
Abstract. The characteristics of a Michelson interferometer
whose arms are formed by reêection Fabri ë Perot interfer-
ometers (FPIs), which is designed for measurements of ultra-
small displacements, are studied. It is shown that the recent
advances in the mirror coating technology along with the
optimisation of the parameters of the FPI mirrors makes it
possible to greatly improve the ratio of the signal to the shot
noise. Optimal transmission of the front FPI mirror is appro-
ximately equal to the absorption coefécient of the mirrors.
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chelson interferometer, Fabri ë Perot interferometer.

1. Statement of problem

The creation of interferometric devices that would allow
measurements of ultrasmall displacements caused by gravi-
tational waves from extraterrestrial sources is an interesting
problem of optics. The presently operating gravitational-
wave detectors (GWDs) have not yet reached the required
signal-to-noise ratio and therefore continue to be actively
investigated and optimised (see, e.g., [1 ë 3]). For the opti-
misation to be successful, one should pay special attention
to those parameters of the system that are crucial for
increasing the sensitivity ë in particular, to losses in mirrors.

The advanced optical coating technology makes it pos-
sible to manufacture dielectric mirrors with losses of the
order of 10ÿ6. If the properties of these mirrors could be
used eféciently, the sensitivity would be enhanced greatly,
in principle allowing one to solve the general problem as a
whole. However, the parameters of the interferometers have
to be chosen properly for this. This paper is devoted to the
issues concerning the use of the advantages of mirrors with
ultralow loss.

We will consider the simplest way of obtaining the useful
signal from an interferometer, when the working point is
located at the slope of the resonance curve of a Fabri ë Perot
interferometer (FPI) and the displacement of the mirrors is
detected by directly measuring the optical signal at the

output. We will consider only the static sensitivity and
ignore the frequency characteristics. According to the pub-
lished experimental data, shot noise is currently the main
disturbance in a large part of the expected frequency range
of gravitational waves. The elimination of this noise source
could signiécantly inêuence the control of the remaining
noise and frequency characteristics. Among the questions to
be considered below, we especially note the question of
whether the Michelson interferometer (MI) with Fabri ë
Perot arms (MIFP, see Fig. 1) ë currently, almost the con-
ventional optical scheme ë offers any advantages over the
scheme of Ref. [4], which consists of two optically inde-
pendent FPIs that use the same light source and subtend an
angle of 908, as dictated by the quadrupole nature of
gravitational waves.

2. Scheme of an interference GWD

Fig. 1 shows the standard scheme of a MIFP. Laser light
incident on beamsplitter 3 is directed to arms a and b. Each
arm contains a reêection FPI consisting of mirrors 1 and 2
separated by the distance z. We assume that the FPIs in the
two arms are identical. Suppose that under the action of a
gravitational wave, arm a shortens by Dz and arm b length-
ens, or vice versa. The output signal, proportional to Dz,
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Figure 1. Scheme of the MIFP: 1 and 2 are the FPI mirrors; za and zb are
the distances between the FPI mirrors in arms a and b, respectively; la
and lb are the distances from FPI mirrors 1 to the beamsplitter 3; 4 is the
photodetector; 5 is the dispersion-compensating plate [5].



can then be detected by a photodetector (PD) 4. Since the
two beams interfere in the plane of the PD, one can tune
the MI to a dark interference fringe so as to decrease the
constant component of the PD photocurrent and enhance
the signal-to-shot noise ratio (SSNR). One can also add a
plate to the scheme of the MI to compensate for the
dispersion [5].

Let R
1=2
1 exp (iC1) and R

1=2
2 exp (iC2) be the complex

reêection coefécients of mirrors 1 on the beamsplitter side
and inside the FPI, respectively (we assume mirrors 1 in the
two arms to be identical), and T 1=2 exp (iF1) be the trans-
mission coefécient of the mirrors. Similarly, for mirrors 2 we
have R

1=2
3 exp (iC3) and T

1=2
3 exp (iF3). For beamsplitter 3,

we have (R bs
a )1=2 exp (iCa) and (R bs

b )1=2 exp (iCb) for the light
incident from the side of arm a and b, respectively, and
(T bs)1=2 exp (iF bs).

Suppose that P0 is the power of the laser and Ppd is the
power of the light incident on the PD. The eféciency of the
light energy transfer from the laser to the PD is then given
by

RMI �
Ppd

P0

. (1)

Denote the complex reêection coefécients of the FPIs in
arms a and b by ~ra and ~rb, respectively. Let la and lb be the
optical lengths of the intervals separating the FPIs from
beamsplitter 3 (see Fig. 1). Assuming R bs

a � R bs
b � R bs, we

can write

RMI � T bsR bs��~ra �H 1=2 exp�iFab�~rb
��2. (2)

The parameter Fab � 2o(la ÿ lb)=c�C bs
b ÿC bs

a character-
ises the tuning of the MI. Since it is difécult to make the
two FPIs completely identical in practice, we introduced an
asymmetry coefécient H into (2), which is equal to the ratio
of the beam intensities coming from arms b and a.

3. Shot noise in a single reêection FPI

To calculate the SSNR a of a two-mirror reêection FPI, we
can use the formula [6]:

a � q

A

�
ZP0

2�hoDf

�1=2
jDjj, (3)

where

q � KAS

�K ~R� 1ÿ K �1=2
; (4)

Df is the frequency band; Z is the quantum eféciency of
the PD; Dj is a small variation in the round-trip phase
incursion j � oz=cÿC2=2 ÿC3=2 of the FPI, which is to
be measured; ~R is the reêection coefécient of the FPI in the
working point; S � jd~R=djj is the slope of the FPI
characteristic with respect to the phase in the working
point; K is the coupling constant between the modes of the
interferometer and the laser; A � (A2 � 1ÿ R3)=2 and A2 �
1ÿ T ÿ R2.

One can see from formula (3) that the SSNR is inversely
proportional to A; therefore, it is very important to have low
losses in the mirrors. However, the sensitivity of the device

also depends on parameter q, which takes the transmission
of the mirrors into account. In the optimal case, q is of the
order of unity, whereas for a wrong choice of the trans-
mission coefécients of the mirrors, q can reduce by several
orders of magnitude, resulting in a decrease in the SSNR.

To calculate quantities ~R and S that appear in expression
(4), we can use the formula [6 ë 8]:

~R � j~rj 2 � 1ÿ 8x

�2� x�2 � �16=A 2��jÿ j1�2
, (5)

where x � T=A. This formula is valid in the case of small
detunings jÿ j1 near the resonance at j � j1. We assume
that A� T 5 1. In addition, due to the small absorption we
can set C1� C2 ÿ 2F1 � p [7, 8].

For each pair of quantities K and x, we érst found the
detuning jÿ j1 that maximises q using formulas (3) ë (5)
and then calculated q, ~R, and S for the detuning found.
Fig. 2 shows the results of these calculations for K � 0:999
in the interval x � 10ÿ1 ÿ 104.

One can see from Fig. 2 that the function q(x) has a
maximum of qmax � 1:91 at x � 1:9. The curve ~R(x) shows
that q increases because of the rapid decrease in ~R. This
regime corresponds to the `matching' between the FPI and
the light source, reducing ~R down to 0.015. The FPI virtu-
ally ceases to reêect light, so that the shot noise becomes
very small. At this regime, the slope S also reaches its mini-
mum, AS � 0:24, but the coefécient q, which is proportional
to AS= ~R1=2, still remains relatively large.

If we need to increase the amplitude of the output signal,
i.e., the slope, it is reasonable to deviate somewhat from the
matching regime. For example, at x � 1 we obtain a slightly
reduced value q � 1:45, but AS increases to 0.7 in return.
Thus, we can recommend to choose the value of T between
A and 3A. If, on the contrary, one takes mirrors with a large
transmission, the sensitivity will decrease noticeably. For
example, consider A � 2� 10ÿ6 and T � 2� 10ÿ4, implying
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Figure 2. Coefécient q, proportional to the SSNR of a single FPI,
reêection coefécient of the FPI, ~R, and the slope of the FPI characteristic
in the working point, S, as functions of the transmission of the front FPI
mirror, T.
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T=A � 100. According to Fig. 2, we obtain q � 2� 10ÿ3, and
formula (3) shows that the SSNR reduces by a factor of 1000
with respect to the maximum possible value for the given
absorption in the mirrors. AS decreases to 2� 10ÿ3 as well.

4. Optimisation of MIFP

To calculate the signal-to-shot noise ratio of the MIFP, we
can use formula (3) where q at K � 1 should be replaced by

qMI �
ASMI

R
1=2
MI

, (6)

where RMI is the eféciency of the power transfer from the
laser to the output PD, deéned by formula (2). We will
consider the FPIs in the to arms to be completely identical
except for fact that, upon the arrival of the measured signal,
the length of one of them (for example, of arm b) acquires a
small increment Dz. The quantity SMI is the slope of the
characteristic of the total MIFP system for the phase vari-
ation in one of the arms: SMI � jdRMI=djbj where jb �
ozb=cÿC2=2ÿC3=2. The quantity A � (A2 � 1ÿ R3)=2
refers to each of the two FPIs.

We need to insert the expressions for the complex reêec-
tion coefécients of the FPIs into formula (2). Using the
general formulas [7, 8] and making the same approxima-
tions as in derivation of formula (5), we obtain expressions
of the form

~ra;b �
2Aÿ T� i4�ja;b ÿ j1�
2A� T� i4�ja;b ÿ j1�

. (7)

Using formulas (2) and (7) to calculate parameters RMI
and SMI, we obtain the dependence of qMI on the parameter
x � T=A and the MI tuning parameter Fab. Note that,
again, in each case we should insert into (7) those FPI detu-
nings jÿ j1 that maximise qMI, in expression (7). In the
calculations, we assumed T bsR bs � 0:25 and H � 0:9.

Fig. 3a shows the parameters of the MIFP as functions
of the MI tuning parameter Fab for x � T=A � 1. If the MI
is tuned to the centre of a bright fringe (Fab � 0), then
qMI � 0:69. With increasing Fab, the coefécient qMI grad-
ually increases to 0.84 (at Fab � 2:8). Thus, we obtain a
large qMI and a large sensitivity to displacements. Fig. 3a, as
well as Fig. 3b, exhibits a sharp singularity at Fab � p (in the
region of a dark fringe of the MI), where RMI and SMI are
minimal and qMI is slightly reduced. At the singularity point,
these parameters depend on the arbitrarily speciéed asym-
metry parameter H and therefore are essentially random.

Fig. 3b shows the same curves in the case when the front
mirrors of the FPIs have a large transmission, far from the
optimum: T=A � 104. In contrast to Fig. 3a, in this case we
observe a strong dependence of qMI on the MI tuning. When
the MI is tuned to a bright fringe (Fab � 0), qMI reduces to
2:4� 10ÿ7. Near a dark fringe, at Fab � 2:8, qMI increases
sharply to 7:6� 10ÿ4. Nevertheless, this value is still three
orders of magnitude smaller than in Fig. 3. Thus, a properly
tuned MI can greatly enhance the SSNR, but cannot
compensate for the dramatic fall in this quantity caused
by a wrong choice of the transmission of the FPI mirrors.

The parameter Fab can be easily controlled in experi-
ments, allowing one to maximise qMI. It is therefore rea-
sonable to change the computer program so as to énd the
working point for each x � T=A that would be optimal not

only with respect to j but also with respect to Fab, as
determined by the maximisation of qMI.

Fig. 4 shows the results of these calculations in the
optimal regimes. The maximum value of qMI at x � 2 is
0.95. However, this regime features a relatively small slope
SMI � 0:012=A, which furthermore can depend on H, éeld
mismatch, aberrations, etc. Obviously, it is better to use FPI
mirrors that are slightly different from the optimal ones with
respect to qMI. For example, we can choose either a slightly
smaller value of T (for T=A � 1 we have qMI � 0:84) or a
slightly larger one (for T=A � 4, qMI � 0:86). However, the
further increase in T is inadmissible: qMI � 0:08 at x � 100,
qMI � 0:006 at x � 1000 and so on. The quantity ASMI
reduces as well. Therefore, Fig. 4 shows the maximum
attainable parameters of the MIFP for various transmission
coefécients of the FPI mirrors.

It is very interesting to compare Fig. 4 to the character-
istics of a single FPI. Fig. 4 reproduces the q(x) curve taken
from Fig. 2. One can see that at small values of x (approxi-
mately, at x4 4), these points are close to the curve qMI(x).
The apparent difference by approximately a factor of 2 is
caused by the fact that in our calculations of the MIFP only
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Figure 3. Coefécient qMI, proportional to the SSNR of the combined
MIFP, coefécient RMI, and the slope, SMI, as functions of the detuning,
Fab, between the lengths, la and lb, of the MI arms. (a) The transmission
of the front mirror of each FPI arm is close to the optimum, T=A � 1. (b)
The transmission of the front FPI mirror is very large, being far from the
optimum, T=A � 104.
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arm b was considered active, whereas only half the P0 power
is coupled to this arm. However, as noted above, with the
further increase in T, coefécient q falls off very steeply,
much more steeply than qMI. The reason for this is obvious.
At small values of T, the FPI has a small proper reêection
coefécient, which gives rise to large values of q and qMI.
With increasing T, the coefécient ~R increases sharply, lea-
ding to a bright illumination of the PD and, consequently,
strong shot noise. In contrast, if we have an MIFP at our
disposal and have chosen a working point near a dark
interference fringe of the MI, we can drastically reduce the
intensity of the light incident on the PD and the shot noise.
This leads to an important practical recommendation: when
two independent FPIs are used [4], one should take mirrors
with a very small transmission T � (1ÿ 4)A. If, on the con-
trary, one takes nonoptimal mirrors with a large T, one has
to put up with a signiécant decrease in the SSNR and, in
addition, necessarily use the MI.

5. Conclusions

The calculation of interferometric displacement meters for
GWDs that was conducted here allows us to draw the
following conclusions.

(1) The front mirror of the reêection FPI should have a
transmission T approximately equal to (1ÿ 4)A. If this
condition is violated, the noise increases considerably.
However, one should avoid T � 2A because at this value
there is no reêection from the FPI (the `matching' regime),
which is related to a sharp decrease in the slope, jd ~R=djj.
The latter recommendation refers exclusively to the case
when the signal is decoupled directly from the FPI and one
makes use of the slope of the resonant curve.

(2) When the value of T is optimal with respect to the
shot noise, there is no difference between using two separate
FPIs subtending an angle of 908 or a single MIFP. However,

if for some reasons one uses a nonoptimal transmission T,
the second variant is preferable as it allows one to consi-
derably reduce the constant component of the output signal
and, therefore, increase the SSNR.

(3) To estimate the presently attainable sensitivity of
GWDs, limited by shot noise, we can set a � 1 in formula
(3) and calculate Dz similarly to the way it is done in Ref. [6].
Suppose, for example, that A2 � A3 � 1:1� 10ÿ6, T � 2:2
�10ÿ6, T3 � 0, P0 � 1 W, q � 1:45, Z � 0:8, l � 8:5� 10ÿ7

m, z � 40 m, and Df � 100 Hz. The calculation then yields
Dzmin=z � 2� 10ÿ23. This estimate allows us to hope that,
using advanced mirrors, one can almost completely elimi-
nate shot noise and signiécantly increase the sensitivity of
GWDs, or shorten their base. Naturally, other sources of
noise may then move to the forefront and will have to be
minimised in due course.
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