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Abstract. The effect of nanobodies, i.e., the bodies whose size
is small compared to the emission wavelength, on spontaneous
emission of an atom located near them is considered. The
results of calculations performed within the framework of
quantum and classical electrodynamics are presented both in
analytic and graphical forms and can be readily used for
planning experiments and analysis of experimental data. It is
shown that nanobodies can be used to control eféciently the
rate of spontaneous transitions. Thus, an excited atom loca-
ted near a nanocylinder or a nanospheroid pole, whose transi-
tion dipole moment is directed normally to the nanobody sur-
face, can decay with the rate that is tens and hundreds times
higher than the decay rate in a free space. In the case of some
(negative) dielectric constants, the decay rate can increase by
a factor of 105 ÿ 106 and more. On the other hand, the decay
of an excited atom whose transition dipole moment is direc-
ted tangentially to the nanobody surface substantially slows
down. The probability of nonradiative decay of the excited

state is shown to increase substantially in the presence of na-
nobodies possessing losses.

Keywords: atoms, spontaneous emission, nanobodies.

1. Introduction

Since our review, as follows from its title, seems to be
more concerned with atomic physics than with quantum
electronics, it is reasonable to begin with an extended intro-
duction using the terms accepted in quantum electronics.

An excited quantum system can emit light spontaneously
and in a stimulated way, as has been predicted by Einstein in
his theory of equilibrium emission [1] and has been rigo-
rously shown by Dirac in the quantum theory of emission
[2]. According to the Dirac theory, the probability of the
photon emission to a given mode (éeld oscillator, etc.) is
proportional to 1�N, where the érst term corresponds to
spontaneous emission and the second term corresponds to
stimulated emission (N is the number of photons in the
oscillation mode under study). The total probability of
spontaneous decay of the excited state 2 of a quantum
system to the lower state 1 is determined by the Fermi
golden rule [3]

g21 � jd21j2r21�o�, (1)

where d21 is the matrix element coupling states 2 and 1;
r21(o) is the density of modes of electromagnetic oscil-
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lations at the transition frequency o. In a free space, r (o) is
described by the known Rayleigh ë Jeans formula, i.e., it de-
pends only on the frequency o and the quantisation volume.

A resonator system separates a limited number of high-Q
oscillation modes, in which spontaneous quanta are multi-
plied due to stimulated transitions in an amplifying medium
inside the resonator. Therein lies, as is known, the funda-
mental principle of masers and lasers [4, 5]. In a maser, this
effect is achieved with the help of a closed (volume) resona-
tor of volume V � l 3 (l is the emission wavelength), which
simultaneously restricts the number of oscillation modes
both for spontaneous and stimulated emission. In a laser,
this effect is achieved using an open resonator of volume
V4 l 3 [6, 7], which separates a limited number of high-Q
oscillation modes of stimulated emission, which develops
from a very weak spontaneous emission into these separated
oscillation modes. At the same time, a huge number of the
rest of the modes can be involved in spontaneous emission
virtually without any restrictions.

In a good laser operating well above the threshold, the
total probability of stimulated emission of an atom to a
small number of high-Q oscillation modes is much greater
than the total probability of spontaneous emission of the
atom to a very great number of the rest of the oscillation
modes. For this reason, in most cases a relatively weak
spontaneous emission does not strongly affect the funda-
mental characteristics of laser radiation, whereas a very
weak spontaneous emission into high-Q oscillation modes of
the laser plays an important role in the phase êuctuations of
the coherent éeld of the laser, i.e., in the establishment of the
limiting spectral width of a laser line [7]. Until recently,
quantum electronics has been successfully developed by
using controllable stimulated quantum processes for impro-
ving all the parameters of laser radiation, whereas the ques-
tion of controlling an elementary process of spontaneous
emission remained open.

However, the problem of controlling the quantum pro-
cess of spontaneous emission is no less important from the
general point of view than the control of stimulated emis-
sion. Suféce it to say that we use the artiécial illumination
that is mainly produced by the transformation of electricity
to spontaneous light and the control of this process is far
from perfect. Only recently, due to the development of hete-
rostructure light emitting diodes [8], we have approached to
the creation of highly efécient electric sources of bright
spontaneous emission at the required wavelength, which will
have a great practical consequence in the future. However,
now of interest to us is the question of controlling an ele-
mentary event of spontaneous emission of light.

This question has been formulated for the érst time by
Purcell [9] who considered the enhancement of the prob-
ability of spontaneous emission for an atom in a resonator
whose the only oscillation mode frequency was tuned to the
transition frequency of the atom. The spontaneous emission
rate Ac in the resonator can achieve the value � AQ, where
A is the spontaneous emission rate for the atom in a free
space and Q is the quality factor of the resonator. In Ref.
[10], the theory of spontaneous emission of an atom in a
resonator has been developed, which is valid for any
detuning of the oscillation mode frequency of the resonator
with respect to the quantum transition frequency in the
atom. It is clear within the framework of these concepts that
the spontaneous decay rate of the atom decreases when the
resonator frequency and the quantum transition frequency

in the atom are detuned, and if the fundamental frequency
of the quantum transition is lower than the frequency of the
fundamental (lowest) resonator mode, spontaneous emis-
sion can be substantially inhibited [11].

The increase in the spontaneous emission rate has been
observed for the érst time at the transitions between highly
excited (Rydberg) states of an atom in a submillimetre range
when the atom êied through a miniature high-Q resonator
[12]. Then, the inhibition of spontaneous emission was
observed. Thus, in paper [13], the 20-fold inhibition was
observed at Rydberg transitions, while in paper [14] this
effect was observed for cyclotron emission of one electron in
the Penning trap used as a resonator. By omitting the sub-
sequent theoretical and experimental papers, note that all
this scope of problems is described by the so-called cavity
quantum electrodynamics (CQED) [15, 16].

After the érst experiments in the microwaves region, the
inhibition of spontaneous emission in the optical range was
observed [17], and now it seems that this éeld of CQED will
be developed in succeeding years. This is related both to the
advances in the laser technologies and to the development of
new micro- and nanostructured optical materials, Here, we
can distinguish three éelds of investigations.

(1) The development of microlasers with the cavity
volume V comparable with l 3. In this case, the number
of oscillation modes becomes small even within a broad gain
line, i.e., the situation appears that is similar to the laser
limit. The number of oscillation modes decreases both for
spontaneous and stimulated transitions. By controlling the
density and positions of resonances, one can control both
spontaneous and stimulated emission. This scope of prob-
lems involves experiments with microspheres, which have
high Q factors in the optical range [18 ë 20] (they have been
already used in microlasers with ultralow lasing threshold
[21, 22]), microdroplets of the amplifying medium [23, 24],
planar microcavities (vertical cavity surface emitting lasers
(VCSEL) [25, 26]), photonic quantum wires [27], photonic
quantum dots [28], etc.

(2) The fabrication of three-dimensional periodic dielec-
tric structures of size L4 l, but with the period of variation
in, for example, the refractive index of the order of l. In
such structures, which are now called photonic crystals,
spontaneous emission can be substantially inhibited [29 ë
33]. However, the éeld of application of photonic crystals
[34, 35] is not restricted only by controlling spontaneous
emission of their atoms because these crystals substantially
change the properties of the light propagation. Suféce it to
recall a simplest one-dimensional quasi-periodic structure,
an interference élter.

(3) The variation of boundary conditions, which also
affect the properties of spontaneous emission. This follows
from the érst observation of a decrease in the êuorescence
emission rate for polyatomic dye molecules near a metal or
dielectric surface [36, 37]. This effect has a nonresonance
nature because it is caused by the interaction of a dipole
with its mirror image. The boundary conditions distort the
spectrum of modes into which the atom can emit sponta-
neously, resulting in a change in the spontaneous emission
rate. This effect can be especially substantial near nano-
structures, which distort the éeld distribution at distances
that are smaller than the emission wavelength or compa-
rable to it. It is this éeld of studies ë the spontaneous emis-
sion of an atom near nanobodies of various shapes ë that is
the topic of our review.
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Modern technologies make it possible to create various
objects and structures with characteristic sizes as small as
hundreds and even tens of nanometres. The tips of aperture
and apertureless scanning microscopes belong érst of all to
such structures [38 ë 47]. Fig. 1a shows a typical nanobody -
a tip of a scanning microscope. Here, a thick cylinder is a
usual ébre of diameter � 1:6 mm on which a tip is etched
with a characteristic size near the end of about 1 nm. Such
tips are used in various scanning microscopes.

At present, the so-called apertureless scanning micro-
scopes [42 ë 45], in which a sample is illuminated by a broad
light beam and the light scattered by the sample upon
approaching the tip to it is detected, are considered the most
promising. An apertureless microscope of another type was
proposed in paper [46]. In this microscope, a submicron
active medium replaces the aperture and acts as a localised
light source. Moreover, in papers [46, 47] the schemes were
proposed in which an active medium (a light source) was a
single molecule. Such schemes can be eféciently used for
surface imaging with a high spatial (better than 1 nm) and
high spectral resolution. In addition, Raman scattering sub-
stantially enhances near the tip [48, 49], which allows one to
analyse the chemical composition of the sample.

Another interesting case of the effect of nanoobjects on
emission is colloidal solutions of nanoparticles of different
shape. In particular, it was shown in paper [50] that the
solution of gold microspheres of diameter 35 nm does not
emit êuorescence, whereas êuorescence is enhanced by 6 ë 7
orders of magnitude in the solution of gold nanorods of the
same volume.

Other microobjects being actively studied are dielectric
micro- and nanospheres (Fig. 1b), which have high Q fac-
tors in the optical range [18ë20]. Such microspheres have
been already used for manufacturing microlasers with the
ultralow lasing threshold [21, 22]. In paper [51], the tech-
nologies of fabrication of layered nanospheres with a broad
range of resonance properties have been described.

Note the principal difference between microspheres and
nanospheres. The size of nanospheres is less than the wave-
length of light and their action is mainly caused by large
éeld gradients near them. In microspheres, optical reso-
nances can be excited (whispering gallery modes), resulting
in a strong resonance interaction with atomic transitions.
The case of microspheres is very interesting but lies beyond
the scope of this review.

The cylindrical geometry is also quite important in
applications of nanotechnologies. Thus, the authors of
papers [52, 53] measured êuorescence of single molecules

in submicron capillaries. On the other hand, the effect
of submicron conductors on spontaneous emission can be
important for the conénement of atoms with the help of
charged conductors [54, 55].

An important property of nanobodies is their ability to
change substantially the rates of forbidden transitions. In
papers [56, 57], a strong increase in the rate of electric
quadrupole transitions near a sphere and a cylinder of small
sizes was demonstrated. The authors of paper [58] proposed
to use a dielectric ébre for the experimental study of
forbidden transitions in atoms êying near the ébre.

Thus, in many practically important cases it is necessary
to know the effect of nanoobjects on atoms. In particular, of
great interest is the problem of êuorescence of atoms near
nanoobjects, i.e., the effect of nanobodies on the sponta-
neous decay rates in atoms. In this review, which is mainly
based on our studies, we consider brieêy the features of
spontaneous emission near nanobodies of various shapes.
We assume that nanoobjects consist of nonmagnetic materi-
als without dispersion.

Note that the problems under study belong to a new éeld
of research ë nanooptics, which in turn represents a part of
nanotechonolgy ë one of the key technologies of the XXI
century.

2. Elements of the theory
of spontaneous emission of an atom
in the presence of material bodies

2.1 Classical approach:
radiative back reaction on an oscillator

Within the framework of the classical approach [16, 59], an
atom can be modelled by a classical oscillator consisting of
a charge ë e at rest located at the point r 0 and of a charge e
located at the point r � r 0 � dr and oscillating around the
érst charge. The equation of motion of the oscillating
charge in a free space has the form

md�r�mg0d_r�mo2
0dr � 0. (2.1)

Here, dr is the displacement of the oscillating charge from
the equilibrium position;

g0 �
2e 2

3c 3
o2

0

m
(2.2)

is the spontaneous decay rate in vacuum; m is the mass of
the oscillating charge; and o0 is the oscillation frequency in
vacuum.

The oscillator located at the point r 0 near some body is
subjected to the additional (compared to the oscillator in a
free space) éeld E �1�(r 0), so that the equation of motion
takes the form

m�d �mg0 _d �mo2
0d � e 2E �1��r 0 � dr; t�

� e 2E �1��r 0; t�, (2.3)

where d � edr the electric dipole moment of the oscillator.
To énd the reêected éeld E �1�(r 0), one should solve a
complete system of Maxwell's equations, in which a source
of the charge and current is the dipole moment of the
oscillator

10 mm

a b

Figure 1. Examples of nanobodies: the tip of a scanning microscope (the
radius of curvature of the tip end is � 1 nm) photographed using a tunnel
electron microscope (see [38], pp. 131 ë 139) (a) and microsphere photo-
graphed using a tunnel electron microscope [20] (b)
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r � ÿ�d0H�d�rÿ r 0�eÿiot; j � ÿiod0d�rÿ r 0�eÿiot. (2.4)

Assuming that all the quantities are proportional to
exp (ÿ iot), we can obtain from (2.3) the dispersion equa-
tion for determining the parameters of the atomic oscillator
in the presence of an arbitrary body:

o2 � iog0 ÿ o2
0 �

e2

md 2
0

d0E
�1��r 0;o� � 0, (2.5)

where d0 is the amplitude of the dipole oscillations.
In the small-correction approximation, the solution of

(2.5) can be written in the form

o � o0 ÿ
i

2
g0 ÿ

e 2

2mo0

d0E
�1��r 0;o0�
d 2
0

. (2.6)

By separating the real and imaginary parts in (2.6) and
using expression (2.3) for the transition rate in vacuum, we
obtain in this approximation the expression for the change
in the spontaneous decay rate [59]

g
g0
� 1� 3

2
Im

d0E
�1��r 0;o0�
d 2
0 k

3
0

; (2.7)

where k0 � o0=c and k � o=c are the wave numbers in a
free space. Note that expression (2.7) is also valid in the
case of a complex dielectric constant, i.e., for a substance
with losses.

2.2 Classical approach: the energy êux at inénity

The spontaneous decay rate in the absence of losses in a
substance can be also found directly, by calculating the
intensity of emission for the atom + body system at inénity
and dividing this energy êux to the energy êux from the
oscillator in a free space:

g
g0
�
� ���ÿE �0� � E �1�

�ÿ
H �0� �H �1���

r!1
��2dO� ���E �0�H �0��

r!1
��2dO . (2.8)

Here, the integration is performed over the solid angle dO.
In the case of nanoobjects of interest to us, we deal with
dipole emission and expression (2.8) is reduced to the ratio
of squares of dipole moments

g
g0
� jd totj2
jd0j2

, (2.9)

where d tot is a total dipole moment of the atom + nano-
body system.

Therefore, to énd the change in the spontaneous decay
rate in the presence of any nanoobject whose size is small
compared to the emission wavelength, it is sufécient to solve
a quasi-static problem for a dipole near this object. In this
case, a total dipole moment, according to Eqn (2.9), allows
us to énd the change in the spontaneous decay rate.

In principle, we can use expression (2.7) for calculating
the change in the spontaneous decay rate near nanoobjects.
However, in this case we should solve either a complete
electrodynamic problem (which is often impossible to do
analytically) or several static problems to construct the
perturbation theory in the wave vector k [60]. Note that
expressions (2.8) and (2.9) are based on the calculation of

the emission êux at inénity and, hence, they cannot be
applied to substances with losses inside which the energy
êux is present.

2.3 Quantum-mechanical approach

The quantisation procedure of an electromagnetic éeld in
the presence of dielectrics without losses is known as a
whole [61]. However, a special approach is required in each
speciéc case. In the problem of the spontaneous decay, it is
convenient to consider standing waves as a basis. For this
purpose, the atom + nanobody system should be placed
inside the quantisation volume of a large size (L!1). The
geometry of the quantisation volume is determined by the
geometry of the problem, and the volume size does not
enter to observables. The expansion of the quantised elec-
tromagnetic éeld and its vector potential over the full
system of eigenfunctions of the classical problem (over
standing waves) can be written in the form

Ê �
X
s

ase�s; r� ÿ a�s e
��s; r�

i
���
2
p ;

B̂ �
X
s

asb�s; r� � a�s b
��s; r����

2
p ; (2.10)

Â � ÿ
X
s

c

os

ase�s; r� � a�s e ��s; r����
2
p .

Here, as, a
�
s are the annihilation and creation operators of

photons for the corresponding modes, which satisfy the
usual commutation relations; and os are frequencies of
these modes. The subscript s is a composite one (vector)
and includes the mode type (TE or TM) and quantum
numbers, which are similar to the quantum numbers of a
one-electron atom.

Maxwell's equations, which determine the modes, have
the form

H� e�s; r� � os

c
b�s; r�;,

(2.11)
H� b�s; r� � ÿos

c
e�r�e�s; r�

where e(r) is a function describing the spatial distribution of
the dielectric constant. We also assume that the wave
functions of photons are normalised per photon in the
quantisation volume:

1

4p

�
d 3re��s; r�e�s 0; r� � dss 0�hos ,

(2.12)

1

4p

�
d 3rb��s; r�b�s 0; r� � dss 0�hos .

The interaction Hamiltonian of the quantised éeld with
an atom can be constructed in a usual way [16]. In the case
of dipole transitions, it is sufécient to retain only the érst
term in the full Hamiltonian:

Hint � ÿ
e

mc
Â�r�p̂� . . . . (2.13)

Here, Â(r) is the vector potential operator at the electron
location; p̂ is the electron momentum operator; and m is the
electron mass.
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Now, in accordance with the Fermi golden rule, the
expression for the spontaneous decay rate has the form [3]

g � 2p
�h
jhinijHintjfinij2r�o�, (2.14)

where r(o) is the density of énal states, which can be
readily found if the solutions of Maxwell's equations are
known, i.e., the spectrum of the problem.

In the case of electric dipole transitions of the E1 type,
we obtain the following expression for the spontaneous
decay rate:

g � p
�h
jdefin�s; r0�j2r�o�, (2.15)

where efin (s; r0) is the wave function of a photon in the énal
state and d is the matrix element of the dipole moment.

It can be shown [62] that in the absence of losses, both
classical and quantum-mechanical approaches yield the
same expressions for the relative transition rates, i.e., the
transition rates normalised to the transition rates in a free
space. For this reason, we can use any expression for
calculating the spontaneous decay rate. In the case of
nanobodies without internal losses, as a rule, the quantum-
mechanical approach yields the result more rapidly. This is
explained by the fact that in both classical approaches one
should érst calculate the exact Green function of a dipole
source in the presence of a body and then énd its asymptotic
form either in the dipole vicinity (r! r 0) or at inénity
(r!1). In the case of the quantum-mechanical approach,
the result is immediately expressed in the form of a relatively
simple expansion over the solutions of homogeneous Max-
well's equations (2.15).

2.4 Absorbing and dispersion media

Expression (2.7) for the decay rate of a classical oscillator is
valid for any (including complex) dielectric constant of the
nanobody material. However, strictly speaking, quantum-
mechanical expression (2.15) can be derived only by assu-
ming that the Hamiltonian is Hermitian, i.e., in the absence
of losses in the material.

In this case, the proof of the equivalence of classical and
quantum-mechanical results is also valid. However, papers
[63 ë 65] were recently published in which the procedure of
quantisation of electromagnetic éelds was generalised to the
case of dispersion and absorbing media. Within the frame-
work of this generalised theory, the quantum-mechanical
and classical calculations of spontaneous transition rates are
also identical in the érst order of the perturbation theory.

2.5 Experimental veriécation of the theory

Although the theoretical approaches discussed above are
based on the fundamental principles of quantum and
classical electrodynamics, the experimental veriécation of
speciéc theoretical results is desirable because the concept
of the dielectric constant becomes inapplicable sooner or
later.

Experiments with single atoms located near macroscopic
bodies are very complicated, and at present only the life-
times of atoms and ions located near a partially reêecting
êat surface have been reliably measured [36, 66]. The
geometry of such experiments is shown in Fig. 2. In these
experiments, êuorescence was studied in samples with dif-

ferent widths of a dielectric layer separating an atom or an
ion from a mirror.

The emission of an atom in such geometry has been well
studied theoretically using both classical [59, 66] and quan-
tum-mechanical [67] approaches. In particular, the change
in the spontaneous decay rate in an atom with the per-
pendicular orientation of the dipole moment located at a
distance z from the surface of a half-space with the dielectric
constant e is [67]

g
g0
� 1� 3

��1
0

dtT�t� cos�2zot�

�
�1
0

dtA�t� exp
h
ÿ 2zot�eÿ 1�1=2

i�
,

(2.16)

T�t� � 1

2

ÿ
1ÿ t 2

� etÿ ÿeÿ 1� t 2
�1=2

et� ÿeÿ 1� t 2
�1=2 ,

A�t� � e�eÿ 1�1=2 �eÿ 1�t 2 � 1

�e 2 ÿ 1�t 2 � 1
t
ÿ
1ÿ t 2

�
.

For a multilayer medium, which describes the experimental
geometry more adequately, similar, but more cumbersome,
expressions take place [59].

Dielectric spacer (5ë500 nm)

Eu 3� emitters

Optically thick (200 nm)

metal (Ag) mirror

Figure 2. Geometry of the experimental setup for measurements of êuo-
rescence of an atom located near a partially reêecting boundary.
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Figure 3. Experimental (circles) and calculated (solid curve) lifetimes of
the excited Eu3� ion located near an Ag mirror as functions of the
distance to the mirror [36].

Spontaneous emission of an atom in the presence of nanobodies 573



Fig. 3 shows that the measured lifetimes of the Eu 3� ion
located near an optically thick silver mirror well agree with
the corresponding theoretical curve [36] down to the dis-
tance to the mirror equal to several nanometres. This
agreement demonstrates the correctness of the theoretical
approaches and allows one to study theoretically (and then
experimentally) spontaneous emission of an atom located
near spheres, cylinders, spheroids, and cones.

The authors of paper [68] studied very recently the effect
of a hole of diameter 80 nm in the aperture of a scanning
microscope on spontaneous emission of a single molecule.
In this paper, good agreement was obtained between expe-
rimental data and the predictions of a simple two-dimensi-
onal model when the molecular dipole moment was directed
perpendicular to the aperture. In the case of other dipole-
moment orientations, no agreement was observed, which
means that a more exact three-dimensional model should be
developed.

3. Spontaneous emission of an atom
located near a dielectric microsphere

The spherical geometry has been studied most thoroughly
[69 ë 90], as a rule, using the classical approach. In our
opinion, the quantum-mechanical approach in more appro-
priate in the spherical case whose geometry is shown in
Fig. 4. The quantisation of an electromagnetic éeld for such
geometry is also well known [83 ë 85].

In the case of electric dipole transitions, both transverse
magnetic (TM) and transverse electric (TE) modes can be
excited. In the case of radial orientation of the transition
dipole moment, only TM modes can be excited. The expres-
sions for the electric éeld strength e (s; r) of the sth mode can
be readily obtained in terms of spherical harmonics Ynm and
spherical Hankel (hn) and Bessel ( jn) functions [86ë88]:

eTM�n;m; K� � ÿ
1

k0e2
H� ��a �1�TMnh

�1�
n �k2r�

� a �2�TMnh
�2�
n �k2r�

�
L̂Ynm�W;j�

	
; r > a (3.1)

for transverse magnetic modes and

eTE�n;m; K� �
�
a �1�TEnh

�1�
n �k2r�

� a �2�TEnh
�2�
n �k2r�

�
L̂Ynm�W;j�; r > a (3.2)

for transverse electric modes. Here, m, n, and K are the
azimuthal, orbital, and radial quantum numbers; k1;2�e1=21;2 k
� e1=21;2 o (n, K)=c are the wave numbers inside the sphere and
outside it; k � o=c is the wave number in a free space;
L̂ � ÿi�rH� is the angular momentum operator; and a is the
microsphere radius. The set of quantum numbers n,m, K
forms the vector index s � fn,m, Kg used above. Similar
expressions are valid for the electric éeld inside a sphere
and for magnetic éelds.

The coefécients a
�1;2�
TMn;TEn can be found in a usual way

from the condition of the continuity of the tangential
components of the éeld at the sphere boundary and the
normalisation of the wave functions in a sphere of radius L
per one photon in the quantised mode:

a �1�TMn

a �2�TMn

� 1ÿ 2qn ,

(3.3)

qn �
�
e1

d

dz2
�z2 jn�z2�� jn�z1� ÿ e2

d

dz1
�z1 jn�z1�� jn�z2�

�

�
�
e1

d

dz2

�
z2h
�1�
n �z2�

�
jn�z1� ÿ e2

d

dz1
�z1 jn�z1��h�1�n �z2�

�ÿ1
,

a �1�TEn

a �2�TEn

� 1ÿ 2pn ,

(3.4)

pn �
�

d

dz2
�z2 jn�z2�� jn�z1� ÿ

d

dz1
�z1 jn�z1�� jn�z2�

�

�
�

d

dz2

�
z2h
�1�
n �z2�

�
jn�z1� ÿ

d

dz1
�z1 jn�z1��h�1�n �z2�

�ÿ1
,

��a �1�TMn

��2 � ��a �2�TMn

��2 � ��a �1�TEn

��2 � ��a �2�TEn

��2 � 2p�hc

L
k 3
0

n�n� 1� . (3.5)

Here, 1ÿ 2qn and 1ÿ 2pn are the Mie reêection coefécients
[89]; z1 �

��
e
p

ka; z2 � ka; e1 � e is the dielectric constant of
the microsphere; and e2 � 1. Note that upon the normali-
sation of the wave functions the contribution from the re-
gion inside the dielectric microsphere is negligible compared
to that from the region with r � L.

To study the interaction of the atomic oscillator with the
continuum of the electromagnetic modes modiéed by the
presence of the dielectric microsphere, one should also know
the density of énal states, i.e., the number of states of the
electromagnetic éeld in the unit energy interval. The require-
ment for the disappearance of the tangential components of
the electric éeld for the TM modes on the inner surface of
the quantisation sphere leads to the transcendental equation

d

dr
�rZ�

���
r�L
� 0,

(3.6)

Z � a �1�TMnh
�1�
n

�
os

c
r

�
� a �2�TMnh

�2�
n

�
os

c
r

�
,

Atomic dipole

e2 � 1

z

y

L!1

x

Dielectric sphere

Quantisation

boundary

e1 � e

a

r

Figure 4. Geometry in a spherical case.
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which has asymptotic solutions

os �
�
K� n� 1

2

�
pc
l
� . . . . (3.7)

This means that the density of énal states will be described
by a simple expression

rTM�o� �
dK

d��hos�
� L

p�hc
, (3.8)

which coincides with the density of énal states in the ab-
sence of the microsphere. In the case of TE mode, the densi-
ty of states is the same.

The independence of the density of énal states in a large
cavity (with radius L!1) of the presence of the micro-
sphere inside it is a corollary of the general theorem about
the asymptotic distribution of eigenvalues [91], so that the
change in the spectroscopic parameters of the atom located
near meso- and nanostructures (of énite volume) is deter-
mined only by the properties of the transition matrix ele-
ment and the wave functions of photons.

Having found the wave functions and densities of énal
states, we can immediately obtain the spontaneous decay
rates from Eqn (2.15). By substituting Eqns (3.1), (3.2), and
(3.8) into Eqn (2.15) and dividing the result by the sponta-
neous transition rate in a free space

g0 �
4

3

d 2k 3

�h
, (3.9)

we obtain the expressions for the rate of electric E1 tran-
sitions with the radial orientation of the electric dipole
moment (r > a) [73, 81]:�

g
g0

�
rad

� 3

2

X1
n�1

n�n� 1��2n� 1�

�
�j jn�k2r� ÿ qnh

�1�
n �k2r�j

k2r

�2
. (3.10)

For the tangential orientation, we have�
g
g0

�
tan

� 3

2

"P1
n�1

�
n� 1

2

�h�� jn�z 0� ÿ pnh
�1�
n �z 0�

��2i
(3.11)

�
X1
n�1

�
n� 1

2

�
1

z 0
d
h
z 0
�
jn�z 0� ÿ qnh

�1�
n �z 0�

�i
dz 0

������
������
2
#
z 0�k2r.

In the case of a sphere with the radius small compared to
the emission wavelength, ka! 0 (nanosphere), only the érst
term is substantial in Eqns (3.10) and (3.11), and we have�

g
g0

�
rad

ÿ!ka!0
���� 3e
e� 2

���� 2, (3.12)

�
g
g0

�
tan

ÿ!ka!0
���� 3

e� 2

���� 2. (3.13)

Fig. 5 shows the dependences of the decay rates on the
sphere radius. In the region of small radii, the behaviour of
the curves is determined by asymptotics (3.12) and (3.13).
As the sphere radius increases, the resonance modes can be

excited in the sphere (whispering gallery modes [18 ë 20]).
These modes are quite interesting, but their analysis is
beyond the scope of our review devoted to nanoobjects,
where such resonances are absent.

The case of a perfectly conducting (metal) surface is
obtained if the dielectric constant e in Eqns (3.10) and (3.11)
tends to inénity. As a result, the expressions for the Mie
coefécients are simpliéed:

qnmet �
d

dz2
�z2 jn�z2��

. d

dz2

h
z2h

�1�
n �z2�

i���
z2�ka

, (3.14)

pnmet �
jn�ka�
h
�1�
n �ka�

; (3.15)

and the rates are described by expressions (3.10) and (3.11)
in which the replacements qn ! qnmet and pn ! pnmet are
made. On the surface of the metal sphere, the expressions
for the rates are substantially simpliéed [90]:�

g
g0

�
rad

� 3

2�ka�4
X1
n�1

n�n� 1��2n� 1���h �1�n �ka�
��2 , (3.16)

�
g
g0

�
tan

� 0. (3.17)

In the case of an inénitely small conducting sphere, we have
instead of Eqns (3.16) and (3.17)�

g
g0

�
rad

� 9, (3.18)

�
g
g0

�
tan

� 0. (3.19)

respectively. These expressions are, of course, consistent
with expressions (3.12) and (3.13).

So far, we considered a dielectric sphere without losses.
However, a complete electrodynamic problem for this
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Figure 5. Dependences of the rate of dipole E1 transitions of different
orientations on ka for an atom located near a dielectric sphere (e � 6)
and a perfectly conducting sphere.
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sphere has an analytic solution and, therefore, we can con-
sider the sphere with losses. In this case, the classical
approach [expression (2.8)] is the most convenient. Then,
the spontaneous decay rate for the transition with the radial
orientation will have the form [73, 81]�

g
g0

�
rad

�

1ÿ 3
2
Re

X1
n�1

n�n� 1��2n� 1�qn
�
h �1�n �kr�

kr

�2" #
: (3.20)

When the dielectric constant e is real, expression (3.20)
coincides with Eqn (3.10), whereas this is not the case for a
sphere with inner losses. Expression (3.10) describes only
radiative losses, whereas expression (3.20) takes into acco-
unt Joule losses inside the sphere as well. For small spheres
( ka! 0), i.e., nanospheres, this difference becomes signié-
cant. Indeed, in this case the relative rate of radiative losses
obtained from Eqn (3.10) is

�
g
g0

�radiative
rad

ÿ!ka!0
����1� 2�eÿ 1�

e� 2

�
a

r

�3����2, (3.21)

whereas for the total rate we obtain from (3.20) the
expression�

g
g0

�total
rad

ÿ!ka!0
Re 1� 2�eÿ 1�

e� 2

�
a

r

�3" #( )

� 3

2�ka�3
�
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r

�4
Im
X1
n�1

n�n� 1�
�
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r

�2n

�
� �eÿ 1��n� 1�

en� n� 1
�O

ÿ
ka 2
��
. (3.22)

Comparison of expressions (3.21) and (3.22) shows that the
total rate of losses contains the term, which inénitely (as
1=(ka)3) increases with decreasing the sphere radius. More-
over, one can see from Eqns (3.20) and (3.22) that the rate
of nonradiative processes in the atom located near the sur-
face (r! a) of a sphere with losses tends to inénity. Fig. 6
shows the dependences of the rates of radiative and total
losses for gold, silver, and diamond nanospheres with ka �
0.2. One can see that the loss rate increases when the atom
approaches the nanosphere surface and that the radia-tive
loss rate near the conducting nanosphere increases neg-
ligibly compared to the nonradiative (Joule) loss rate.
Expressions (3.21) and (3.22) are valid in most practically
important cases. However, there exists a region of para-
meters where these expressions cannot be applied. The case in
point is the electromagnetic trap (plasmon resonance), when
the condition je� 2j5 (ka)2 5 1 is fulélled [94]. In partic-
ular, for a potassium sphere at the wavelength 578 nm and
e � ÿ2:46� i0:295, we have je� 2j � 0:5, and for ka � 0.8
the above condition is approximately fulélled. It seems that
in some situations this condition is even better fulélled and
je� 2j � 0. In this case, the Joule losses will be small,
whereas the radiative losses and the decay rate will become
very large (the upper curve in Fig. 6). For e � ÿ2, we have
for nanospheres instead of expressions (3.21) and (3.22)

�
g
g0

�radiative
rad

ÿ!e�ÿ2; ka!0 25

4�ka�4
�
a

r

�6
� . . . . (3.23)

Note that these relations are only valid under conditions of
the plasmon resonance and we are not aware of materials
that would provide the conditions for the existence of this
resonance in spheres. The case of spheroidal particles is
more favourable for the resonance existence (see section 5
below).

As a whole, a sphere of size that is small compared to the
emission wavelength (nanosphere) substantially affects the
decay of the excited state of an atom. In the case of a die-
lectric nanosphere (small inner losses, e 005 e 0), the excita-
tion energy is emitted as photons, the radiative decay rate
being several times increased or decreased depending on the
orientation of the transition dipole moment. In the case of a
metal nanosphere (large inner losses), the energy of the
excited atom is mainly dissipated inside the nanosphere; the
rate of this nonradiative process substantially increases both
with decreasing sphere radius and when the atom is app-
roaching the sphere surface. In a special case (plasmon re-
sonance, e � ÿ2), the decay is still radiative (the energy
escapes to inénity as photons), but its rate is inversely pro-
portional to the fourth degree of the sphere radius.

4. Spontaneous emission of an atom
located near an inénite circular cylinder

The case of a cylinder is more complicated and the number
of papers devoted to its study is much smaller. A classical
problem on emission of currents arbitrarily distributed near
a conducting cylinder was considered in paper [95]. The me-
thod for solving a classical problem on a dipole located on
the dielectric cylinder axis was proposed in paper [96]. More
detailed studies were performed in papers [97 ë 99] where
the main attention was paid to numerical calculations. The
case of dipole and quadrupole transitions in an atom loca-
ted near a perfectly conducting cylinder was studied in de-
tail, both analytically and numerically in paper [57].

In the cylindrical case, it is also convenient to use the
quantum-mechanical approach to the problem in which a
cylinder and an atom are surrounded by a coaxial perfectly
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Total
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(plasmon resonance)

Silver

Radiative
losses Diamond

1
1.1 1.3 1.5 1.7 1.9 r=a

(g=g0)rad

102

103

10

Figure 6. Dependences of the rates of dipole E1 transitions on the
distance of an atom from the surface of diamond (e � 6), gold (e � ÿ8:37
�i1:16, l � 600 nm [92]), and silver (e � ÿ15:37� i0:231, l � 632:8 nm
[93]) nanospheres.
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conducting surface of radius L and length L. In fact, the
total system represents a coaxial resonator of limited length.
The geometry of the problem is shown in Fig. 7. In this case,
the expressions for the electric éeld strength e (s, r) of the sth
TM mode in terms of Bessel functions have the form [100]

ez � CTMv 2�Jm�vr� ÿ Ym�vr�qTM�m; va��eimj cos�hz�,

er � ÿCTMvh�J 0m�vr� ÿ Y 0m�vr�qTM�m; va��eimj sin�hz�, (4.1)

ej �
ÿiCTMhm

r
�Jm�vr� ÿ Ym�vr�qTM�m; va��eimj sin�hz�;

where the prime denotes a derivative with respect to the
argument; h is the longitudinal wave number; v is the radial
wave number;

qTM�m; va� �
Jm�va�
Ym�va�

;
(4.2)

CTM �
�

4p�hos

LLv�1� q 2
TM�m; va��k 2

�1=2

.

Expression (4.1) provides the fulélment of the boundary
conditions for TM modes on the cylinder surface (r � a) for
any h and v. To provide the fulélment of the boundary
conditions on the quantisation cylinder surface (z � 0, L;
r � L), the quantities h and v should satisfy the following
conditions

h � pnz
L

; nz � 0; 1; 2; . . . ;

(4.3)

Jm�vL� ÿ Ym�vL�qTM�m; va� � 0.

In the limit L!1, the second equation in (4.3) has the
asymptotic solution

v � p
L

�
nr �

m

2
� 1

4

�
� . . . ; nr � 0; 1; 2; . . .. (4.4)

A set of quantum numbers m, nz, nr forms the vector index
s � fm, nz, nrg for the TM modes, which was used above.

The transverse electric modes are quantised similarly to
the TM modes.

The limited coaxial resonator under study, which is
formed by the cylinder and the quantisation volume, has the
so-called fundamental modes along with the modes consid-
ered above [100]. In our case, however, the fundamental
modes do not contribute to the spontaneous decay rate in
the limit L!1.

In the case of a cylindrical geometry, the fundamental
mode frequencies are determined by the well-known expres-
sion

os � c
ÿ
v 2 � h 2

�1=2
, (4.5)

where h and v are determined by quantisation conditions
(4.3) and (4.4).

To énd the spontaneous decay rates in accordance with
the Fermi golden rule, the density of énal states should be
also known. It follows from Eqn (4.5) that the density of
énal states is determined by the following simple expression:

rTM�o� � d�oÿ os�nz; nr��
dnzdnr

�h

� d
h
oÿ c

ÿ
h 2 � v 2

�1=2iLLdhdv
p2�h

� LL
p2�hc

k

v
dh . (4.6)

In deriving expression (4.6), we have passed in a usual
way from discrete variables nz, nr to continuous wave
numbers h and v. As a result, only the longitudinal wave
number is an independent variable, which characterises the
énal state, and we should perform integration with respect
to this number. The radial wave number is determined by
the relation v � (k 2 ÿ h 2�1=2. In the case of the TE modes,
the density of states is the same.

By substituting the found density of énal states into Eqn
(2.15), we obtain the expression for the spontaneous tran-
sition rate for the atom located at the point r0 � (b, 0, 0):

gdip �
LL
p�h2c

� Xm�1
m�ÿ1

� k

0
jeTM�m; r0�dj2

k

v
dh

�
Xm�1

m�ÿ1

� k

0
jeTE�m; r0�dj2

k

v
dh

�
. (4.7)

By substituting into Eqn (4.7) expressions (4.1) for parti-
cular photon wave functions and their analogues for TE
modes, we obtain the expressions for spontaneous decay
rates for arbitrary orientations of the dipole moment [57]:
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Figure 7. Geometry of a cylindrical case.
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Fig. 8 shows spontaneous decay rates as functions of the
distance between the atom and the cylinder for different
orientations of the atomic dipole moment. One can see that
the most strong changes occur when the atom is located
very close to the cylinder surface (b! a). In this case, it
follows from (4.9) and (4.10) that the spontaneous decay
rates for tangential orientations of the dipole are zero for
any radius of the cylinder (one can also see this in Fig. 8).

On the other hand, the spontaneous transition rate in the
atom on the cylinder surface (a � b) with the radial orien-
tation of the dipole moment substantially increases com-
pared to the case of a free space and can be written in the
form [57]

gr
g0
� 6

p2
X1
n�ÿ1

� k

0

dh
h 2

k 3�va�2
1��H �1�n �va�

��2
� 6
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n�ÿ1

� k

0
dh

n 2

k�va�4
����� ddzH �1�n �z�

���
z�va

�����
ÿ2
. (4.11)

Moreover, when the cylinder radius tends to zero, the
spontaneous decay rate of the atom with the radial orien-
tation of the dipole moment tends to inénity. In the limit
ka � kb! 0, the TM mode with n � 0 makes the main
contribution into Eqn (4.11) [57]:

gr
g0

ÿ!kb�ka!0 3

2�ka�2
�
1� 2

p
arctanL �

� 4�ln 2ÿ 1�
p2�1� L �2� � . . .

�
� 4� . . . ,

L � � 2

p

�
ln
ka

2
� g
�
; g � 0:5772 . (4.12)

Such behaviour has no analogue in the case of a per-
fectly conducting sphere of small radius, when the decay
rate remains énite. Physically, this effect is explained by the
fact that the radial dipole excites in the cylinder a current
wave which weakly decays with distance and is a source of a
high-power radiation. Fig. 9 shows the dependences of the
spontaneous decay rates of the atom on its distance to the
cylinder, sphere, and plane surfaces. One can see that the
decay rate most strongly increases near the cylinder surface,
while near the perfectly conducting plane the increase in the
decay rate is minimal.

The problem on a dielectric cylinder can be solved simi-
larly to the case of a perfectly conducting cylinder, which
was considered above. A complete solution is rather cum-
bersome, however, when the cylinder radius is small com-
pared to the emission wavelength (nanocylinder), simple
asymptotics can be obtained (an atom located on the sur-
face, radial orientation) [101]:

gr
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�
�

2e
e� 1

�2

� e 2�eÿ 1��15e 2 � 60e� 2201ÿ 1680�g� ln�ka��	�ka�2
300�e� 1�3

� 12

�ka�4
eÿ 1
e� 1

exp

�
ÿ 2

�ka�2
e� 1
eÿ 1

� e� 1
4
ÿ 2g

�
. (4.13)

The exponentially small term in this expression is related
to the fundamental mode existing in a dielectric cylinder of
an arbitrarily small thickness [102]. Fig. 10 shows the depen-
dences of the decay rates on the distance from the atom to
the cylinder surface for different dielectric constants.

As a whole, a nanocylinder strongly affects the excited-
state decay in the atom. In the case of a perfectly conducting
cylinder, the decay is purely radiative and its rate can in-
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Figure 8. Rates of the dipole E1 transitions in an atom located near the
surface of a perfectly conducting cylinder as functions of the atom posi-
tion for different orientations of the dipole moment.
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Figure 9. Rates of the dipole E1 transitions in an atom located near
different surfaces as functions of the atom position for the radial
orientation of the dipole moment.
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crease inénitely with decreasing cylinder radius (radial ori-
entation of the transition dipole moment). In the case of a
dielectric cylinder, the decay is more complicated: a fraction
of the energy is emitted to inénity as photons, while the re-
maining fraction is transformed to the energy of undamped
waveguide modes of the cylinder and, hence, is not emitted. In
the case of a dielectric cylinder of small radius, the intensities
of nonradiative processes are exponentially small.

The general case of a cylinder with losses has not been
studied in detail. However, in this case, as for a sphere, the
imaginary part of the dielectric constant also causes a
substantial increase in the nonradiative decay rate and in
the total decay rate. Spontaneous emission of an atom in the
case of a plasmon resonance in the cylinder (the dielectric
constant e � ÿ1) also has not been studied; however, it is
clear that in this case the radiative decay rates also will be
substantially greater.

5. Spontaneous emission of an atom
located near a dielectric prolate spheroid

The case of a dielectric spheroid attracts a special attention
because a dielectric microsphere and a cylinder considered
above are particular cases of a prolate spheroid. A classical
problem of scattering of plane waves by dielectric spheroids
has been studied in Refs [103, 104]. A particular problem
on the axially symmetric emission near a perfectly conduc-
ting spheroid has been considered in Ref. [105]. However,
as far as we know, the problem on spontaneous emission of
an atom located near a dielectric nanospheroids has not
been solved.

In this connection we consider the case of a small (com-
pared to the wavelength) prolate spheroid assuming that an
atom is located near the spheroid. The geometry of the pro-
blem is shown in Fig. 11. In this case, according to expres-
sion (2.9), the spontaneous decay rate is determined by the
total dipole moment of the system. The total dipole moment
can be found by solving the quasi-static problem

rotE � 0; divD � 4pr, (5.1)

where the density of the dipole charge is determined by the
usual expression

r � ÿ�d0�d�rÿ r 0�eÿiot. (5.2)

Hereafter, we will not specify the time dependence of the
éelds.

By introducing the potential ~j with the help of the
expression

E � ÿH�d0H
0�~j�r; r 0� (5.3)

we obtain instead of (5.1)

ÿH 2~j � 4pd�rÿ r 0� outside the spheroid;
(5.4)

ÿH 2~j � 0 inside the spheroid.

At the interface, the continuity conditions should be
satiséed for normal components D and tangential compo-
nents E.

The solution of the problem (5.4) can be conveniently
represented in the form

~j � j0 � j2 outside the spheroid;
(5.5)

~j � j1 inside the spheroid,

where

j0 �
1

jrÿ r 0j (5.6)

is the potential in a free space.
It is reasonable to solve the electrostatic problem (5.4) ë

(5.6) for a prolate spheroid in prolate spheroidal coordi-
nates, in which the z axis coincides with the axis of the sys-
tem. The relation between spheroidal and Cartesian coordi-
nates has the form [106]

x � f ��1ÿ Z2��x 2 ÿ 1��1=2 cosj,

y � f ��1ÿ Z2��x 2 ÿ 1��1=2 sinj, (5.7)

z � f xZ.

The parameter x is an analogue of the radius in a spherical
coordinate system and determines the ratio of the minor
axis a of a spheroid to its major axis b:
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Figure 10. Rates of the dipole E1 transitions in an atom located near the
surface of a dielectric cylinder as functions of the atom position for
different dielectric constants and the radial orientation of the dipole
moment.
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Figure 11. Geometry of the problem on spontaneous emission of an
atom located near a prolate spheroid.
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� �x

2 ÿ 1�1=2
x

. (5.8)

The Lame
0
parameters in this coordinate system have the

form

gx � f

�
x 2 ÿ Z2

x 2 ÿ 1

�1=2
; gZ � f

�
x 2 ÿ Z2

1ÿ Z 2

�1=2
,

(5.9)

gj � f ��1ÿ Z2��x 2 ÿ 1��1=2.

The Green function (5.6) in a free space can be repre-
sented in the form [106]

j0�
1

jrÿ r 0j �
1

f

X1
n�0

Xn
m�0
�2ÿ dm0��ÿ1�m�2n� 1�

� �nÿm�!
�n�m�!

�2
(5.10)

�Pm
n �Z�Pm

n �Z 0� cosm�jÿ j 0� Pm
n �x�Qm

n �x 0�; x<x ',
Pm
n �x 0�Qm

n �x�; x>x '

�
.

In Eqn (5.10) and below, P and Q are the associated
Legendre polynomials of the érst and second kind, respec-
tively [107]. The associated polynomials with the argument Z
are deéned on the cut ÿ1 < Z < 1, while the associated
polynomials with the argument x > 1 have the cut from ÿ1
to 1.

Expansion Eqn (5.10) can be conveniently represented in
the form

j<0 �
X1
n�0

Xn
m�0

Pm
n �Z�Pm

n �x�

��a 0<
nm cosmj� b 0<

nm sinmj�; x < x 0,
(5.11)

j>0 �
X1
n�0

Xn
m�0

Pm
n �Z�Qm

n �x�

��a 0>
nm cosmj� b 0>

nm sinmj�; x > x 0,

where the coefécients a 09
nm , b 09

nm have the form

a 0<
nm

b 0<
nm

� �
� �2ÿ dm0��ÿ1�m�2n� 1�

� �nÿm�!
�n�m�!

�2
�Pm

n �Z 0�Qm
n �x 0� cosmj

sinmj

� �
, (5.12)

a 0>
nm

b 0>
nm

� �
� �2ÿ dm0��ÿ1�m�2n� 1�

� �nÿm�!
�n�m�!

�2
�Pm

n �Z�Pm
n �x 0� cosmj

sinmj

� �
. (5.13)

We will seek the solution of the problem (5.4) ë (5.6) in
the region x0 < x < x 0 (between the spheroid and dipole) in
the form

~j �
X1
n�0

Xn
m�0

Pm
n �Z�Pm

n �x��a 0<
nm cosmj� b 0<

nm sinmj�

�
X1
n�0

Xn
m�0

Pm
n �Z�Qm

n �x��a �2�nm cosmj� b �2�nm sinmj�, (5.14)

and in the region 1 < x < x0 (inside the spheroid) in the
form

~j �
X1
n�0

Xn
m�0

Pm
n �Z�Pm

n �x�
ÿ
a �1�nm cosmj� b �1�nm sinmj

�
. (5.15)

The continuity condition for the tangential components
of the éeld and the normal components of the induction al-
low us to énd the coefécients determining the éelds outside
the spheroid:

a �2�nm � �eÿ 1�Pm
n �x0�Pm 0

n �x0�
�
Qm 0

n �x0�Pm
n �x0�

ÿ ePm 0
n �x0�Qm

n �x0�
�ÿ1a 0<

nm � Gnma
0<
nm ; (5.16)

b �2�nm � Gnmb
0<
nm .

Note that expressions (5.16) become inénite for some
real values of the dielectric constant, so that our quasi-static
problem has no solution. In this case, as in the case of a
dielectric sphere, an electrodynamic trap appears (plasmon
resonance), which can be described only within the frame-
work of the complete electrodynamic theory. It is obvious
that the decay rate substantially increases in this case. We
will analyse this case below.

Taking Eqns (5.11) and (5.14) into account, the total
potential at large distances from the dipole takes the form

~j> �
X1
n�0

Xn
m�0

Pm
n �Z�Qm

n �x�
�ÿ
a 0>
nm � Gnma

0<
nm

�
cosmj

� ÿb 0>
nm � Gnmb

0<
nm

�
sinmj

�
; x > x 0. (5.17)

To énd the spontaneous decay rate according to (2.9),
we should énd the total dipole moment of the system. For
this purpose, we énd the asymptotics of Eqn (5.17) at large
distances from the spheroid and the dipole, i.e., for x!1.
One can easily see that the terms with n � 1 (dipole radi-
ation) make the dominant contribution in this region:

~j> � 1

x f
� 1

x 2f

�
P1�Z 0�P1�x 0�

�
1� G10

Q1�x 0�
P1�x 0�

�
cos y

�P 1
1 �Z 0�P 1

1 �x 0�
�
1� G11

Q 1
1 �x 0�

P 1
1 �x 0�

�
sin y cos�jÿ j 0�

�
. (5.18)

The dipole potential has the form

j> � �d0H
0�~j>. (5.19)

By differentiating this expression and comparing the result
with the expression for the dipole potential

jdip �
dtotR
R 3

, (5.20)

we can énd the total dipole moment of the system and,
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taking Eqn (2.9) into account, the change in the sponta-
neous decay rate. For the orientation of the dipole moment
along axes x, Z, and j, we have [108]

gx
g0
� x 2 ÿ 1

x 2 ÿ Z 2

�
Z 2�1� G10Q

0
1�x��2

��1ÿ Z 2�
�

x

�x 2 ÿ 1�1=2
� G11Q

1
1
0�x�
�2�

, (5.21)

gZ
g0
�
�
Z 2�x 2 ÿ 1�

�
1� G11

Q1
1�x�

�x 2 ÿ 1�1=2
�2

��1ÿ Z 2�x 2

�
1� G10

Q1�x�
x

�2�
�x 2 ÿ Z 2�ÿ1, (5.22)

gj
g0
�
�
1� G11

Q 1
1 �x�

�x 2 ÿ 1�1=2
�2

. (5.23)

In expressions (5.21) ë (5.23) and below, we omit the prime
at the variables describing the atom position.

The coefécients G10 and G11 are determined by expres-
sion (5.16) and have the form

G10 �
�eÿ 1�x0

Q01�x0�x0 ÿ eQ1�x0�
,

(5.24)

G11 �
�eÿ 1�x0

Q1
1
0�x0��x 2

0 ÿ 1�1=2 ÿ ex0Q 01�x0�
:

From the physical point of view, the following particular
cases are of interest: an atom located on the spheroid pole
(Z � 1), an atom located on the spheroid equator (Z � 0),
the limiting case of a sphere (x0 � 1), the limiting case of a
tip (x0 � 0) and, énally, the limiting case of a perfectly
conducting plane.

When an atom is located on the pole (Z � 1), expressions
(5.21) ë (5.23) are simpliéed:

gx; Z�1
g0
�
�
1� G10

d

dx
Q1�x�

�2
, (5.25)

gZ; Z�1
g0
� gj; Z�1

g0
�
�
1� G11

d

dx
Q1�x�

�2
. (5.26)

When an atom is located on the equator (Z � 0), we have

gx; Z�0
g0
�
�
1� G11

d

dx
Q 1

1 �x�
�x 2 ÿ 1�1=2

x

�2
(5.27)

gZ; Z�0
g0
�
�
1� G10

Q1�x�
x

�2
, (5.28)

gj; Z�0
g0
�
�
1� G11

d

dx
Q1�x�

�2
. (5.29)

The most interesting feature of the spontaneous decay
rate for the dipole orientation along the j axis is the inde-
pendence of this rate of the coordinate Z for any spheroid.
By the way, this also follows from general expression (5.23).
Dependences (5.25) ë (5.29) for nanospheroid with x0 � 1:1
are shown in Fig. 12. One can see that, as in the case of a
sphere, the radial orientation of the dipole moment results in
a stronger increase in the decay rate.

The results can be further simpliéed if we assume that
the atom is located very close to the spheroid surface
(x! x0). In this case, we obtain instead of Eqns (5.25) ë
(5.29) for the atom on the pole (Z � 1)

gx; Z�1
g0
�
�
2e
�
x0�eÿ 1��x 2

0 ÿ 1� ln x0 � 1

x0 ÿ 1

� 2�e� x 2
0 ÿ x 2

0 e�
�ÿ1�2

, (5.30)

gZ; Z�1
g0
� gj; Z�1

g0
�
�
4

�
x0�eÿ 1��x 2

0 ÿ 1� ln x0 � 1

x0 ÿ 1

� 2�x 2
0 ÿ x 2

0 eÿ 2�
�
ÿ1
�2

. (5.31)

In the case of the atom located on the equator (Z � 0), we
have

gx; Z�0
g0
�
(
4e
�
x0�eÿ 1��x 2

0 ÿ 1� ln x0 � 1

x0 ÿ 1

� 2�x 2
0 ÿ x 2

0 eÿ 2�
�ÿ1)2

, (5.32)

gZ; Z�0
g0
�
(
2

�
x0�eÿ 1��x 2

0 ÿ 1� ln x0 � 1

x0 ÿ 1

�2�e� x 2
0 ÿ x 2

0 e�
�ÿ1)2

. (5.33)

gj; Z�0
g0
� gj; Z�1

g0
. (5.34)

These expressions demonstrate that decay rates (5.30)
exceed decay rates (5.33) by a factor of e 2 for spheroids
of any shape. A similar relation takes place for Eqns (5.32)
and (5.31), (5.34).

The expressions presented above are valid for spheroids
of any shape. The decay rates for different positions and
orientations of an atom can be easily obtained for a sphere

x0 � 1:1

e=6

10

g=g0

0.2
0 0.5 1.0 1.5 xÿ x0

5

0.5

1

2

Figure 12. Rates of the dipole E1 transitions in an atom located near the
nanospheroid surface as functions of xÿ x0 for different orientations of
the dipole moment (x0 � 1:1, e � 6)
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(x0 !1) and a thin tip (x0 ! 1) from expressions (5.30) ë
(5.34). For clarity, various results are summarised in Table
1, which demonstrates that the decay rates in the case of a
spherical geometry completely coincide with the exact solu-
tion of the problem on the dipole emission in the presence of
a dielectric sphere [81].

A comparison with the results of the study of the dipole
emission in the presence of an inénite circular cylinder
[57, 101] is more interesting. In the case of a dielectric cylin-
der of small radius, the relative decay rates completely coin-
cide with the rates near (on the equator) a strongly prolate
spheroid (except the terms tending to zero with decreasing
cylinder radius). This coincidence additionally conérms the
correctness of our calculations.

As for a perfectly conducting cylinder, in the case of the
radial orientation (x orientation), the results for a cylinder
and a tip do not coincide. In the case of a perfectly con-
ducting cylinder of inénitesimal radius, the decay rate iné-
nitely increases, in accordance with (4.16), whereas for a
perfectly conducting tip, we have

gx
g0
! 4. (5.35)

This difference is explained by the fact that in the case of an
inénite cylinder a current wave is excited in the region whose
dimensions substantially exceed the emission wavelength
[57], so that the quasi-static approximation cannot be used.

Of special interest is the study of a dipole oriented along
the x axis and located on the spheroid pole (an atom located
near the nanoscope tip). One can see from Table 1 that the
relative decay rate increases quadratically with increasing die-
lectric constant. In the case of a perfect conduction, the decay
rate increases inénitely as the spheroid is transformed to a
inénitesimally thin needle. It is quite clear from the physical
point of view because strong éelds always appear on the spike.

In all other cases, a passage to a perfect conductivity is
achieved by directing the dielectric constant to inénity. In
this case, the decay rates for tangential orientations of the
dipole moment always prove to be zero.

The generalisation of the obtained results to the case of a
spheroid with internal losses leads to a much more compli-
cated problem than in the spherical case. The matter is that

because a general analytic solution of the problem on the
dipole emission is absent in the case of a spheroid, the
perturbation theory over the wave vector k can be used [60].
If only the main terms are retained, then the rate of radiative
losses for the atom located on the pole will be described by
the expression

g radiativex; Z�1
g0

�
����1� G10

d

dx
Q1�x�

����2 �O�k2 f 2�, (5.36)

whereas the losses inside the spheroid will be described by
the expression

g lossesx; Z�1
g0
� g totalx; Z�1

g0
ÿ g radiativex; Z�1

g0
� ÿ2

�
ImG10

d

dx
Q1�x�

�2
(5.37)

ÿ 3

2�k0 f �3
Im
X1
n�1
�2n� 1�

�
Gn0

�
d

dx
Qn�x�

�2
�O�k 2f 2�

�
.

Expressions (5.36) and (5.37) are consistent in the limit
x, x0 !1 with expressions (3.21) and (3.22) found for a
spherical particle. The losses inside a spheroidal particle
vanish when the dielectric constant is real. If e 00 6� 0, then
losses (5.37) inside the spheroidal particle can exceed the
radiative losses (5.36).

As for a dielectric microsphere, the conditions can be
found for spheroids at which the solution of the static
problem does not exist and the éeld inside the spheroid can
strongly increase (electrodynamic trap, plasmon resonance).
However, in spheroids, unlike a sphere, the dielectric con-
stant at which an electrodynamic trap appears, depends
both on the dipole orientation and the spheroid shape. The
dependence of the critical dielectric constant, at which the
trap appears, on the axial ratio of the ellipsoid is readily
obtained from expressions (5.30) ë (5.34) and is shown in
Fig. 13. One can see that when the dipole is oriented parallel
to the spheroid axis, the critical dielectric constant changed
from ÿ1 to ÿ2, whereas it varies from ÿ2 to ÿ1 for all
other orientations.

Table 1. Relative rates of radiative losses in an atomic oscillator located on the spheroid surface for different orientations, positions, materials, and
shapes of the spheroid.

Geometry Atom on a pole Atom on the equator

Dipole

orientation
Shape Dielectric Metal (e!1) Dielectric Metal (e!1)

x

sphere

���� 3e
2� e

����2 9

���� 3e
2� e

����2 9

needle jej2
��

ln
2

x0 ÿ 1
ÿ 2
�
�x0 ÿ 1�

�ÿ2 ���� 2e
1� e

����2 4

Z

sphere

���� 3
2� e

����2 0

���� 3
2� e

����2 0

needle

���� 2
1� e

����2 0 1 0

j

sphere

���� 3
2� e

����2 0

���� 3
2� e

����2 0

needle

���� 2
1� e

����2 0

���� 2
1� e

����2 0
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Fig. 14 shows the dependences of the decay rates on the
ellipsoid axial ratio for dipoles oriented parallel to the axis
of gold (e � ÿ8:37� i1:16, l � 600 nm) and silver (e �
ÿ15:37� i0:231, l � 632:8 nm) spheroids. One can see
that the spontaneous decay rate strongly increases (by a
factor of 104 ÿ 106) for the Ag spheroid with b=a � 0:2 and
the Au spheroid with b=a � 0:35. These results are con-
sistent, at least qualitatively, with the experimental results of
paper [50].

As a whole, the effect of a spheroid on spontaneous
emission of an atom is intermediate between the effects of
a sphere and a cylinder and makes it possible to con-
trol eféciently the rates of radiative and nonradiative decay
of excited states of atoms. An important speciéc feature
of a spheroid is that, by varying its shape, i. e., its axial
ratio, the spheroid can be tuned to plasmon resonances
of a substance. On the one hand, this allows one to con-
trol spontaneous decay processes, and on the other, to
measure the frequencies of plasmon oscillations in the
spheroid.

6. Spontaneous emission of an atom located near
a perfectly conducting conical surface

The problem of simulating spontaneous emission of an
atom located near a spike (the tip of a scanning microscope,
Fig. 1) is possibly the most important and most comp-
licated of the problems considered in our review. To solve
this problem, special numerical methods have been deve-
loped which allowed the calculation of the spontaneous
decay rates near a dielectric pyramidal spike [109]. Unfor-
tunately, these methods proved to be too complicated for
making any conclusions about the physics of the processes
involved. For this reason, the study of model problems and,
in particular, the emission of an atom located near a per-
fectly conducting conical surface becomes very important.

The geometry of this problem is shown in Fig. 15. The
classical solution of the axially symmetrical problem on the
dipole emission near a cone was found in papers [102, 110]:

Er �
q 2U

qr 2
� k 2U; Ey �

1
r

q 2U

qrqy
; Ej �

1
r sin y

q 2U

qrqj
,

U � 2id0k
r

r0

X1
n�1

Pvn�cos y�
jvn�kr0�h �1�vn

�kr�
Nn

.

(6.1)

Here, d0 is the oscillation amplitude of the dipole moment;
Pv, jv, and h �1�v are the Legendre functions and spherical
Bessel and Hankel functions, respectively [107]; vn is the set
of solutions of the equation Pvn ( cos y0) � 0, which provide
the fulélment of the boundary conditions on the cone sur-
face; and

Nn �
� y0

0

sin ydyP 2
vn
�cos y�

� ÿ vn
2vn � 1

Pvnÿ1�cos y0�
qPvn�cos y0�

qvn
(6.2)

is the norm.
For not very small apex angles (p=6 < y0 < 5p=6), we can

estimate roots and norms by using approximate expressions

0 0.2 0.4 0.6 0.8 b=a
ÿ102

ÿ10

ÿ1
2

1

e

Figure 13. Critical dielectric constant, at which an electrodynamic trap
(plasmon resonance) appears, as a function of the spheroid axial ratio
b=a for a dipole oriented parallel to the spheroid axis ( 1 ) and for other
dipole orientations ( 2 ).

(g=g0)
radiative

SphereNeedle

0 0.2 0.4 0.6 0.8 b=a

Au
Ag

Atom near a pole;

Atom near the equator

10ÿ2

1

102

104

106

Figure 14. Spontaneous decay rates in an atom located near gold (e �
ÿ8:37� i1:16, l � 600 nm [92]) and silver (e � ÿ15:37� i0:231, l �
632.8 m [93]) as functions of the spheroid axial ratio b=a for the dipole
oriented parallel to the spheroid axis.

Conical surface

(microscope tip)

r0

y0

Dipole

Figure 15. Geometry of a conical case.
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vn �
p
y0

�
nÿ 1

4

�
ÿ 1

2
� cot y0

8pn
�O

�
1

n 2

�
n � 1; 2; 3; . . .,

Nn �
1

2vn � 1

�
3
2
� 1
p

��
G�vn � 1�

G�vn � 3=2�
�2
,

(6.3)

where G is gamma function. To calculate the spontaneous
decay rate, we calculate the emitted energy êux in the wave
zone and divide it by the energy êux from an oscillator in a
free space. As a result, we obtain for the relative transition
rate [111]

g
g0
� 3

�kr0�2
X
n

vn�vn � 1�
Nn

j 2vn�kr0�. (6.4)

For y0 � p=2, a conical surface becomes planar and the
expression for the transition rate is simpliéed:

g
g0
� 1ÿ 3 cos�2kr0�

�2kr0�2
� 3 sin�2kr0�
�2kr0�3

, (6.5)

coinciding, of course, with the expression for the transition
rate in the presence of a conducting plane [16].

In the region of small distances from the cone apex
kr0 5 1, the érst term in (6.4) plays a dominant role, and we
have

g
g0
� 3p

16

v1�v1 � 1�
N1G

2�v1 � 3=2�

�
kr0
2

�2v1ÿ2
, (6.6)

Using the approximate expression (6.3) for the norm, we
obtain

g
g0
� 3p 2

8�3p� 2�
v1�v1 � 1��2v1 � 1�

G 2�v1 � 1�

�
kr0
2

�2�v1ÿ1�
,

(6.7)

v1 �
3p
4y0
ÿ 1

2
� cot y0

8p
.

When the distance from the atom to the spike is not
small, the numerical summation should be performed in
Eqn (6.4). The results of the calculations are presented in
Fig. 16. One can see from this égure that a conical spike
(y0 > p=2) strongly affects the transition rates (increasing
them) only when the atom approaches the spike apex. As the
opening angle decreases (y0 ! p), the inêuence of the spike
is manifested at decreasing distances of the atom from the
angle apex. This means that an inénitely sharp needle does
not affect in fact the spontaneous emission of the atom
located at any small (but énite) distance from its end.

A more interesting behaviour is observed when an atom
is located inside a conical spike [inside a microscope tip
(y0 < p=2)]. In this case, interference effects appear and the
transition rate becomes substantially dependent on the pa-
rameters of the problem. The rate strongly increases at some
points and strongly decreases at other points. As the atom
approaches the spike apex, the transition rate tends to zero
because emission cannot escape at all from such a region.

The case of a perfectly conducting surface considered
above is only the érst step in the study of the inêuence of a
spike on spontaneous emission of an atom. Further studies
should take into account the speciéc properties of the sub-
stance forming the spike or the void. This may lead to the

results that will substantially differ from those presented
above, as was the case on passing from a perfectly con-
ducting cylinder to a dielectric cylinder.

7. Conclusions

We have considered the studies of spontaneous emission of
an atom located near bodies of different shapes and de-
scribed various quantum-mechanical and classical methods
for calculating spontaneous emission rates in the presence
of nanobodies. The theoretical results well agree with the
experimental data for an emitting atom located near a
planar interface [36, 37].

A great part of the review was devoted to particular
calculations of the emission of an atom located near sphe-
rical, cylindrical, spheroidal, and conical bodies. A special
attention was paid to nanobodies, i.e., the bodies in which at
least one of the characteristic sizes was small compared to
the emission wavelength. In addition, we focused attention
on the atom located near the body surface. In all these cases,
we obtained simple analytic expressions for the decay rates
with characteristic values of the parameters. The asymptotic
expressions were presented for the transition rates in the
case of the applicability of the perturbation theory over
the wave vector [60]. It was shown that the radiative and
nonradiative dipole transition rates could increase by several
orders of magnitude in the presence of nanobodies, in qua-
litative agreement with the experimental data.

The results presented in the review can be used in various
éelds of nanophysics, in particular, for describing aperture-
less scanning microscopes. In addition, nanobodies can be
used for studying the properties of weak dipole and quad-
rupole transitions, which are strongly accelerated near nano-
bodies [56, 57].

We also have considered spontaneous emission of an
atom in the presence of nanobodies with the dielectric con-
stant that is typical for usual dielectrics and metals. How-
ever, at present a variety of media were fabricated that
possess unusual dielectric constants. In this connection, it
would be interesting to consider spontaneous emission of an
atom located near active media [112], near dielectric pho-
tonic crystals [29 ë 35, 113] and, énally, near media with
negative refractive indices (e < 0, m < 0) [114 ë 117], where

y0

0

1

2

3

4
g=g0

0.4
0.8

1.2
1.6

10

5

0

kr0

15

Figure 16. Rates of the dipole E1 transitions in an atom located near a
perfectly conducting conical surface as functions of the opening angle y0
and the distance between the atom and the cone apex for the radial
orientation of the dipole moment.
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many new effects can be expected. Nanobodies made of
materials with the negative refractive index are especially
interesting because they can exhibit (unlike usual nanobo-
dies) surface resonance modes, which substantially affect
spontaneous emission [118].
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