
Abstract. The distribution function w0(n0) of the number n0
of particles is found for the condensate of an ideal gas of free
bosons with a éxed total number N of particles. It is shown
that above the critical temperature (T > Tc) this function has
the usual form w0(n0) � (1ÿ e l)e ln0 , where l is the chemical
potential in temperature units. In a narrow vicinity of the
critical temperature jT=Tc ÿ 1j4Nÿ1=3, this distribution
changes and at T < Tc acquires the form of a resonance.
The width of the resonance depends on the shape of the
volume occupied by the gas and it has exponential (but not
the Gaussian) wings. As the temperature is lowered, the
resonance maximum shifts to larger values of n0 and its width
tends to zero, which corresponds to the suppression of êuc-
tuations. For N!1, this change occurs abruptly. The dis-
tribution function of the number of particles in excited states
for the systems with a éxed and a variable number of par-
ticles (when only a mean number of particles is éxed) prove to
be identical and have the usual form.

Keywords: Bose ëEinstein statistics, condensate, distribution func-
tion, canonical ensemble.

It was shown in papers [1] that the distribution function
w0(n0) of the number n0 of particles in the ground state of an
ideal Bose gas captured by a trap is described by the distri-
bution function

w0�n0� �
ÿ
1ÿ emÿe0

�
e�mÿe0�n0 , (1)

found by Einstein [2] only at temperatures above the critical
temperature (T > Tc), when a mean number of particles in
the ground state is small, i.e., a condensate is virtually
absent. In (1), m is the chemical potential in temperature
units; e0 � E0=T; E0 is the ground-state energy of gas
particles; T is the temperature in energy units. Hereafter, we
measure energies relative to the ground-state energy, i.e.,
assume that e0 � 0.

Below the critical temperature, when a macroscopic
number of particles are in the ground state, i.e., a conden-

sate is formed, expression (1) is no longer valid, and the
distribution function w0(n0) takes a Gaussian shape. When
the number N of particles captured by the trap is large, this
change in the shape of the distribution function occurs in
a very narrow vicinity of the critical temperature (in the
case of a parabolic trap, jT=Tc ÿ 1j4 1=

����
N
p

), i.e., virtually
jumpwise. These features of the condensation are described
by the distribution [1]

w0�n0��Sÿ1 exp
�
mn0 ÿ

�n0 ÿ ~n0�2
4D

�
, m � ÿ ln

�
1� 1

~n0

�
, (2)

where S �
XN
n0�0

w0(n0) is the normalising factor;

~n0 �
ÿ
eÿm ÿ 1

�ÿ1
(3)

is a mean number of particles in the ground state deter-
mined by the distribution (1);

D � 1

2

X
k 6�0

ÿ
~nk � ~n 2

k

�
;

and ~nk � (e ekÿm ÿ 1)ÿ1 is a mean number of particles in
excited states k 6� 0, which is also determined by the Bose ë
Einstein distribution [2, 3]

wk�nk� �
ÿ
1ÿ e mÿek

�
e �mÿek�nk , (4)

in which ek � Ek=T and the chemical potential (or ~n0) is
determined by the condition [2, 3]

X
k

~nk � N. (5)

For T < Tc, a mean number of particles in the con-
densate is large (~n0 4 1) and distribution (2) has a Gaussian
shape. As ~n0 decreases with increasing temperature, for
T > Tc, when the condensate virtually disappears, distribu-
tion (2) transforms to (1). The change in the shape of the
distribution w0(n0) at T < Tc is related to the exact fulél-
ment of the condition

n0 � n1 � n2 � : : : � N, (6)

which éxes the number of particles in an ensemble and was
used in the derivation of this distribution [1]. This change
demonstrates an important difference of the statistical pro-
perties of a canonical ensemble from those of a grand cano-
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nical ensemble for which only condition (5) for mean values
is fulélled, resulting in the invariable shape (1) of the func-
tion w0(n0) at any temperature.

The condensation of an ideal Bose gas captured by a
trap is of great practical interest because such condensation
has been realised in Ref. [4] and is now being extensively
experimentally studied. However, from the fundamental
point of view, also is important the case of a free Bose
gas (conéned only by the vessel walls), whose condensation
was predicted by Einstein in 1925 [2] and since then has been
theoretically discussed by many authors (see, for example,
[3, 5, 6] and references cited in [5, 6]).

It is shown in this paper that the qualitative change in
the distribution function of the number of particles in the
condensate of a canonical ensemble of free gas particles at
T < Tc is in a whole quite similar to that taking place for the
gas in a trap. However, in the former case, the region
jT=Tc ÿ 1j4Nÿ1=3 of the jump is different and the dis-
tribution w0(n0) at T < Tc is not Gaussian and depends on
the shape of the gas volume. The distribution function of the
number of particles in excited states has the shape (4) at any
temperature.

In the case of free gas, as for the gas captured by a trap,
the distribution function w0(n0) is determined by the
summation of the Gibbs distribution

w0�n0� � Sÿ1
X

n1�n2�:::�Nÿn0
eÿe0n0ÿe1n1ÿ:::, (7)

where the summation is performed over all positive nk,
except n0, which satisfy condition (6).

It has been shown in Ref. [1] that condition (6) can be
automatically fulélled if the sum is written in the form
(recall that e0 � 0)

w0�n0� � Sÿ1
X

n1; n2:::

eÿe1n1ÿe2n2ÿ:::
1

2pi

�
zÿN�n0ÿ1�n1�n2�:::dz. (8)

The integration contour in (8) is a circle with a centre at the
point z � 0 and radius jzj < 1, which can be conveniently
written in the form z � em for m < 0. It should be
emphasised that the parameter m introduced in such a
way is not generally related to the chemical potential m
appearing in distributions (1) and (4). However, as shown
below, it is convenient to choose the parameter m in (8) for
T > Tc as in (1) and (4), by requiring the fulélment of
condition (5).

The summation in (8) is performed over all nk6�0 5 0, the
condition m < 0 providing the convergence of all the sums.
As a result, we obtain

w0�n0� � Sÿ1
1

2pi

�
zÿN�n0ÿ1eG�z�dz,

eG�z� �
Y
k 6�0

ÿ
1ÿ zeÿek

�ÿ1
, (9)

G�z� � ÿ
X
k 6�0

ln
ÿ
1ÿ zeÿek

� �X
k 6�0

X1
p�1

1

p
zpeÿpek .

The energy levels of gas particles (in temperature units)
in the volume V � LxLyLz, which is assumed for simplicity a
cube of volume V � L3 (the relevant generalisation will be
give below), are determined by the requirement of the
periodicity of the wave function:

ek � a
ÿ
k 2
x � k 2

y � k 2
z

�
, a � �2p�h� 2

2mTL 2
,

(10)

ki � 0;�1; ::: , i � x; y; z,

where m is the mass of particles.
When the condition e1 4 1 is satiséed, which can be re-

written in the convenient form

t5Nÿ2=3, t � T

Tc

, Tc � 2pzÿ2=3
�
3

2

�
�h 2

m

�
N

V

�2=3
, (11)

by introducing the usual critical temperature Tc [2, 3], where
z(x) is the Riemann zeta function, it follows from (9), as in
the case of gas captured by a trap [1], that only two values
of the distribution function

w0�n0 � N� � 1ÿ 3eÿa, w0�n0 � Nÿ 1� � 3eÿa,

a � pz 2=3
�
3

2

�
tÿ1Nÿ2=3

are essential. For T! 0, the distribution function takes the
form w0(n0) � dn0;N, which qualitatively differs from (1).

At the temperature that is still much lower than the
critical temperature, the condition t4Nÿ2=3 comes into
play, which is equivalent to the condition a5 1. In this case,
ek � ak 2 5 1 up to very large values of k, and to study the
distribution function w0(n0), it is convenient to make the
change of variables z � em�ix in (8). Then, we énd

w0�n0� � Sÿ1e mn0
� p

ÿp
eÿi�Nÿn0�x�F�x;m�dx,

(12)

F�x; m� �
X1
p�1

1

p
e �m�ix�p

X
k6�0

eÿapk
2

.

The sum over k 6� 0 in the deénition of F(x; m) exponen-
tially decreases at p!1, providing the convergence of the
sum over p for m � 0, i.e., the function F(x; m) is continuous
at m � 0. So far, the parameter m was restricted by the
condition m < 0, being arbitrary in all other respects. The
continuity of the function F(x; m) at m � 0 allows us to
calculate the integral determining w0(n0) in (12) at m � 0.
Thus, we assume that m � 0 in (12) and introduce the
notation F(x) � F(x; m � 0). By differentiating F(x) two
times with respect to x, we obtain

d 2F

dx 2
� ÿ

X1
p�1

pe ipxf �ap�, f �z� �
X
k 6�0

eÿzk
2

. (13)

To calculate w0(n0) at temperatures below the critical
temperature (Nÿ2=3 5 t4 1) and in a narrow vicinity above
the critical temperature (04 tÿ 15 1), it is necessary to
study the behaviour of the function F(x) at small jxj5 1. It
is important that the function f (z) tends to two limiting
values at large and small z:

f �z� �
� p
z

� 3=2

; z5 1;

6eÿz; z4 1:

8><>: (14)
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Therefore, for jxj5 1, we can pass from summation over p
in (13) to integration in the region from 0 to �1, because
the resulting integral, as one can see from (14), converges:

d 2F

dx 2
� ÿ

�1
0

pe ipxf �ap�dp � ÿ 1

a 2

�1
0

zf �z�e i�x=a�zdz

� ÿ 1

a 2

X
k 6�0

�
k 2 ÿ i

x

a

�ÿ2
. (15)

Then, by integrating this expression two times with respect
to x and taking into account that for a5 1,

F�0� �
X1
p�1

pÿ1f �ap� �
� p
a

�3=2
z

5

2

� �
,

�
dF
dx

�
x�0
� i
X1
p�1

f �ap� � i
�
p
a

�3=2
x
�
3

2

�
� iNt 3=2,

we obtain

F�x� � F�0� � iNt 3=2x� g�x=a�,
(16)

g�u� � ÿ
X
k 6�0

�
ln

�
1ÿ iu

k 2

�
� iu
k 2

�
.

The value of F(0) enters into the normalisation upon the
substitution into the integral in (12) and can be discarded
below.

For small values of u, the function g(u) can be repre-
sented by the series

g�u� �
X1
n�2

cn�iu�n, cn �
1

n

X
k 6�0

1

�k 2�n , juj < 1, (17)

whose radius of convergence is restricted by the condition
juj < 1. In another limiting case, u4 1, we can pass from
summation over k in (16) to integration, which gives

g�u� � ÿ 4

3
p 2e ip=4u 3=2, u4 1. (18)

The use of (16) in the calculation of the integral in (12)
after the change of variables x=a � u yields the result

w0�n0� � Sÿ1j
�
n0 ÿ �n0
bN 2=3t

�
, j�y� � Re

�1
0

e iyu�g�u�du,

(19)

�n0 � N
ÿ
1ÿ t 3=2

�
, b � pÿ1zÿ2=3�3=2� � 0:168.

The integral in (19) is written taking into account that the
condition p=a4 1 admits the calculation of this integral
with inénite limits and using an important property of the
function g(u), g(u) � g �(ÿ u), which allows us to write the
result as a real part of the integral over positive values of u.

Note that for the value m � 0 chosen by us, i.e., for the
circle radius jzj � e m � 1 in the integral in (8), the value of
�n0 coincides with a mean number ~n0 of particles in the con-
densate obtain from (4) and (5) only when t � T=Tc < 1.
For t > 1, the value of �n0 becomes negative, which is admis-
sible in our case. To avoid misunderstanding, we emphasise
that all the mean values obtained from (19) are denoted
hereafter by angle brackets.

The function j( y), which can be studied only numeri-
cally, is shown in Fig. 1. For y4 10, the function can be
calculated quite accurately by keeping only two érst terms in
expansion (17):

g�u� � ÿ8:25u 2 ÿ i2:8u 3, (20)

while for y < 7, both the exact function j(y) and its
approximate value calculated by expression (20) differ less
than by 10% from the function j(y) calculated by
retaining only the érst term in expansion (17), i.e., from
the Gaussian

j� y� � 1

2

�
p
c2

�1=2
eÿy

2=4c2 . (21)

All the moments of the function j( y) exist and can be
calculated analytically:

h ymi �
��1
ÿ1

ymj� y�dy � p
�

dm

dum e g�iu�
�

u�0
,

(22)

g�iu� �
X1
n�2
�ÿ1�ncnun,

which shows that j( y) decays exponentially at jyj4 1. For
large positive values of y, using (18) and calculating the
integral in (19) by the saddle point method, we énd the
value

j� y� �
���
y
p

2p
���
p
p eÿy

3=12p4 , y4 1, (23)

which, however, can be reached only for very large y > 100.
The distribution w0(n0) qualitatively changes at large

positive, small and large negative values of �n0. In a broad
temperature range below the critical temperature

t4 b 2Nÿ2=3, 1ÿ t4
2

3
bNÿ1=3 (24)

the distribution function is exponentially small at its two
extreme points n0 � 0 and n0 � N. The second condition in
(24), which ensures the smallness of w0(n0) at the lower

ÿ10 ÿ5 0 5 10 y
0

0.1

0.2

0.3

j� y�

Figure 1. Function j( y) calculated by expression (19) with exact g(u)
calculated by expression (16) (solid curve) and by expression (20) (dashed
curve), as well as the function j( y) calculated by expression (21) (dotted
curve).
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boundary, allows a very close approach to the critical tem-
perature. In the calculation of the normalising factor

S �
XN
n0�0

w0�n0�

and all the mean values, summation can be replaced by
integration with inénite limits to énd

S � pbN 2=3t, hn0i � �n0,

(25)
�n0 ÿ �n0�m
� � 1

p

ÿ
bN 2=3t

�m

ym
�
.

It follows from this, in particular, that a mean number of
particles in the condensate coincides with that obtained
from (1), while the mean-square êuctuation



Dn 2

0

� � 
�n0 ÿ �n0�2
� � 
n 2

0

�ÿ hn0i2 � 2c2
ÿ
bN 2=3t�2 (26)

decreases with decreasing temperature proportionally to T 2.
The distribution shape is close to a Gaussian, however, it is
slightly asymmetric and the distribution maximum is loca-
ted at nmax

0 � hn0i � 0:5bN 2=3t, which somewhat exceeds
the mean value.

In the narrow vicinity of temperatures above the critical
temperature

2

3
bNÿ1=3 5 tÿ 15 1 (27)

the value of �n0 becomes negative and the modulus
j�n0j � (3=2)N(tÿ 1)4N 2=3b becomes very large. In this
case, the integral in (19) contains contributions from large
values u � (�n0a)

2. However, the corresponding values x �
au � �n 2

0 a
3 5 1 are still small, i.e., the replacement of sum-

mation over p in (13) by integration in (15) is still justiéed
and expression (19) is still valid. By using the asymptotic
value (23) for j(y), we énd

w0�n0� � Sÿ1
������������������
j�n0j � n0

p
exp

h
ÿ g
N 2t 3

�j�n0j � n0�3
i
,

g � z 2�3=2�
12p

.

One can easily verify that in the temperature range (27),
only the linear term over n0 may be retained in the exponent
in the above expression, while n0 under the root sign can be
neglected. As a result, we obtain

w0�n0� �
27

4
g�tÿ 1�2 exp

�
ÿ 27

4
g�tÿ 1�2n0

�
.

This distribution coincides with (1) if the parameter
m � ÿ(27=4)g(tÿ 1)2 is used in (1). One can easily verify
that the same m is obtained in this case from condition (5).

As the temperature further increases and the condition
tÿ 1 > 1 is satiséed, very large values of u corresponding to
x4 1 contribute to the integral in (19). In this case, the
replacement of summation over p in (13) by integration
becomes invalid, so that we introduce, similarly to the pro-
cedure used in [1], the parameter m < 0 and require the
fulélment of the condition

dF
dx
� i
X
k 6�0

~nk � i
X1
p�1

e mp
X
k 6�0

eÿapk
2 � i�Nÿ ~n0� � iN

for mean values, which coincides with (5).
By keeping in this relation only the term with p � 1 and

replacing summation over k by integration, we obtain
e m � tÿ3=2 and, respectively,

F�x� � F�0� � iNxÿ 1

2
Nx 2. (28)

By substituting (28) into (12), we again obtain distribution
(1). In this case, e m 5 1 and in fact we deal with the
Boltzmann distribution.

It follows from the above discussion that in a narrow
vicinity of Tc between regions (24) and (27), i.e., when the
condition jtÿ 1j4bNÿ1=3 is satiséed, the distribution
function of the number of particles in the condensate is
abruptly (virtually jumpwise) transformed, by changing its
shape from almost Gaussian to the usual shape (1) (see
Fig. 2).

Similarly to (12), we can write the joint distribution [1]:

w0;i 6�0�n0; ni� �

� Sÿ1e m�n0�ni�eÿeini
� p

ÿp
eÿi�Nÿn0�x�F�x��1ÿ em�ixÿei�dx.

It follows from this that in the temperature ranges (24) and
(27) we have

w0;i 6�0�n0; ni� � Sÿ1eÿeini
�
j
�
n0 � ni ÿ �n0

bN 2=3t

�

ÿ eÿeij
�
n0 � ni � 1ÿ �n0

bN 2=3t

��
.

By summing (integrating) this distribution over n0, we énd
that the distribution function

wi 6�0 �
XN
n0�0

w0;i6�0�n0; ni�

of the number of particles in excited states coincides with
(4). By using (28) at higher temperatures tÿ 1 > 1, we
again obtain (4).

0 5 10 15 20 25 n0=�bN 2=3�

0.1

0.2

0.3

0.4

105w0

T=Tc � 1:0004

0.9981.0

Figure 2. Distributions w0(n0) at different temperatures in the vicinity of
the critical temperature for N � 109.
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Note now that we can easily pass from a cubic volume of
quantisation to a rectangular parallelepiped. To do this, the
change of variables

a! �axayaz�1=3, as �
�2p�h� 2
2mTL 2

s

, Os �
as

�axayaz�1=3
,

s � x; y; z,

should be made in the above expressions. Then, we have

g�u� � ÿ
X
k 6�0

�
ln

�
1ÿ i

u

Oxk
2
x � Oyk

2
y � Ozk

2
z

�

� i
u

Oxk
2
x � Oyk

2
y � Ozk

2
z

�
.

In this case, the deénition of coefécients cn changes in an
obvious way. For example, when Lx � Ly � l, Lz � L, and
L=l4 1, these coefécients take the form cn � (2=n)z(2n)
�(L=l )4n=3. Therefore, according to (26), at temperatures
below the critical temperature (in the region (24)), the width
hDn 2

0 i1=2 of the distribution at a constant volume increases
proportionally to the parameter (L=l )4=3, while the shape of
this distribution differs more and more from a Gaussian,
i.e., the shape of the distribution function in this region
depends on the volume shape. At higher temperatures (al-
ready in the region (27)), this dependence vanishes because
the asymptotic value (23) is independent of the volume
shape, and only in this case the distribution is no longer
related to the discreteness of the energy spectrum, which is
determined by the shape of the quantisation volume.

Therefore, the summation of the Gibbs distribution
showed that in the case of a canonical ensemble, i.e.,
when condition (6) is fulélled rather than condition (5)
for mean values, the distribution function of the number of
particles in the ground state (in the condensate) drastically
changes at temperatures below the critical temperature (T <
Tc), whereas the distribution function of the number of
particles in excited states is described at any temperature by
expression (4) obtained by Einstein [2], regardless of whether
condition (5) for mean values (grand canonical ensemble) or
condition (6) (canonical ensemble) is satiséed upon summa-
tion of the Gibbs distribution.

In particular, this means that the correct distribution
w0(n0) can be obtained by using the equality w0(n0) �
w �(N � � Nÿ n0), which is obvious for a canonical ensem-
ble, where w �(N � � Nÿ n0) is the distribution function for a
total number N � � n1 � n2 � ::: of particles in excited states,
if we assume (which is naturally has no a priori foundation)
that the distribution function of the number of particles in
excited states is described by expression (4). It is this appro-
ach that was used in papers [5, 6] (see also references there-
in) for calculating mean-square êuctuations, which coincide
with (26). The value of hDn 2

0 i calculated in Ref. [7] by a qua-
litatively different method exceeds the value (26) by a factor
of sixteen.

In Ref. [8], the distribution w0(n0) was obtained as a
stationary solution of the model kinetic equation for the
number of particles in the condensate assuming the validity
of (4). The study of this distribution shows that it coincides
with (2) for large N in the case of a parabolic trap, and
differs from (19) in the case of the free boson gas, although
gives the mean-square êuctuation coincident with (26).
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