
Abstract. The effect of backscattering ampliécation of laser
radiation with respect to the radiation intensity reêected from
an ordinary mirror in a medium with êuctuations of the real
(refractive index) and the imaginary (absorption or amplié-
cation coefécient) parts of the permittivity is considered.
Formulas for the backscattering ampliécation coefécient and
the variance of the intensity êuctuations of the reêected wave
propagating in a random dissipative (amplifying) medium are
derived. Asymptotic expressions derived for the saturation
region of intensity êuctuations take into account the effect of
êuctuations of the refractive index and absorption (amplié-
cation) coefécient, as well as their correlation. The contri-
bution of êuctuations of the complex permittivity parts and
the characteristic spatial scale of the problem to the
backscattering ampliécation coefécient is analysed. It is
shown that for uncorrelated êuctuations of the real and
imaginary parts of the permittivity of a random medium, the
backscattering ampliécation coefécient in the region of
strong êuctuations is larger than in a transparent random
medium. It is also found that the correlation of pulsations of
the real and imaginary parts of the permittivity suppresses the
backscattering ampliécation effect in an absorbing medium
and increases this effect in an amplifying medium.
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1. Introduction

Fluctuations of the imaginary part of the permittivity
leading to a random variation in the amplitude characte-
ristics of the wave (random absorption or random ampli-
écation) as well as its phase characteristics play an impor-
tant role in the interaction of radiation with matter consi-
dered in a number of problems of laser physics and statisti-
cal optics. For example, the active medium of a He ëCd laser
pumped by nuclear éssion fragments of uranium exhibits
noticeable pulsations of the complex permittivity e [1], lea-
ding to an increase in the divergence of the laser beam [2].

In an X-ray laser, random inhomogeneities of the per-
mittivity e caused by the small-scale instabilities of laser-
induced plasma [3, 4] considerably affect the energy para-
meters and spatial coherence of ampliéed spontaneous emis-
sion. The êuctuations of the imaginary part of the permit-
tivity of the medium should be also taken into account in
problems of propagation of radio waves in atmosphere and
of laser radiation in a bleached liquid-drop aerosol (see, for
example, Refs [5, 6]).

An interesting feature of the interaction of radiation
with a random absorbing (amplifying) medium is the
impossibility to compensate, with the help of a phase-
conjugate (PC) mirror, the phase êuctuations of the reêected
wave, which are induced by pulsations of the imaginary part
of the permittivity e of the medium [7]. This circumstance
should be taken into account while developing adaptive
optical systems operating in media with êuctuations of the
real and imaginary parts of e. Note also that the disregard of
êuctuations of the imaginary part of e may lead to serious
errors in an analysis of propagation of radiation with wave-
lengths close to the absorption lines in the atmosphere.
Moreover, we showed earlier [8, 9] that even relatively small
pulsations of the attenuation coefécient of a turbulent medi-
um result in considerable changes in the behavior of the
variance of radiation intensity êuctuations over long paths
(in the region of saturation of intensity êuctuations).

Up to now, the main attention of researchers studying
the propagation of waves in media with a random attenu-
ation (ampliécation) was concentrated on the radiation
transfer along straight paths [2 ë 6, 8 ë 11]. It is well known,
however (see, for example, [12, 13] and references therein),
that the propagation of waves over location paths has some
peculiarities associated with double passage of a signal
through correlated random inhomogeneities (on the forward
and backward paths). For transparent turbulent media, in
which the êuctuations of the real part of the permittivity e
are the only source of wave randomization, the effects
accompanying the location signal propagation are studied
in detail by using the classical theory of waves in random
media [14 ë 16]. However, in the case of absorbing (amplify-
ing) random media, such investigations virtually have not
been carried out; for this reason, it would be interesting to
analyse the effect of pulsations of the imaginary part of e
and their correlations with the êuctuations of the real part
of the permittivity on the characteristics of a location signal.

In this paper, we consider the features of the manifes-
tation of an effect typical of location problems, the so-called
backscattering ampliécation of radiation with respect to the
radiation intensity reêected from an ordinary mirror during
its propagation in a turbulent medium with êuctuation of
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the real (~eR) as well as imaginary (~eIm) parts of e. For
deéniteness, we will henceforth assume that the medium in
which radiation propagates is randomly dissipative and will
obtain results speciécally for this case. A generalization of
the obtained results to a random amplifying medium will be
carried out by reversing the sign of ~eIm.

2. General concepts of the theory

We assume that a laser beam propagates in the positive
direction of the z axis from a source located in the plane
z � 0. A mirror with a preset distribution of the reêection
coefécient is located in the plane z � L, while the detector
of the reêected signal is placed in the plane of the source
(z � 0). We will describe the propagation of the laser beam
in an absorbing turbulent medium for the direct [U�( q; z)]
as well as the reêected [Uÿ( q; z)] wave with the help of the
known parabolic equation of quasi-optics for the complex
amplitude of the wave (see, for example [13])

�2ik qU�
qz
� D?U� � k2DeU� � 0, (1)

with the following boundary conditions: U�( q; z)jz�0 �
U0( q) in the plane of the source and Uÿ( q; z)jz�L �
f ( q)U�( q;L) in the reêection plane. Here, k is the wave
number; q � fx; yg is the radius vector in the plane z �
const; D? is the Laplace operator in variables x; y; f ( q) is
the mirror reêection coefécient (which is complex in the
general case); De � (eÿ e0R)=e0R � i�eIm � ~e the relative
change in the permittivity of the medium; e0R is the ave-
rage real part of e (e0R � 1 for optical radiation in a
gaseous medium); �eIm is the average imaginary part of e;
~e � ~eR� i~eIm is the random component of the permittivity
of the medium.

Using the HuygensëKirchhoff principle, we can con-
veniently present the solution of Eqn (1) for problems of
location transport in the integral form:

U�� q; z� �
�
d2r0U0� q0�G�� q; z; q0; 0�, (2)

Uÿ� q; z� �
� �

d2r0d2r00f� q00�Gÿ� q; 0; q00L�

�U0� q0�G�� q00;L; q0; 0�, (3)

where G�( q; z; q
0; z0) is the Green function of Eqn (1) for

the forward (+) and reêected (ë) waves.
The expression for the complex amplitude of the

reêected wave written in form (3) allows us to construct
various multiplicative combinations of complex amplitudes
as well as (after averaging over the ensemble of realisations)
various statistical moments of the location signal amplitude
in the integral form.

To reveal the effects associated with the double passage
of a location signal through a medium with correlated
inhomogeneities on the forward and backward paths, one
normally uses the quantities composed of the ratio of the
chosen wave parameter for the location path to the same
parameter for the forward path of the same length. In this
work, we used the gain relative to the mean intensity to
analyse the backscattering ampliécation in a random
absorbing medium:

�N�L� � hIÿ� q; 0�ihI�� q; 2L�i
, (4)

where hIÿ( q; 0)i is the mean intensity of the reêected laser
beam traversing the path from the source (z � 0) to the
mirror (z � L) and from the mirror (z � L) to the detector
(z � 0) after the reêection; hI�( q; 2L)i is the mean intensity
of radiation traversing the forward path of length 2L from
the same source (z � 0) to the detector in the plane z � 2L;
the angle brackets indicate the averaging over the ensemble
of realizations of the random éeld of e.

The quantities hIÿi and hI�i appearing in Eqn (4) can be
written in the integral form with the help of expressions (2)
and (3) for Uÿ and U� as well as the complex conjugate
expressions. The application of the reciprocity principle
generalised to the case of absorbing media in this case
makes it possible to eliminate the dependence of hIÿi on the
Green function of the reêected wave. As a result, we obtain
the following expressions for hI�i and hIÿi :

hI�� q; 2L�i �
c

8p
hU�� q; 2L�U ��� q; 2L�i

� c

8p

� �
d2r0d2r00G20� q0; q00�hG2� q; 2Ljq0; 0; q00; 0�i,

(5)

hIÿ� q; 0�i �
c

8p
hUÿ� q; 0�U �ÿ� q; 0�i

� c

8p

� � � �
d2r0d2r00d2t 0d2t 00G20� q0; t 0� f�q00� f ��t 00�

�hG4� q00;L; t00;Ljq; 0; q0; 0; t 0; 0�i, (6)

where G20( q; q
00 ) � U0( q

0)U �
0( q

00 ) is the coherence function
of the source and

hG2� q; 2Ljq0; 0; q00; 0�i � hG�� q; 2L; q0; 0�

�G ��� q; 2L; q00; 0�i; (7)

hG4� q00;L; t 00;Ljq; 0; q0; 0; t 0; 0�i � hG�� q00;L; q; 0�

�G ��� q00;L; q0; 0�G ���t 00;L; q; 0�G��t 00;L; t 0; 0�i. (8)

One can see from Eqns (4) ë (8) that the gain written
taking into account the above expressions depends on the
distribution of the complex amplitude U0 of the radiation
source and its calculation requires the statistical moments of
the Green function G�.

As mentioned in the Introduction, the effect of even
relatively small pulsations of absorption is especially notice-
able on long paths over which the intensity êuctuations are
saturated. This situation will be analysed by us here. The
statistical moments of the wave (both forward and reêected)
in the region of saturation of intensity êuctuations can be
calculated by represanting the Green function G� in the
form of the Feynman integral over trajectories:

G�� q; z; q0; z0�

�
�q
q 0
D2n�x� exp

�
ik

2

�z
z0
dx
h

_n2�x� � De�n�x�; x�
i�

, (9)
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where
�
D2n(x) denotes the functional integration with

respect to n(x); _n � dn=dx; the integration is carried out
over all trajectories beginning at the point ( q0; z 0) and
terminating at the point ( q; z). The above representation of
the Green function will be used in the subsequent analysis
for obtaining speciéc results.

3. Solution of the problem

Consider the peculiarities of double passage of a laser beam
in a medium with correlated random inhomogeneities of the
complex permittivity in the spherical wave mode, when
reêection is performed by a `point' mirror. Such a situation
is realised in practice when a mirror of radius l is located in
the far-éeld diffraction zone relative to the detector and the
radiation source (ka2=L5 1; kl 2=L5 1, where a is the
aperture radius of the source) and also when the sizes of the
mirror and the source aperture are smaller than the
coherence radius rc of the wave.

To eliminate the effect of reêection parameters of the
mirror (to create identical conditions for the propagation of
forward and reêected waves) on the ampliécation of back-
ward scattering, we assume that the intensity hI�( q; 2L)i of
radiation traversing the direct path length 2L, which
appears in formula (4), is formed as follows. The signal
from the source approaches the screen in the plane z � L,
which introduces amplitudeëphase changes in it with a
complex amplitude f0, similar to those introduced by the
mirror in the reêected signal, and then propagates to the
direct signal detector located in the plane z � 2L. Assuming
that random inhomogeneities of the medium on the path
segments (0;L) and (L; 2L) are uncorrelated and using Eqns
(5) ë (8), we can write

hIÿ� q; 0�i �
�
4p2a2l 2jf0j

�2
�I0hjG��0;L; q; 0�j2jG��0;L; 0; 0�j2i, (10)

hI�� q; 2L�i �
�
4p2a2l 2jf0j

�2
�I0hjG��0; 2L; q;L�j2ihjG��0;L; 0; 0�j2i, (11)

where I0 is the intensity of the radiation source. Expressions
(10) and (11) show that the intensity of the reêected wave is
proportional to the correlation function of the intensity of
the spherical wave, i.e., the fourth statistical moment of the
function G�, while the intensity of the forward wave is
proportional to the product of the mean intensities of the
spherical wave, i.e., the product of second statistical
moments of the function G�.

We will assume that random inhomogeneities of the
medium are statistically homogeneous and isotropic, are
optically soft and have characteristic scales which, on the
one hand, are much larger than the radiation wavelength,
and on the other hand, much smaller than the path length.
In this case, the approximation of the Markovian random
process for e êuctuations is applicable for calculating the
static moments of the spherical wave intensity, which
determine hIÿi and hI�i (see, for example, Ref. [17]). Using
the asymptotic method [18] and the `cumulative' method of
the solution of wave problems [7] for calculating the fourth
moment of function G� and omitting intermediate calcu-
lations, we obtain the following expressions for hIÿ( q; 0)i in
the saturation region under investigation:

hIÿ� q; 0�i � 2hI��0; 2L�ieg
2�L� atr5 rc, (12)

hIÿ� q; 0�i � hI��0; 2L�i at r4 rc, (13)

where

g2�L� � pk2L
�1
0
dx
�
d2q

�
Fÿ�q�

�
1ÿ cos

�
q2L

k
x�1ÿ x�

��

ÿ2FRIm�q� sin
�
q2L

k
x�1ÿ x�

��

� exp

�
ÿ k2L

2

��x
0

dZD�

�
qL

k
Z�1ÿ x�

�
(14)

�
�1ÿx
0

dZD�

�
qL

k
xZ
���
� 2pk2L

�1
0

dx
�
d2qFIm�q�

� exp

�
ÿ k2L

2

� �x
0

dZD�

�
qL

k
Z�1ÿ x�

�

�
�1ÿx
0

dZD�

�
qL

k
xZ
���

;

FR;FIm;FRIm are the êuctuation spectra of the real and
imaginary parts of e as well as their correlations; Fÿ(q) �
FR(q)ÿ FIm(q); D�(r) � DR(r)�DIm(r); DR; DIm are the
structural functions of êuctuations of the real and ima-
ginary parts of the permittivity of the medium:

Da�r� � 2p
�
d2qFa�1ÿ cos qr�:

Expressions (12) and (13) make it possible to write the
following relations for the backscattering ampliécation co-
efécient (4):

�N�L� � 2eg
2�L� forr5 rc, (15)

�N�L� � 1 for r4 rc. (16)

It follows from these expressions that the intensity of the
scattered wave exceeds the intensity of the wave that has
traversed the double path without reêection in the axial
region of the beam at a distance from its centre smaller than
the coherence radius of the wave. Since the coherence radius
for strong intensity êuctuations coincides with the smallest
scale of the correlations of radiation intensity pulsations
[18], the ampliécation of backscattering takes place in the
region r < rc as a result of correlation of random variations
of the intensities of the forward and reêected waves (see, for
example, Ref. [12]).

The emergence of backscattering ampliécation for a
location signal propagating in a random absorbing (amplify-
ing) medium can be visually illustrated using the following
simpliéed model. Let a spherical wave propagate from the
point r � 0; z � 0 in the positive direction of the z axis and
be isotropically scattered at the point r � 0; z � L with the
scattering amplitude f0. We compare the mean intensity of
the wave for its propagation along two paths: the location
path along which the wave runs from the source to the
scatterer, undergoes backscattering and is received at the
point r � 0; z � 0, and the forward path along which the
spherical wave approaches the scatterer, is directed forward
from it and is received at the point r � 0; z � 2L.
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We assume that random variations of the real and
imaginary parts of e are uncorrelated and disregard the
effect of inhomogeneities of ~eIm in the transverse directions
on the wave parameters. We also take into account the fact
that in view of d correlation on the path segments (0;L) and
(L; 2L), the êuctuations of e are statistically independent. In
this case, the mean intensities of the backward (hIsÿi) and
forward (hIs�i) scattering of waves at the points of reception
can be presented in the form

hIsÿi � j f0j2hI 2s �L; 0�iheÿ2~t�L;0�ieÿ2�t,

hIs�i � j f0j2hIs�2L;L�iheÿ~t�2L;L�ihIs�L; 0�iheÿ~t�L;0�ieÿ2�t,

where Is(z1; z0) is the intensity at the point r � 0; z � z1 of a
spherical wave whose source is at the point r � 0, z � z0 in
a medium without êuctuations of Ime; �t is the mean optical
thickness of the path of length L; ~t(z1; z0) are the optical
thickness êuctuations for the path on segment from z1 to z0.
Assuming that the êuctuations of e are statistically homo-
geneous and exhibit the same properties on both segments
of the path, we obtain the following expression for the
backscattering ampliécation coefécient �N (4):

�N � hI
2
s �L; 0�i
hIs�L; 0�i2

heÿ2~t�L;0�i
heÿ~t�L;0�i2 > 1. (17)

Note that the estimate �N > 1 is obtained from the well-
known relation ht2i > hti2 between the statistical moments
of the random quantity. In the simpliéed model under
study, the êuctuations of the real (factor hI 2s i=hIi2 > 1) and
imaginary (factor hexp (ÿ 2~t)i=hexp (ÿ ~t)i2 > 1) parts of e
make independent contributions to the backscattering
ampliécation.

4. Discussion of results

Let us now return to the initial problem and analyse
expression (15), which can be written in an alternative form:

�N�L� � 1� s2I �L�; r5 rc , (18)

where s2I is the relative variance of the intensity êuctuations
for a spherical wave propagating without reêection in a
random absorbing medium along a path of length L in the
saturation region. Relation (18) is obtain by using formulas
(10) ë (12) and the deénition of the relative variance of a
random quantity.

Let us analyse the propagation of a laser beam in a
medium for which the components of the permittivity
êuctuations are described by the spectrum of autocorrela-
tions and correlation of the form

Fa�q� � 0:033C 2
a
ÿ
q20 � q2

�ÿ11=6
exp

ÿÿ q2=q2m
�
, (19)

where C 2
a is the structural constant for the êuctuations of

the real part of e (for a �R), pulsations of the imaginary
part of e (for a � Im), and their correlations (for a � RIm
or ImR; C 2

ImR � C 2
RIm); q0 � 2p=L0; L0 is the outer scale of

turbulence; qm � 5:92=lm; lm is the inner scale of turbulence.
A spectrum of form (19) is typical of media with developed
turbulence and is used, for example, for studying the
propagation of waves in turbulent atmosphere [14, 15].

It follows from expressions (14), (15), and 18) that the
backscattering ampliécation coefécient in a random dis-
sipative medium is determined both by êuctuations of the
real and imaginary parts of e and also by their correlations.
The dependences of the contributions of êuctuations of the
permittivity parts and their correlations to the backscatter-
ing ampliécation coefécient on the parameters of the
problem (length L, the modulus of e pulsations, etc.) are
different. An analysis of the integrals with respect to spatial
frequencies in (14) indicates that the integrands are bounded
both by the scales of permittivity êuctuations and by the
scale qc � krc=L.

As the path length (or the modulus of the permittivity
êuctuations of the medium) increases, the coherence radius
decreases, which in turn leads to a decrease in the scale qc
bounding the integrands on the high-frequency side (since
qc 5 qm for media with developed turbulence). This means
that the relation between the scales q0 and qc determines to a
certain extent the dependence of the backscattering amplié-
cation coefécient on the path length in the range of strong
êuctuations.

Thus, in a transparent turbulent medium, the quantity
�N(L) tends monotonically to the value two with increasing
in the path length (see, for example, [13]), and the relation
between q0 and qc affects only the saturation rate of �N(L),
while in a dissipative random medium the dependence of the
backscattering ampliécation coefécient on L is extremely
nonmonotonic for q0 4 qc, and an asymptotically mono-
tonic saturation �N! 2 is observed only for q0 5 qc.
Consequently, for eIm 6� 0, the behavior of �N(L) differs
signiécantly from its behavior in a transparent random
medium. The relative ampliécation of backscattering con-
siderably depends in this case on the extent of correlation
between the êuctuations of the imaginary and real parts of
the permittivity as well as on the sign of eIm:

In the case when ~eR and ~eIm are not correlated, the value
of s2I in the saturation region for q0 4 qc exceeds the relative
variance of the intensity êuctuations for a transparent
medium [9] , and it may be concluded in accordance
with relation (18) that �N(L) > �N�L�jeIm�0 in this situation.
The latter inequality holds for both absorbing and amplify-
ing media. Thus, the backscattering enhancement in a
random medium with uncorrelated pulsations eR and eIm
is more signiécant than in a transparent medium.

The existence of a correlated coupling between ~eR and
~eIm is reêected in the behavior of �N�L�, and comparative
ampliécation of backscattering for absorbing and amplify-
ing media is different. Thus, the correlation term for absor-
bing media appears in g2 with the minus sign [see relation
(14)]; in the case of positive ~eR and ~eIm, this leads to a de-
crease in the coefécient �N(L) with increasing path length or
hj~eRji. As a result, the inequality �N(L) < 2 may be satis-éed
for certain values of the parameters in the problem; i.e., the
ampliécation of backscattering in an absorbing random
medium will be smaller than in a transparent medium. A
different situation is observed for an amplifying random
medium. In this case, positive correlations between ~eR and
~eIm lead to an increase in �N(L) (as compared to a trans-
parent medium as well as a medium without correlations
between ~eR and ~eIm), which is the stronger the longer the
path or the amplitude of permittivity êuctuations.

The effect of pulsations of the real and imaginary parts
of the permittivity as well as of their correlation on the
êuctuations of the wave intensity can be described qual-
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itatively using the model of interaction between radiation
and a random inhomogeneity, which was proposed by
Tatarskii in monograph [14] for describing the propagation
of a wave in a transparent turbulent atmosphere. In
accordance with this model, a random inhomogeneity of
eR (vortex) in a transparent medium is represented in the
form of a spherical lens of radius l, whose permittivity dif-
fers from the mean value �eR of the medium by �deR: eR �
�eR � deR. In the absence of a random lens, the radiant êux
through an area element of radius l is conserved, and the
wave intensity within this area element (including its centre)
is constant and equal, say, to I0.

Let us now imagine that a random spherical lens of
radius l with eR � �eR � deR appears on the path of the wave.
Depending on the sign of deR, this lens focuses (or
defocuses) the radiation whose intensity behind the lens
(on its axis) will be larger (smaller) than I0: I � I0 �dI. In
this way, we can visualise the emergence of intensity
êuctuations in a transparent random medium. This model,
as applied to an ensemble of vortices, enabled the author of
[14] to explain qualitatively the behavior of the wave
intensity êuctuations in a turbulent atmosphere in the
geometrical optics approximation as well as in the case
when diffraction at vortices is taken into account and even
in the range of strong êuctuations.

We will use now the approach described above to
explain qualitatively the effect of pulsations of the complex
permittivity of the medium on radiation propagating in a
random absorbing or amplifying medium. We may assume
that random lenses associated with pulsations of eR and
suppressing (enhancing) spherical inhomogeneities (vortices)
associated with pulsations of eIm emerge independently in a
medium with uncorrelated pulsations of eR and eIm. In this
case, the vortices associated with pulsations of eR cause, as
before, the êuctuations of the wave due to focusing
(defocusing). On the other hand, the vortices associated
with pulsations of eIm lead to radiation intensity êuctuations
as a result of additional absorption (ampliécation) in the
inhomogeneities. In the case when the pulsations of eR and
eIm are uncorrelated, their contributions to the êuctuations
of radiation are independent and additive.

The situation is different when random variations of eR
and eIm are correlated. Consider in greater detail the media
which are encountered most often in real conditions, in
which a random increase (decrease) in eR is accompanied by
a simultaneous increase (decrease) in eIm. For instance, these
are the media in which the pulsations of eR and eIm are
associated with pulsations of the density of the medium. If
the medium under investigation is absorbing, a simulta-
neous increase in eR and eIm leads, on the one hand, to an
increase in the wave intensity behind a vortex as a result of
focussing and, on the other hand, to a decrease in the
intensity due to additional absorption in the vortex; i.e.,
these mechanisms operate in antiphase relative to the change
in the intensity.

Thus, the correlated local variation of eR and eIm in
absorbing media leads to a decrease in the wave intensity
êuctuations as compared to the case when eR and eIm are
uncorrelated. On the contrary, a simultaneous increase
(decrease) in eR and eIm for an amplifying random medium
causes an increase (decrease) in the radiation intensity
behind an inhomogeneity; i.e., this leads to an increase
in the randomization of radiation relative to the case of a
medium with uncorrelated êuctuations of eR and eIm. Natu-

rally, the quantitative expression describing these effects is
determined by many factors such as the size distribution of
vortices (eR and eIm êuctuation spectra), parameters of
radiation, realisation of conditions for weak and strong
êuctuations, and parameters of the reêector for location
problems, etc.

To illustrate the above analysis, we present in Figs 1 and
2 the results of calculation of the dependence of �N on bR
(where b 2

R � 0:31C 2
Rk

7=6L 11=6 is the relative variance of
weak intensity êuctuations of a plane wave, which is a
dimensionless parameter characterising the conditions of
radiation propagation in a turbulent medium with a spec-
trum of form (19) (see, for example, [14])) for various values
of parameter d � h~e 2Imi=h~e 2Ri, as well as the coefécient bRIm

� h~eR~eImi=
ÿh~e 2Rih~e 2Imi�1=2 describing the correlation of pul-

sations of the real and imaginary parts of the permittivity
of the medium. Figs 1 and 2 reêect the situation when the
backscattering ampliécation coefécient in a medium with
pulsations of the imaginary part of e differs signiécantly
from that for a transparent turbulent medium. In this case,
expression (15) for �N has the form

�N�L� � 2 exp
�
1:4bÿ4=5R �L� ÿ 3:87bRImd

1=2b 8=5
R �L�

� 0:11db 10=11
R �kL 2

0 �b 12=11
R �L� ÿ 0:62db 4

R�L�
�
.

(20)

It follows from this relation that the parameters simu-
lating the conditions for the propagation of a location beam
are the correlation coefécient bRIm, the relative variance d of
êuctuations of the imaginary part of the permittivity, the
parameter bR�L� on an arbitrary length L and the same
parameter on the length kL 2

0 . The results of calculations
presented in the égures were obtained for bR�kL 2

0 � �
1:56�105. In particular, such a situation is realised in a
turbulent atmosphere for laser radiation in the visible range
for C 2

R � 10ÿ14 cmÿ2=3 and L0 � 5 m.
One can see from Figs 1 and 2 that in contrast to the

case of a transparent random medium, when the value of �N
decreases monotonically with increasing bR (curves 5 in
both égures), in a medium with complex permittivity êuctu-
ations, the variation of the backward scattering ampliéca-
tion coefécient with increasing bR is ambiguous and strong-
ly depends on the correlation coupling between ~eR and ~eIm

3

5

�N 1

2

4

3.0

2.5

2.0

1.5
4 7 10 13 16 bR

Figure 1. Backscattering ampliécation coefécient for the mean intensity
of a reêected wave in a dissipative random medium as a function of bR
for d � 5� 10ÿ6 ( 1, 2 ), 10ÿ6 ( 3, 4 ) and 0 ( 5 ), and also for bRIm � 0 ( 1,
3 ) and 1.0 ( 2, 4 ).
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[the correlation coefécient bRIm � h~eR~eImi
ÿh~e 2Rih~e 2Imi�1=2)] as

well as on the sign of the imaginary part of e. In the absence
of correlations between ~eR and ~eIm (for bRIm � 0), the quan-
tity �N exhibits the same behavior for an absorbing and an
amplifying medium (curves 1 and 3 in Figs 1 and 2).

As mentioned above, the effect of the correlation term in
expression (14) on the behavior of N depends on the sign of
the imaginary part of e. In the case of an absorbing medium,
the value of N rapidly decreases with increasing bR and
becomes smaller then �N�L�eIm�0 for certain values of bR
(curves 2 and 4 in Fig. 1). Conversely, for an amplifying
medium, the coefécient N increases with bR and may
considerably exceed �N�L�eIm�0 (curves 2 and 4 in Fig. 2).

Concluding the section, we write the expressions for the
relative variance of intensity êuctuations for the reêected
wave in a random medium with pulsations of the imaginary
part of e:

s 2
Iref�L�

��
r5 rc

� 6e4g
2�L� ÿ 1, (21)

s 2
Iref�L�

��
r4 rc

� 4e2g
2�L� ÿ 1. (22)

It follows from these expressions that as in the case of the
gain, the value of s 2

Iref in a random absorbing medium is
determined by the êuctuations of the real and imaginary
parts of e as well as by their correlations. In addition, the
radiation reêected strictly backward (r � 0) exhibits
stronger intensity pulsations than the radiation reêected
beyond the region (r < rc). A comparison of expression
(21) with the quantity s 2

I �2L�5 2 on a straight path shows
that the effect of the êuctuations of the imaginary part of
the permittivity on the variance of êuctuations of a location
signal is stronger than on s 2

I (2L).

5. Conclusions

It should be emphasized above all that the effect of even
relatively weak êuctuations of the imaginary part of the
permittivity on the propagation of laser radiation along the
location path in the saturation region may be quite
signiécant. (This conclusion is in good agreement with

the results of the analysis of the effect of absorption
pulsations on the statistical parameters of an electro-
magnetic wave propagating along a path without being
reêected, which was carried out by us earlier [8, 9].) In an
absorbing (amplifying) medium, backward scattering
ampliécation takes place and may be stronger than in a
transparent random medium. In the case when the
pulsations of the imaginary and real parts of the
permittivity are uncorrelated, the backscattering ampliéca-
tion is the same (for identical model parameters) for
absorbing and amplifying media. However, the existence of
a correlation coupling between eR and eIm reduces the
backscattering enhancement in an absorbing random
medium and increases it in an amplifying random medium
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