
Abstract. The regimes of excitation of a four-wave mixing
wave in a one-dimensional photonic crystal are studied and
conditions are found at which the excited wave propagates
along the structure in the waveguide regime. A set of wave-
guide eigenmodes of a multilayer structure is obtained for
different polarisations of the éeld. The resonance character of
excitation of waveguide modes is studied in the process of
four-wave mixing. A manifold increase in the éeld amplitude
inside the structure is found upon resonance excitation of
waveguide modes.

Keywords: photonic crystals, waveguide modes, nonlinear-optical
effects.

1. Introduction

Studies of linear and nonlinear processes of the propagation
and interaction of waves in photonic crystals attract great
recent attention. The presence of regions of the strong
spatial and time dispersion in such structures opens up new
possibilities for controlling the pulse shape and the efé-
ciency of nonlinear-optical transformations. In Refs [1, 2],
the compression of femtosecond pulses in thin one-dimen-
sional periodic structures has been demonstrated, and in
papers [3 ë 5], the control of the SHG eféciency and the
generation of sum and difference frequencies in such struc-
tures have been achieved.

The nonlinear-optical response of a medium can be
increased for two reasons. The érst reason is related to the
spatial and time dispersion, which allows one to control the
conditions of synchronism of the interacting waves. The
second reason is caused by the redistribution of the ampli-
tude of an interference éeld in a crystal. By varying the angle
of incidence, we can move the antinodes of the interference
éeld from one material of the structure to another. Such a
redistribution of the éeld amplitude results in the anomalous
propagation of X-rays in crystals (the Borrmann effect [6]).
It is well known that the wave amplitude increases no
more than two times upon the constructive interference.
It can increase much stronger upon excitation of waveguide
modes.

In a one-dimensional photonic crystal, an inhomogene-
ous wave can be excited, i.e., the wave propagating along the
structure in the waveguide regime and exponentially decay-
ing in vacuum. The inhomogeneous wave can be excited due
to three-wave (o3 � o1 ÿ o2) or four-wave (o3 � o1 � o1

ÿ o2) mixing. In this paper, we consider in detail the exci-
tation of an inhomogeneous wave upon four-wave mixing.
In the case of three-wave mixing, the results are analogous
to those discussed below.

The choice of the mixing process (three- or four-wave
mixing) providing the efécient excitation of an inhomoge-
neous wave depends on the speciéc parameters of a multi-
layer structure. Because upon interaction of the éeld with
the multilayer structure the tangential component of the
éeld momentum is conserved, we can easily imagine the
situation when, at certain frequencies and angles of inci-
dence of the pump wave on the multilayer structure, the
tangential component of the wave vector both for three- and
four-wave mixing can become larger that its wavelength in
vacuum, resulting in the excitation of an inhomogeneous
wave in vacuum. Therefore, the waveguide modes can be
resonantly excited in the multilayer structure. In this paper,
we determine the eigenmodes of the multilayer structure,
which was earlier used in experiments [1 ë 5], énd the exci-
tation conditions for waveguide modes, and calculate the
éeld distribution in the structure at which the amplitude of
the éeld of resonantly excited modes increases manifold.

2. Recurrent relations and the Green function

Consider the interaction of an electromagnetic éeld pro-
pagating in the plane yz with a layered medium, whose
permittivity depends on the coordinate z. The dynamics of
the s component of the electromagnetic éeld is described by
the wave equation for the x component of the electric éeld
strength
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where J is the density of the atomic current; and e(z) is the
permittivity of the medium. When a plane wave Ex(y; z; t )
� Ex(z) exp (ÿiot� ikyy), interacts with the medium (where
o is the éeld frequency and ky is the tangential projection of
the wave vector), the wave equation (1) takes the form
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where k(z) is the wave-vector modulus. The dynamics of the
p component of the electromagnetic éeld can be conven-
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iently considered using the x component of the magnetic
éeld strength. The equation for this component, analogous
to equation (2), has the form
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: (3)

If the eféciency of the nonlinear-optical conversion is small,
the solutions of equations (2) and (3) for the nonlinear
response of the medium can be represented using the Green
function. For equation (2), the solution has the form
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where L is the length of the medium; u(z) and v(z) are
linearly independent solutions of the homogeneous wave
equation; w is the Wronskian. As two linearly independent
solutions u(z) and v(z) of the homogeneous wave equation,
we can choose the solutions corresponding to two plane
waves, which are incident on the medium from opposite
sides.

Consider a layer of length d in a multilayer structure,
assuming that the linear refractive index within this layer is
constant (Fig. 1a). We also assume that this layer is
restricted by fragments 1 and 2 of the multilayer structure
with the reêection and transmission coefécients R1; R

0
1;

T1; T
0
1 and R2; R

0
2; T2;T

0
2, where coefécients without the

prime correspond to the wave incident on the fragments of
the medium from the left to the right, while coefécients with
the prime correspond to the wave incident from the right to
the left. Two linearly independent solutions u (z 0) and v (z 0)
of the homogeneous wave equation in the layer under study
have the form

u z 0
ÿ � � T1�exp ikzz

0ÿ �� R2 exp i2kzdÿ ikzz
0ÿ ��

1ÿ R2R
0
1 exp i2kzd� � ;

(5)

v z 0
ÿ � � T 02�exp ikzdÿ ikzz

0ÿ �� R 01 exp ikzd� ikzz
0ÿ ��

1ÿ R2R
0
1 exp i2kzd� � ;

where kz is the normal component of the wave vector and
z 0 is the relative coordinate, which varies from zero to d.

The reêection and transmission coefécients of the
layered structure can be calculated using the recurrent
procedure. Consider a fragment of the layered structure
consisting of two parts with known reêection and trans-
mission coefécients R1; R

0
1;T1; T 01 and R2; R

0
2; T2; T

0
2.

Then, the reêection and transmission coefécients R;
R 0;T; T 0 of the entire fragment can be expressed in terms
of the known coefécients of its parts as
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:

As fragments of the medium, we can consider any
objects, for example, a piece of the homogeneous medium
or the interface between two layers. In the latter case, the
reêection and transmission coefécients are determined by
the Fresnel formulas. Note that the consecutive application
of formulas (6) allows one to calculate the reêection and
transmission coefécients for arbitrarily complex medium
without using a direct numerical integration of the wave
equation.

3. Conditions for excitation
of an inhomogeneous wave

In a one-dimensional periodic structure, an inhomogeneous
wave can be excited, i.e., the wave propagating along the
layers in the waveguide regime. To implement this process,
two or more pump waves are required, which are incident
on the medium at different angles. In addition, the
frequency of the excited inhomogeneous wave should be
determined by the difference between at least two pump-
wave frequencies. The inhomogeneous wave can be excited
due to both three-wave (o3 � o1 ÿ o2) and four-wave
(o3 � o1� o1 ÿ o2) mixing. Here, we consider in detail the
four-wave mixing.

Let an inhomogeneous wave be excited in the ZnS/SrF2

periodic structure consisting of eight ZnS layers with the
refractive index n1 � 2:31 at 780 nm and of seven SrF2

layers with the lower refractive index n2 � 1:43 at 780 nm.
We assume that the thickness of the layers was 3l=4ni at
780 nm. These structural parameters are typical for experi-
ments [1 ë 5], which we will compare with our calculations.

Consider the interaction of the above periodical struc-
ture with the éeld of two pump waves at l1 � 690 nm and
l2 � 817 nm, which are incident on the medium at different
angles. Different regimes of excitation of the four-wave
mixing wave o3 � o1 � o1 ÿ o2 are determined by the
tangential component of the wave vector ky(o3) �
2 sin y1o1=cÿ sin y2o2=c, where y1;2 are angles of incidence
of the pump waves. Let k0(o3); k1(o3); k2(o3) be moduli of
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Figure 1. Scheme of the incidence of waves u and v on a multilayer
structure (1, 2 are fragments of this structure) (a) and regimes of
excitation of the four-wave mixing wave o3 � o1 � o1 ÿ o2 in a
multilayer structure as functions of the angle of incidence y of the érst
pump wave and the angle j between the pump waves for éxed pump
wavelengths l1 � 690 nm and l2 � 817 nm (b). Region I is deéned by
the condition ky(o3)j < k0(o3)j , region II ë by the condition k0(o3) <
ky(o3)j j < k2(o3), region III ë by the condition ë k2(o3) < ky(o3)j <j
k1(o3), and region IV ë by the condition k1(o3) < ky(o3)j j.
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the wave vectors of the response éeld of the medium in
vacuum, ZnS, and SrF2, respectively, which obey the condi-
tion k0(o3) < k2(o3) < k1(o3) for the chosen parameters of
the medium and external éeld. Below, we will use angles
y � y1 Ë j � y2 ÿ y1 instead of angles y1;2.

Fig. 1b shows the region of admissible angles y and j
divided into four subregions. Subregion I is deéned by the
condition ky(o3) < k0(o3), which corresponds to excitation
of the four-wave mixing wave that is homogeneous both in
vacuum and a photonic crystal. Subregion II is deéned by
the relation k0(o3) < ky(o3)j < k2(o3)

�� , which corresponds
to excitation of the wave that is homogeneous in a photonic
crystal but is inhomogeneous (exponentially decaying) in
vacuum. Subregion III is deéned by the relation k2(o3) <
jky(o3)j < k1(o3), which corresponds to excitation of the
wave that is homogeneous in ZnS layers and inhomoge-
neous in SrF2 layers and vacuum. Subregion IV is deéned
by the relation k2(o3) < jky(o3)j < k1(o3), which corre-
sponds to the case when the four-wave mixing wave cannot
be excited. Thus, the inhomogeneous wave can be excited
under the condition that a point speciéed by angles y and j
lies in the suregion II or III.

4. Waveguide modes

In the analysis of excitation of an inhomogeneous wave in a
layered medium, the solution of the homogeneous wave
equation with the boundary conditions, which correspond
to the exponential decay of the éeld outside a photonic
crystal, plays an extremely important role. The solution of
this boundary-value problem is a set of eigenvalues and
modes corresponding to them. The eigenvalues can be
conveniently characterised by the tangential component
ky(o3) of the wave vector of the response éeld of the
medium. Fig. 2 shows the spectrum of eigenvalues for the s-
and p-polarised éeld at the wavelength l3 � 597 nm. The
tangential component of the wave vector varies from
k0(o3) � 10:52 mmÿ1 to k2(o3) � 15:13 mmÿ1, which corre-
sponds to the angles y and j that specify a point in
subregion II in Fig. 1b. The number of eigenvalues for s
and p polarisation is eight and nine, respectively. Note that
in the case of s polarisation, the eigenvalues are spaced on
the scale ky(o3) more densely than in the case of p polari-
sation.

As an example, Fig. 2c shows the averaged tangential
component Py(o3; z) of the Poynting vector, which corre-
sponds to the s-polarised mode with the eigenvalue
ky(o3) � 13:16 mmÿ1 (the fourth vertical bar on the scale
ky(o3) in Fig. 2a), as a function of the transverse coordinate
z. The éeld energy êux along the structure in SrF2 layers
substantially exceeds that in ZnS layers. This feature is
typical virtually for all s-polarised modes. In contrast to the
s polarisation, the éeld energy êux along the structure in the
case of p-polarised modes is distributed in a photonic crystal
more `uniformly'.

5. Excitation of waveguide modes

Consider now excitation of the s-polarised four-wave
mixing wave by the p-polarised (l1 � 690 nm) and s-
polarised (l2 � 817 nm) pump waves. If the eféciency of
nonlinear-optical conversion is small, we can assume that
the density J of the atomic current depends only on the
pump-éeld strength, whose depletion can be neglected.

In our numerical calculations, whose results are pre-
sented below, we assumed that only ZnS layers with a large
refractive index were a nonlinear medium taking part in the
generation of the éeld at the Raman frequency. We assumed
that the density J of the atomic current induced in the
medium was w(EE )E, where E is the pump-éeld strength
and w is the effective nonlinear susceptibility of ZnS layers.
Such an approximation was rather course but quite accept-
able for our purpose.

Fig. 3 shows the averaged tangential component
Py(o3; z) of the Poynting vector, i.e., the energy êux of
the response éeld of the medium along the structure, as a
function of the transverse coordinate z for different angles j
and y. For a éxed angle j � 408 between the pump waves,
the angle y determines the tangential component of the wave
vector of the four-wave mixing wave. If the tangential
component of the wave vector coincides with one of the
eigenvalues of the homogeneous wave equation (Figs 2a, b),
we deal with the resonance excitation of the corresponding
mode of the éeld.

Figs 3a and 3e show quasi-resonance cases, the exact
resonance conditions being satiséed at angles y � ÿ49:358
and ÿ53:298 for the second and third s-polarised modes,
respectively. Under quasi-resonance conditions, the éeld
proéle of the four-wave mixing wave coincides with that of
the corresponding mode, while the éeld amplitude increases
with decreasing detuning from the resonance. In non-
resonance cases (Figs 3b ë d), the éeld proéle of the four-
wave mixing wave is determined by two parameters (angles
j and y) rather than by one (the tangential component of
the wave vector), which takes place under resonance con-
ditions.

To analyse resonance excitation of the waveguide modes,
we consider the energy êux along the structure
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Figure 2. Eigenvalue spectrum of the tangential component of the wave
vector of the s- (a) and p-polarised (b) éeld at the wavelength
l3 � 597 nm and the dependence of the averaged tangential component
of the Poynting vector of the s-polarised wave mode of the éeld, which
corresponds to the eigenvalue of the tangential component of the wave
vector ky(o3) � 13:16 mmÿ1 (shown by the arrow), on the transverse
coordinate z.
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S�o3� �
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0

Py�o3; z�dz;

where L is the length of a photonic crystal. Fig. 4 shows the
dependences of the energy êux along the structure on the
angle y at the éxed angle j � 408 between the pump waves
for two cases: excitation of the s-polarised four-wave mix-
ing wave by the p-polarised (l1 � 690 nm) and s-polarised
(l2 � 817 nm) pump waves and excitation of the p-pola-
rised four-wave mixing wave by two p-polarised pump
waves.

The positions of the intensity maxima of the excited
wave are determined by the angle y at which the tangential
component of the wave vector coincides with one of the
eigenvalues of the homogeneous wave equation (Figs 2a,b).
The width of the resonance maxima depends on the
magnitude of a change in the tangential component of
the wave vector with variation of the angle y in the vicinity
of the resonance. The resonance enhancement of the éeld
amplitude is caused by the interference between reêected
and transmitted four-wave mixing waves. Within the frame-
work of the model under study, the amplitude of resonance
maxima tends to inénity because of the interaction of
inénite plane waves with an inénite (along the y axis)
photonic crystal.

Consideration of the decay of the four-wave mixing
wave restricts the increase of resonance maxima. We
assumed in our numerical calculations that the four-wave
mixing wave decayed on the length 1 cm in ZnS layers by a
factor of e. A énite diameter of a laser beam under real
experimental conditions and a énite time of the interaction
of laser radiation with the structure reduce the amplitude of
resonance maxima. The presence of different defects in a
photonic crystal gives rise to the dependence of the
eigenvalue spectrum on the longitudinal coordinate y, which
can result in a strong change in the character of resonance
excitation of the modes.

6. Conclusions

Therefore, to excite the four-wave mixing wave propagating
along the structure in the waveguide regime in a one-
dimensional photonic crystal, two or more pump waves are
required, which are incident on the structure at different
angles. The frequency of the excited wave should be
determined by the difference between at least two
frequencies of the pump waves. The conditions of excitation
of waveguide modes are determined by the parameters of
the pump éeld: wavelengths and the angles of incidence of
the waves on the structure. Under quasi-resonance con-
ditions, the distribution of the éeld of the four-wave mixing
wave coincides with that for the corresponding mode, while
the éeld amplitude increases manifold with decreasing
detuning from the resonance. The results obtained clearly
demonstrate the possibility to control the éeld distribution
in the medium. The drastic increase in the éeld amplitude of
an inhomogeneous wave under quasi-resonance conditions
can be used to increase the eféciency of nonlinear-optical
conversion or for diagnostics of various processes inside a
multilayer structure.
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Figure 3. Dependences of the averaged tangential component of the
Poynting vector of the s-polarised response éeld at the combination
frequency on the transverse coordinate z for different angles of incidence
y of the érst pump wave for the éxed angle o3 � o1 � o1 ÿ o2 between
p- and s-polarised pump waves.
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Figure 4. Dependences of the energy êux along a multilayer structure for
the s- ( 1 ) and p-polarised ( 2 ) éeld of the four-wave mixing wave
o3 � o1 � o1 ÿ o2 on the angle of incidence of the érst pump wave for
the éxed angle j � 408 between the pump waves. In the érst case, the
medium interacts with p- and s-polarised pump waves; in the second
case, the medium interacts with two p-polarised pump waves.
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