of a magneto-active crystal.
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We assume that the magnetic éeld and the heat release
(i.e., quantities F and d1) are homogeneous over the entire
length. One can see from (1) that for both these designs d1
is the phase incursion per transit through the entire Fara-
day rotator.

Consider the case when the linear birefringence is weak,
i.e.,

d1 5 1. (4)

In this approximation, by substituting (3) into (2), we
obtain the following expressions for the elements of the
matrix Mnew:

M11new �M �
22new � O d 2

1

ÿ �ÿ i
2d1
p

m1 �O d 3
1

ÿ �� �
,

M21 new � ÿM �
12 new � 1�O d 2

1

ÿ �ÿ i
2d1
p

m2 �O d 3
1

ÿ �� �
,

where

m1 � sin
tp
2
cos
�1ÿ t�p

2
cos 2C� sin

�1ÿ t�p
2

� cos�2C� 2b� ÿ 1ÿ cos
tp
2

� �
cos 2C

h i
;

m2 � sin
tp
2
cos
�1ÿ t�p

2
sin 2C� sin

�1ÿ t�p
2

� sin�2C� 2b� ÿ 1ÿ cos
tp
2

� �
sin 2C

h i
.

Equating m1 and m2 to zero, we obtain the conditions when
the difference between the matrix of rotation through 908
and the matrix Mnew becomes of the order of d 2

1 :

b � p
2
, t � 2

3
. (5)

By substituting (3) into (1) and taking into account (4), we
obtain that the difference between the matrix of rotation
through 908 and the matrix Mold is of the order of d1. Thus,
if the condition (5) is fulélled, depolarisation substantially
decreases in the new design of the Faraday rotator. One can
see from (5), that to provide these conditions, one should
place a 908 quartz rotator between two Faraday rotators,
which rotate the polarisation plane through 308 and 158,
respectively. Below, we will study the new Faraday rotator
at these optimal parameters.

3. Compensation for birefringence in the AE

In the absence of thermal effects in a magneto-active
medium (at low radiation power), both these designs of the
Faraday rotator provide the ideal compensation for
birefringence in the AE. Let us determine the compensation
eféciency at high powers. Let the éeld EA at the point A
have a Gaussian intensity distribution with the maximum
E0 and the radius r0, and be polarised along the x axis:

EA � x0E0 exp ÿ
r 2

2r 20

 !
, (6)

where x0 is the unit vector along the x axis. Then, the éeld
ED at the point D during the back passage is determined by
the Jones matrices (1) and (2) of the active element A and
the Faraday mirror M, respectively:

EDold;Dnew � AMold;newAEA. (7)

An inaccuracy of the compensation for birefringence in the
AE is characterised by the depolarisation ratio g, which is
the ratio of the power passed backward through the
polariser to the total laser radiation power:

gold;new �
� 2p

0

dj
�1
0

jEold;newx0j2rdr

�
� 2p

0

dj
�1
0

jEold;newj2rdr
� �ÿ1

, (8)

where r and j are the polar coordinates. We assume that
the optical diameters of the Faraday rotator and AE are
such that the aperture loss can be neglected and the
integration over r in expression (8) can be performed to
inénity.

We assume that the pump power distribution and,
hence, the heat release in the AE are homogeneous over
the volume. Then, for an inénitely long cylindrical AE with
the [111] crystal orientation, which has the éeld gain K0, the
matrix A has the form [20]

A � K0 sin
da
2

cot
da
2
ÿ i cos 2j ÿi sin 2j

ÿi sin 2j cot
da
2
� i cos 2j

0B@
1CA, (9)

where

da �
r 2

r 20
pa; xa �

2pa44
pa11 ÿ pa12

;

Qa �
1

La

dLa

dT

� �
n3a
4

1� va
1ÿ va

�pa11 ÿ pa12�;

pa �
1

2l
Qa

Ka

1� 2xa
3

r 20
R 2

Pa; (10)

va, Ka, na, paij , La, R are the Poisson coefécient, the thermal
conductivity, the refractive index, the photoelasticity coefé-
cients written in the two-index notations of Nye [21], the
length and radius of the AE, respectively; T is the AE tem-
perature; l is the wavelength; Pa is the heat release power in
the AE. These expressions are also valid for glass AEs, for
which xa � 1. Below, we will neglect the gain saturation in
the AE and will assume that K0 � const.

Now, to determine gold;new, it is necessary to énd only d1
and C, which are speciéed by the orientation of a magneto-
active crystal and the temperature gradient in the crystal.
Let us restrict our consideration to orientations [001] and
[111] of a cubic crystal (which are used more often compared
to other orientations, see [14]), and also to a glass magneto-
active element. For an inénitely long cylindrical element, we
will use the expressions from Refs [10, 14, 20]:

d1�r;j� � 2p r 20
1ÿ exp�ÿr 2=r 20 �

r 2
ÿ 1

" #

� cos2�2jÿ 2y� � x 2 sin2�2jÿ 2y�� �1=2
and

tan�2Cÿ 2y� � x tan�2jÿ 2y�

for the [001] orientation, (11)
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d1�r;j� � 2p r 20
1ÿ exp�ÿr 2=r 20 �

r 2
ÿ 1

" #
1� 2x

3
and

C � j for the [111] orientation,

where

x � 2p44
p11 ÿ p12

; Q � 1

L

dL
dT

� �
n30
4

1� v

1ÿ v
�p11 ÿ p12�; (12)

p � L

l
aQ
K

P0; (13)

v, K, a, n0, pij , L are the Poisson coefécient, the thermal
conductivity, the absorption coefécient, the refractive index,
the photoelasticity coefécients and the length of a magneto-
active medium, respectively; y is the angle between the
cristallographic axis and the x axis (see Fig. 2); P0 is the
laser radiation power at the point B or C (we assume that
the powers at these points are the same because absorption
in the magneto-active medium is weak). Expressions (11)
are also valid for glass Faraday elements, for which x � 1.
The factor 2 in expressions for d1 reêects the fact that the
heat release is doubled because of two transits of radiation
through the Faraday rotator.

By substituting (3) and (11) into (1) and (2), and the
result of this substitution together with (6), (7) and (9) into
(8), after integration, taking into account (4) and (5), we
obtain the depolarisation ratio gold;new. For the [001]
orientation of a magneto-active crystal, the depolarisation
ratio depends on the angle y. By rotating the crystal around
the axis, one can easily change the angle y, thereby
minimising the depolarisation ratio. By analysing expression
(8) after integration, one can easily show that for both of
these designs of the Faraday rotator the optimal angle is
yopt � 0. For this angle, we obtain the énal expression for
the depolarisation ratio:

gold �
p2

p2

�
8A1 �

�1
0

h
4�x 2 ÿ 1� sin2 pay

2
� �5x 2 � 2x� 1�

� sin2�pay�
i�
1ÿ 1ÿ exp�ÿy�

y

�2
exp�ÿy�dy

�
for the

[001] orientation, (14)
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8p2
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�
1� 2x

3

�2�
A1�

�1
0

sin2�pay�
�
1ÿ 1ÿ exp�ÿy�

y

�2
� exp�ÿy�dy

�
for the [111] orientation,

gnew �
�2 ���

3
p ÿ p�2p4

p4

�ÿ
6x 4 � 4x 2� 6

�
A2 ÿ

ÿ
5x 4 � 2x 2� 1

�

�
�1
0

sin2�pay�
�
1ÿ 1ÿ exp�ÿy�

y

�4
exp�ÿy�dy

�
for the [001] orientation,

gnew �
8�2 ���

3
p ÿ p�2p4

p4

�
1� 2x

3

�4�
2A2ÿ

�1
0

sin2�pay�
(15)

�
�
1ÿ 1ÿ exp�ÿy�

y

�4
exp�ÿy�dy

�
for the [111] orientation,

where

A1 �
�1
0

�
1

y
ÿ exp�ÿy�

y
ÿ 1

�2 dy
exp y

' 0:137;

A2 �
�1
0

�
1

y
ÿ exp�ÿy�

y
ÿ 1

�4 dy
exp y

' 0:042.

For x � 1, the expressions for orientations [001] and [111]
are the same and correspond to a glass magneto-active
element.

Recently, the authors of Ref. [17] proposed to use a l/4-
plate with optical axes parallel to the x and y axes, i.e., to
the axes of polariser (Fig. 1), for compensation for bire-
fringence in an AE instead of a Faraday rotator. By
replacing the matrix M in (7) by the square of the matrix
of the l/4-plate and performing similar calculations, we
obtain the depolarisation ratio g4 for this case:

g4 �
3

4

p4a
�1� p2a��1� 4p2a�

. (16)

Similarly, by replacing the matrix M in (7) by the unit
matrix, we obtain the depolarisation ratio ga in the absence
of compensation for birefringence in the AE:

ga �
p2a

1� 4p2a
. (17)

Thus, in the last two cases, the depolarisation ratio is
determined only by the parameter pa, the normalised heat
release power (10) in the AE. However, in the case of the
Faraday rotator with the conventional [see Eqn (14)] or new
[see Eq. (15)] design (Fig. 1), the depolarisation ratio is also
determined by two additional parameters: the normalised
laser radiation power p (13) in the Faraday rotator and the
parameter x of a magneto-active crystal.

4. Discussion of results and conclusions

Let us discuss the results obtained. Consider two cases: a
glass magneto-active element (x � 1) and a terbium gallium
garnet (TGG) magneto-active crystall, which is widely used
in in high-power laser systems. The parameter x for TGG
was recently measured to be 2.2 [14]. First of all, note that
the depolarisation ratio (14) for the conventional design of
a rotator is proportional to the square of the normalised
radiation power ( p2), while the depolarisation ratio (15) in
the new design is proportional to the fourth degree ( p4) of
the power. First, this demonstrates a more efécient
operation of the new design at p < 1, and second, allows
one to easily calculate the depolarisation ratio for any p
using the plots constructed according to expressions (14),
(15) at p � 1 and presented in Fig. 3.

In the absence of birefringence in the AE (at pa � 0), the
depolarisation ratio in the case of the Faraday rotator is
nonzero. At pa � 0, all the integrals in (14) and (15) are zero,
and simple expressions obtained in this case describe the
dependence of depolarisation in the rotator itself on the
laser radiation power (the parameter p). These expressions
can be useful in analysis of other applications of the Fara-
day rotator, which are not related to a compensation for
birefringence in the AE. In particular, for the [001] ori-
entation the depolarisation ratio gold( pa � 0) � 8A1p

2=p2,
which coincides with the expression for this case in Ref. [9].
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One can see from Fig. 3, that gnew( pa > 0) < gnew( pa �
0), whereas gold( pa > 0) > gold( pa � 0), i.e., the birefrin-
gence in the AE increases the depolarisation ratio of the
conventional Faraday rotator and decreases the depolarisa-
tion ratio of the new rotator. This is valid both for crystal
and glass magneto-active elements. The dependence of the
depolarisation ratio on pa in the last case is very weak (see
Fig. 3), and to estimate the depolarisation ratio at any pa,
one can use the value of gold;new at pa � 0, x � 1.

One can see from Fig. 3 that for both designs of the
Faraday rotator for any pa, the [001] orientation is pref-
erable to the [111] orientation, although a substantial
difference between them takes place only in the conventional
rotator at small pa. It also follows from this égure that the
glass magneto-active element produces the depolarisation
ratio that is lower than for the TGG element. It is important
to note that this is valid only at the same values of p (13).

Fig. 4 illustrates the eféciency of the compensation for
birefringence in the AE for the new design of the Faraday

rotator compared to those provided by the conventional
design and the above-mentioned design with the l/4-plate
[17]. In the last case, unlike the new design of the rotator,
the compensation is efécient only at very low pa, i.e., at
weak birefringence in the AE, in agreement with the results
of Refs [22, 23]. However, from the practical point of view,
the range of high pa is the most interesting. One can easyly
see from Fig. 3 and 4, that in all cases, the depolarisation
ratio is saturated rapidly with increasing pa and tends to a
constant. Therefore, in the case of strong birefringence in
the AE, all these compensation designs can be conveniently
characterised by this constant value of the depolarisation
ratio. By passing to the limit at pa !1 in (14) ë (17), we
obtain

gold�pa !1� �

�
A1p

2

2p2
�9x 2 � 2x� 13� for the �001�orientation;

4A1p
2

3p2
�1� 2x�2 for the �111� orientation;

8>>><>>>: (18)

gnew�pa!1��

�

�2 ���
3
p ÿp�2A2p

4

2p4
�7x4�6x2�11�

for the �001� orientation;
16�2 ���

3
p ÿ p�2A2p

4

27p4
�1� 2x�4
for the �111� orientation;

8>>>>>><>>>>>>:
(19)

g4� pa !1� �
1

4
, ga�pa !1� �

3

16
. (20)

The formulas for the depolarisation ratio in the case of
the Faraday rotator, which were obtained in this and
previous sections, are valid if the condition (4) is fulélled.
The value of d1 is difécult to measure in practice, and in
addition, it depends on the transverse coordinates. For this
reason, it is interesting to study the eféciency of the new
design of the Faraday rotator, when the condition (4) is
violated. In this case, it is impossible to obtain simple
analytic expressions for the depolarisation ratio gold;new.
However, the depolarisation ratio is determined by the same
three parameters ( pa, p and x), as for d1 5 1. The numerical
integration in (8) shows that the character of the dependence
of the depolarisation ratio on pa and x does not change
substantially. Fig. 5 shows the dependences of the depolar-
isation ratio on p obtained by the numerical integration of
(8) at pa � 4, together with the plots constructed by
formulas (18) ë (20). One can see that exact values of the
depolarisation ratio at increasing p are less than the values
given by expressions (18) and (19).

Finally, let us estimate the radiation power P0 incident
on the Faraday rotator at which the depolarisation ratio is
less than 1%. One can see from Fig. 5 that in this case,
expressions (18) and (19) can be used, which yield the values
of the parameter pold;new equal to 0.15 and 1.2 for a TGG
crystal with the [001] orientation, and 0.25 and 2.1 for glass.
For magneto-active glass, by substituting the values
Q=K � 10ÿ6 m Wÿ1 [24], a � 10ÿ3 cmÿ1 [25] and L=l �
6� 104 into (13), we obtain that the depolarisation ratio is
less than 1% at powers lower than 40 W for the conven-
tional design of the Faraday rotator and lower than 350 W

a b

0 0.5 1.0 1.5 pa 0 0.5 1.0 1.5 pa

0.2

0.4

gold

0.002

0.004

0.006

gnew

1

2

3

1

2

3

Figure 3. Dependences of the non-isolation on pa plotted by expressions
(14) and (15) at p � 1 for the conventional (a) and new (b) schemes of the
Faraday rotator using TGG with the orientations [111] ( 1 ) and [001] ( 2 )
and glass ( 3 ).

gold1

10ÿ2 10ÿ1 1 pa
10ÿ5

10ÿ4

10ÿ3

10ÿ2

10ÿ1

g

gnew2

gnew1

gold2

ga

g4

Figure 4. Dependences of the non-isolation g on pa, plotted by expres-
sions (14) and (15) at p � 0:5 for the conventional (TGG with the [001]
orientation (gold1), glass (gold2)) and new (TGG with the [001] orientation
(gnew1), glass (gnew2)) Faraday rotators, and also for the compensation
scheme with the l/4-plate [17] (g4), and without compensation (ga).
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for the new design. Similarly, by substituting the values
Qa � 3:2 �10ÿ7 Kÿ1 mÿ1 [14], K � 7:4 W Kÿ1 mÿ1, L=l �
3� 104 into (13), we obtain for TGG with the [001] orien-
tation that the depolarisation ratio is less 1% at the power
lower than 120 W for the conventional design of the Fara-
day rotator and less than 1000 W for the new design.

The above study of the conventional design (Fig. 1a)
and the new design (Fig. 1b) of the Faraday rotator, which
consists of the 308 Faraday element, the 908 reciprocal
rotator, and the 158 Faraday element, allows one to make
the following conclusions. The thermal polarisation dis-
tortions in the new design of the Faraday rotator are
substantially weaker than in the conventional design. The
inaccuracy of the compensation for birefringence in the AE
by the Faraday mirror (the depolarisation ratio) is deter-
mined by the normalised heat release power pa [Eqn (10)] in
the active element, the normalised laser radiation power p
[Eqn (13)] in the Faraday rotator, and the combination x
[Eqn (12)] of the photoelasticity coefécients of a magneto-
active material. The depolarisation ratio in the new design
of the Faraday rotator is substantially less than in the
conventional design for any values of these parameters. The
obtained data show the possibility of creation of a Faraday
mirror, which is capable to compensate thermally induced
birefringence in the AE with the an error of 1% at an
average incident laser radiation power of 1 kW.
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Figure 5. Dependences of the non-isolation g on p at pa � 4 for the con-
ventional (TGG with the [001] orientation (gold1), glass (gold2)) and new
(TGG with the [001] orientation (gnew1), glass (gnew2)) Faraday rotators,
and also for the compensation scheme with the l/4-plate [17] (g4), and
without compensation (ga). Dotted curves show the corresponding de-
pendences plotted by expressions (18) and (19).
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