
Abstract. A quantum theory of consecutive interactions of
counterpropagating waves with multiple frequencies x; 2x;
and 3x is developed. Parametric processes of high- and low-
frequency ampliécation of x and 3xwaves are studied in the
approximation of an undepleted 2x pump éeld. Fluctuations
of quadrature components, statistics of photons, and corre-
lation between êuctuations of photon numbers are considered
at these frequencies.

Keywords: quadrature-squeezed light, photon statistics, interaction
of counterpropagating waves, consecutive interactions.

1. Introduction

Degenerate parametric ampliécation with a high-frequency
pump is currently the most widespread method of gene-
ration of nonclassical light (e.g., see Refs [1, 2]). In the case
of type-I three-wave mixing (involving an extraordinary
pump wave and an ordinary ampliéed wave, which corres-
ponds to an e! oo interaction), a quadrature-squeezed
light is produced. Type-II parametric interaction (an e! oe
interaction) seems to hold much more promise in the con-
text of applications of nonclassical light. Interactions of this
type give rise to radiation consisting of orthogonal-pola-
rised éelds, which can reside in the so-called entangled
states. Entangled polarisation states can be employed, for
example, in quantum cryptography [3] and quantum tele-
portation [4] (see also the review [5]).

Parametric interactions are characterised by an especial-
ly high eféciency when phase-matching or quasi-phase-mat-
ching conditions are satiséed. The latter condition can be
met by using periodically poled nonlinear crystals (PPNCs),
e.g., crystals with a regular domain structure (RDS crystals).
In quasi-phase-matched parametric interactions, the vector
of the reciprocal `nonlinear grating' (the grating of spatial
modulation of the wave coupling coefécient) compensates
for the mismatch of wave vectors. With an appropriate
choice of the period of the nonlinear grating in a PPNC, two
three-wave-mixing processes with multiple frequencies o, 2o,
and 3o can be simultaneously quasi-phase-matched [6, 7],

which allows parametric ampliécation to be implemented in
consecutive interactions with a low-frequency pump in both
co- [6] and counterpropagating [8] waves. One of the speciéc
features of consecutive interactions is that the energy of the
pump wave (e.g., the 2o wave) can be completely converted
into the signal wave with the frequency 3o.

Quantum statistical properties of light produced through
a parametric interaction of copropagating waves in a low-
frequency pump éeld have been analysed in Ref. [9]. It has
been shown that interactions of this type give rise to a
quadrature-squeezed light at both the low frequency o and
the high frequency 3o (the pump frequency is 2o).

The purpose of this paper is to investigate the quantum
properties of light produced through a parametric interac-
tion of counterpropagating waves in a low-frequency pump
éeld. Our calculations were performed in the approximation
of an undepleted éeld of a classical wave with the frequency
2o. In this approximation, the interaction of waves in a
geometry when the backward wave has a frequency o or 3o
displays the features of interaction of counterpropagating
waves. We will study the relation between quantum êuctua-
tions of light at the frequencies o and 3o.

2. The basic relations

Consider a sequence of two three-wave mixing processes in
a quadratic-nonlinear medium:

2o! o� o; o� 2o! 3o. (1)

In the case under study, the 2o wave is an intense pump
wave. The érst process in Eqn (1) is degenerate parametric
ampliécation with a high-frequency pump, while the second
process is optical frequency mixing. As mentioned above,
such processes may eféciently occur simultaneously in the
quasi-phase-matching regime. At the same time, from the
energy viewpoint, the dynamics of processes (1) in PPNCs is
similar to the dynamics of these processes in homogeneous
nonlinear crystals if the characteristic length of nonlinear
wave interaction LNL (see below) is much greater than the
modulation period L of the nonlinear susceptibility [10].
Therefore, the nonlinear medium can be considered homo-
geneous. Obviously, one should keep in mind that interac-
tions of counterpropagating waves are possible, in prin-
ciple, only in PPNCs.

For a quantum description of the evolution of interact-
ing waves in space, it is convenient to employ an operator of
éeld momentum [11]. In the interaction representation, the
operator of éeld momentum for the considered process can
be written as
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Gint � �h�g2a�21 a2 � g3a
�
3 a1a2 +H.c.), (2)

where aj (a
�
j ) is the operator of annihilation (creation) of

photon with frequency jo and g2;3 are the coefécients of
effective wave coupling, which are determined by crystal
nonlinearities and the order of quasi-phase matching [6].

The spatial evolution of the operator aj is governed by
the equation [11]

ÿi�h daj
dz
� �aj;Gint�: (3)

We will analyse the behaviour of quantum êuctuations in
the process of ampliécation of two weak waves with
frequencies o and 3o in the wave éeld with a frequency 2o.
We will restrict our consideration to the approximation of a
undepleted pump éeld. We also assume that the pump éeld
is classical, and the operator a2(z) in Eqn (2) can be
replaced by a number C2 � a2�0�. This procedure yields

Gint � �h�k2a�21 � k3a
�
3 a1+H.c.), (4)

where kj � gjC2.
Consider the 3o wave propagating in the direction op-

posite of the propagation direction of the o wave, which
travels in the positive direction of the z axis. The quantum
equations for the interaction of counterpropagating waves
can be then represented as (cf. [9])

da1
dz
� ÿik �3 a3 ÿ i 2k2a

�
1 ;

(5)

da3
dz
� ik3a1

The relevant boundary conditions are

a1�0� � a10; a3�L� � a3L; (6)

where L is the crystal length. Equations (5) are similar to
the equations for a nonlinear coupler with an intense pump
at the frequency of the second harmonic, considered in
Ref. [12]. In the nonlinear section of the coupler, the fun-
damental wave is ampliéed in the éeld of the second har-
monic. In the case under consideration, the backward 3o
wave plays the role of one of the main waves.

The solutions to Eqns (5) can be expressed in terms of
the operators in the cross section z � 0 in the following
form:

a1�z� � u2�z�a30 � v2�z�a�30 � w2�z�a10 � y2�z�a�10 , (7)

a3�z� � u1�z�a30 � v1�z�a�30 � w1�z�a10 � y1�z�a�10 , (8)

where

u1�z� �
2jk2j
l20
�l1 cosh�l2z� ÿ l2 cosh�l1z��;

v1�z� � ÿiei3j2F1�z�; w1�z� � ieij2G1�z�;

y1�z� � ei2j2G2�z�; u2�z� � ÿieÿij2G1�z�;

v2�z� � y1�z�; y2�z� � ÿieij2F2�z�;

w2�z� �
2jk2j
l20
�l1 cosh�l1z� ÿ l2 cosh�l2z��;

j2 � argC2; F1�z� �
2jk2j
l20
�l2 sinh�l1z� ÿ l1 sinh�l2z��;

F2�z� �
2jk2j
l20
�l1 sinh�l1z� ÿ l2 sinh�l2z��;

G1�z� �
2jk2k3j

l20
�sinh�l1z� ÿ sinh�l2z��;

G2�z� �
2jk2k3j

l20
�cosh�l1z� ÿ cosh�l2z��;

l1;2 � jk2j � g; l20 � 4jk2jg; g �
�
jk2j2 � jk3j2

�1=2
.

However, conditions (6) are the true boundary con-
ditions for the problem under consideration. Therefore, the
sought-for solution to the set of Eqns (5) is given by

a1�L� � U2a3L � V2a
�
3L �W2a10 � Y2a

�
10 ,

(9)

a3�0� � U1a3L � V1a
�
3L �W1a10 � Y1a

�
10,

where

U1 �
u1�L�
J

; W1 �
1

J
�v1�L�y�1�L� ÿ u1�L�w1�L��;

V1 � ÿ
v1�L�
J

; Y1 �
1

J
�v1�L�w�1�L� ÿ u1�L�y1�L��;

J � ju1�L�j2 ÿ jv1�L�j2;

U2 �
1

J
�u2�L�u1�L� ÿ v2�L�v�1�L��;

(10)

V2 �
1

J
�u1�L�v2�L� ÿ u2�L�v1�L��;

W2 � u2�L�W1 � v2�L�U1 � w2�L�;

Y2 � u2�L�Y1 � v2�L�W �
1 � y2�L�:

The following canonical commutative relations are valid
under these conditions:

�a1�0�; a�1 �0�� � �a1�L�; a�1 �L��

� �a3�L�; a�3 �L�� � �a3�0�; a�3 �0�� � 1. (11)

The analysis of two coupled quasi-phase-matched pro-
cesses performed in Ref. [10] (see also the review [13]) has
demonstrated that pump photons with the frequency 2o
érst decay into o photons, which , in their turn, add up with
pump photons to produce 3o photons. As is well known,
low-frequency parametric ampliécation involves the redistri-
bution of vacuum êuctuations, resulting in the formation of
quadrature-squeezed light at the frequency o. Since some of
such photons are involved in the formation of light quanta
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with the frequency 3o, formation of nonclassical light can
be expected at this frequency.

3. Fluctuations of quadrature components

Let us introduce the quadrature operators of the waves
being ampliéed in the following way:

Xj�yj� � aj exp �iyj� � a�j exp �ÿiyj� ,
(12)

Yj�yj� � i�aj exp �iyj� ÿ a�j exp �ÿiyj�� � Xj�yj � p=2� .
Here, yj are the phases of the reference wave in balance
homodyne detection [2], j � 1; 3. Using the solution (7) and
(8), we derive expressions for the quadrature components
(12), which are determined by all the initial quadratures and
which substantially depend on the phases y1 and y3 and the
phase j2 of the pump wave. To simplify our analysis, we
choose phase relations in such a way that the quadrature
operators are independent of Hermitian-conjugated oper-
ators:

3y1 � y3; j2 � 2y1 � ÿp=2 . (13)

The quadrature operators are then given by

X1�L� � R1�L�X10 ÿQ�L�X3L ,

Y1�L� � T1�L�Y10 ÿ P�L�Y3L ,
(14)

X3�0� � Q1�L�X3L �Q�L�X10 ,

Y3�0� � P1�L�Y3L � P�L�Y10 ;

where

Q�L� � G1�L� ÿ G2�L�
u1�L� � F1�L�

; P�L� � G1�L� � G2�L�
u1�L� ÿ F1�L�

;

Q1�L� �
1

u1�L� � F1�L�
; P1�L� �

1

u1�L� ÿ F1�L�
;

(15)

R1�L� � w2�L� ÿ F2�L� ÿ
�G1�L� ÿ G2�L��2
u1�L� � F1�L�

;

T1�L� � w2�L� � F2�L� ÿ
�G1�L� � G2�L��2
u1�L� ÿ F1�L�

:

Expression (14) shows that êuctuations at the generated
frequencies are coupled to each other, since the expressions
for the quadratures with different frequencies involve the
functions Q(L) and P(L), which include the mutual
inêuence of these êuctuations.

Let us introduce the parameters

LNL � jk2jÿ1; b � jk3j=jk2j; z � L=LNL ,

which simplify the analysis of our results and which denote
the characteristic length of nonlinear interaction, the ratio
of nonlinear coefécients of wave coupling, and the norma-
lised crystal length respectively. The functions involved in
Eqn (15) are then written as

u1�z; b� � A�b��cosh �ÿ1ÿ ÿ1� b 2
�1=2�z �ÿ Z�b�

� cosh
�ÿ
1� ÿ1� b 2�1=2�z �	 ,

F1�z; b� � A�b��Z�b� sinh �ÿ1� �1� b 2
�1=2�z �

ÿ sinh
�ÿ
1ÿ ÿ1� b 2

�1=2�z �	 ,
F2�z; b� � A�b��sinh �ÿ1� ÿ1� b 2

�1=2�z �
ÿ Z�b� sinh �ÿ1ÿ ÿ1� b 2

�1=2�z �	 , (16)

w2�z; b� � A�b��cosh �ÿ1� ÿ1� b 2
�1=2�z �

ÿ Z�b� cosh �ÿ1ÿ ÿ1� b 2
�1=2�z �	 ,

G1�z; b� � B�b��sinh �ÿ1� ÿ1� b 2
�1=2�z �

ÿ sinh
�ÿ
1ÿ ÿ1� b 2

�1=2�z �	;
G2�z; b� � B�b��cosh �ÿ1� ÿ1� b 2

�1=2�z �
ÿ cosh

�ÿ
1ÿ ÿ1� b 2

�
1=2
�
z
�	
;

where

A�b� � 1� ÿ1� b 2
�1=2

2
ÿ
1� b 2

�1=2 ; B�b� � b

2
ÿ
1� b2

�1=2 ;

Z�b� � 1ÿ ÿ1� b 2
�1=2

1� ÿ1� b 2
�1=2 :

We assume that the éelds incident on the crystal are in the
vacuum state. Taking into account Eqn (14), we derive
the following expressions for quadrature variances VjA �
hA2

j i ÿ hAji2:

V1X �
�
R 2

1 �b; z� �Q 2�b; z��V0 ,

V1Y �
�
T 2
1 �b; z� � P 2�b; z��V0 ,

(17)

V3X �
�
Q 2

1 �b; z� �Q 2�b; z��V0 ,

V3Y �
�
P 2
1 �b; z� � P 2�b; z��V0 ;

where V0 � 1 is the quadrature variance for the vacuum
éeld.

Expressions (17) describe quadrature variances for the o
wave at the output of the nonlinear crystal (in the cross
section z � L) and for the 3o wave at the input of the
nonlinear crystal (in the cross section z � 0).

With k3 � 0, Eqns (16) and (17) yield

V3X � V3Y � V0 ; V1X � eÿ2z V0 ; V1Y � e2z V0 :

Quadrature variances of the 3o éeld remain equal to the
quadrature variances of vacuum êuctuations, while quad-
rature variances of the o éeld change. One of these vari-
ances, namely, V1X , decreases when the phase relation (13)
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is satiséed. This is due to the fact that only one of the
quasi-phase-matched processes ë parametric ampliécation
with a high-frequency pump (the 2o! o� o process) ë
occurs under these conditions.

With k2 � 0, quadrature variances are equal to the
variance of the vacuum éeld: V3X � V3Y � V1X � V1Y �
V0 since only the conditions for frequency up-conversion
(3o! 2o� o) are satiséed. This process cannot occur only
in the presence of vacuum êuctuations at the frequency o.

In the case when k2 6� 0 and k3 6� 0, quantum êuctua-
tions are suppressed in both output modes. Provided that
the initial phase conditions of the form (13) are chosen,
êuctuations of the quadratures X3�0� and X1�L� are
decreased, while êuctuations of the quadratures Y3�0�
and Y1�L� are increased, which is consistent with the
Heisenberg uncertainty relation. Note that quantum êuctu-
ations at the frequency 3o are always stronger than
quantum êuctuations at the frequency o (Fig. 1).

In the above-considered process, a quadrature-squeezed
light is produced in the following way. As mentioned above,
the initial phase of the process involves parametric amplié-
cation with a high-frequency pump. This process is accom-
panied by the suppression of quantum êuctuations in one of
the quadratures at the frequency of ampliécation (the X1

quadrature in our case). Next, frequency up-conversion
occurs with k3 6� 0. As a result, transformed êuctuations
of the frequency o are transferred to the 3o wave. Redis-
tribution of êuctuations at the frequency 3o should be
considered as parametric ampliécation with a low-frequency
pump.

Fluctuation suppression in high-frequency parametric
ampliécation is especially efécient in the absence of fre-
quency mixing (b � 0), i.e., in the regime when high-freq-
uency 3o radiation is not generated. As b grows, êuctuation
suppression at the frequency o becomes less efécient, since
3o quanta are now generated in a random way. A compe-
tition of these two factors may give rise to a minimum of the
variance of the quadrature X3(0) as a function of b.

4. Correlation properties of output radiation

Consider now the statistics of the photon number of output
radiation at ampliécation frequencies and examine corre-

lation properties of these photon numbers. We introduce n̂1
and n̂3 to denote the operators of photon numbers at
frequencies o and 3o, respectively. Then, we can write

n̂j � a�j aj �
1

4

ÿ
X 2

j � Y 2
j ÿ 2

�
; j � 1; 3: (18)

Using Eqns (17) and taking into consideration that V0 � 1
for the vacuum éeld, we arrive at the following expressions
for the mean photon numbers:

�n1�b; z� � hn̂1i �
1

4

�
R 2

1 �b; z� �Q 2�b; z�

� T 2
1 �b; z� � P 2�b; z�� ,

(19)

�n3�b; 0� � hn̂3i �
1

4

�
Q 2

1 �b; z� �Q 2�b; z�

� P 2
1 �b; z� � P 2�b; z�� :

Formulas (19) describe the mean number of photons in
output modes in the cross section z � L for a mode with
frequency o and in the cross section z � 0 for a mode with
frequency 3o.

Now, let us determine the variances of photon numbers
and the correlation function hn1; n3i for the êuctuations of
photon numbers:

s2n1 � hn̂ 2
1 �L�i ÿ hn̂1�L�i2 ,

s2n3 � hn̂ 2
3 �0�i ÿ hn̂3�0�i2 , (20)

hn1; n3i � hn1�L�n3�0�i ÿ hn1�L�ihn3�0�i:

Using Eqns (14) and (18), we derive the following
expressions for the variances of photon numbers in output
modes:

s2n1 �
1

8

�ÿ
R 2

1 �Q 2
�2 � ÿT 2

1 � P 2
�2 ÿ 2

ÿ
R 2

1T
2
1 �Q 2P 2

�
ÿ 4�R1T1 ÿ 1��QPÿ 1

��
,

(21)

s2n3 �
1

8

�ÿ
Q 2

1 �Q 2
�2 � ÿP 2

1 � P 2
�2

ÿ 2
ÿ
Q 2

1P
2
1 �Q 2P 2

�ÿ 4�Q1P1 ÿ 1
�ÿ
QPÿ 1

��
:

The correlation function is then written as

hn1; n3i �
1

8

�ÿ
R1 ÿQ1�2Q 2 � �T1 ÿ P1�2P 2

ÿ�R1Pÿ P1Q�2 ÿ �T1QÿQ1P�2
��
: (22)

Arguments appearing on the right-hand sides of functions
are omitted in Eqns (21) and (22).

The correlation properties of output radiation can be
conveniently described in terms of the correlation coefé-
cient,

K�b; z� � hn1; n3i
sn1sn3

. (23)

The results of calculations performed for K�b; z� are pre-
sented in Fig. 2. As can be seen from these data, the

V1X; V3X

0.8

0.6

0.4

0.2

0
0
0.5

1.0
1.5

2.0
b z

2.0
1.5

1.0
0.5

0

Figure 1. Variances V3X (the upper surface) and V1X (the lower surface)
as functions of the normalised length of the nonlinear medium z �
L=LNL and the ratio of coupling coefécients b � jk3j=jk2j.

440 V V Volokhovskii, A S Chirkin



correlation coefécient of êuctuations of photons at freq-
uencies o and 3o for b < 1 is higher than the correlation
coefécient for b > 1, which is due to a more efécient sum-
frequency generation in the latter case.

5. Quantum êuctuations in interactions
of counterpropagating waves

The dependences of characteristics of output radiation on
the parameters of the problem in the considered process
have several distinguishing features relative to the inter-
action of copropagating waves [9]. For relatively large
interaction lengths (z!1), the output operators of the
éeld and quadratures are given by

a1�L� ! ÿ
�
1� 1

b 2

�1=2

a3L �
1

b
a�3L ,

a3�0� !
�
1� 1

b 2

�1=2

a10 ÿ
1

b
a�10 ,

X1�L� ! ÿ
b

1� ÿ1� b 2
�1=2 X3�L� ,

(24)

X3�0� !
b

1� ÿ1� b 2
�1=2 X1�0� ,

Y1�L� ! ÿ
bÿ

1� b 2
�1=2 ÿ 1

Y3�L� ,

Y3�0� !
bÿ

1� b 2
�1=2 ÿ 1

Y1�0�:

Interestingly, the output operators are determined by input
operators at a `conjugate' frequency and the ratio of wave
coupling coefécients b, and they are independent of the
initial operators at their own frequencies.

Thus, as can be seen from Eqns (17) and (24),
êuctuations of quadrature components in the interaction
of counterpropagating waves cannot be made arbitrarily
small. On the other hand, quantum êuctuations caused by
initial êuctuations at the same frequency can be suppressed
down to a zero level. The output noise under these
conditions is determined by redistributed êuctuations aris-
ing in each mode due to a nonlinear interaction.

Fig. 2 displays the behaviour of the correlation coefé-
cient K (b; z ) for êuctuations of photon numbers at the
frequencies o and 3o at the output of a nonlinear medium
as a function of the normalised crystal length. Since, with
z!1, the output values of éeld operators depend only on
the initial, uncorrelated operators at the conjugate fre-
quency, the correlation coefécient K (b; z ) decreases with
the growth in the crystal length. Correlations remain
noticeable within the range of several nonlinear lengths.

Fig. 3 presents the output mean numbers of photons at
generation frequencies as functions of the normalised length
of the nonlinear medium.

Now, let us analyse the statistics of mode radiation by
considering the Fano factor fj � s2nj=�nj �j � 1; 3�. The
value fj � 1 corresponds to a coherent state of the éeld.
The difference of the Fano factor from unity indicates the
difference of the statistics of mode radiation from the Pois-

sonian statistics. With fj > 1, we deal with a super-Pois-
sonian statistics, while fj < 1 corresponds to a sub-Poisso-
nian statistics. Exact expressions for fj can be obtained
with the use of Eqns (19) and (21). For relatively small
crystal lengths (z5 1), we have

f1 � 2� �8ÿ b 2=4�z2 � : : : ,
(25)

f3 � 1� 4

9
b 2z2 � : : : :

Hence, we énd that, for small interaction lengths, the
statistics of 3o radiation is close to a Poissonian statistics.
Biphotonic states, i.e., correlated pair of photons with a
super-Poissonian statistics [1, 2], arise at the frequency o.

In the case when z!1, we have

fj ! 2
1� b 2

b 2
; j � 1; 3:

Thus, for relatively large interaction lengths, output
radiation with the frequency o has the same statistics as
3o radiation.

1.0

2.0

K

0.8

0.6

0.4

0.2

0 2 4 6 8 z

b � 0:5

Figure 2. Correlation coefécient K for êuctuations of photon numbers as
a function of the normalised length of nonlinear medium z for different
ratios of coupling coefécients b.

�n1; �n3

4

3

2

1

0 2 4 6 8 z

b � 0:9

1.0

1.1

Figure 3. The mean numbers of photons with frequencies o (solid
curves) and 3o (dashed curves) at the output of the nonlinear medium as
functions of the normalised length of the nonlinear medium for different
ratios of coupling coefécients b.
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6. Conclusions

We have developed a quantum theory of a parametric inter-
action of counterpropagating waves with low and high
frequencies (o and 3o) in a pump éeld with the frequency
2o in the regime of quasi-phase-matched consecutive inter-
action of waves with multiple frequencies o, 2o, and 3o.
Our analysis has revealed the possibility of producing a
quadrature-squeezed light in counterpropagating ampliéed
waves with frequencies o and 3o. We have also demon-
strated that the eféciency of suppression of quantum êuc-
tuations depends on the length of the nonlinear medium
and the ratio of the wave coupling coefécients. Photons at
the frequencies o and 3o under these conditions have a
super-Poissonian statistics.

We should emphasise the following speciéc feature of the
considered process. Although our calculations were per-
formed in the approximation of an undepleted pump éeld,
as the interaction length grows, the mean number of pho-
tons in the waves being ampliéed tends to some stationary
value on the order of unity (see Fig. 3). This result, on the
one hand, justiées the assumptions used in our analysis, on
the other hand, indicates a considerable inêuence of vacuum
êuctuations on a parametric interaction of counterpropagat-
ing waves.
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