
Abstract. The proéles of (1+1)D soliton-like beams are
calculated numerically in a photorefractive medium with
diffusion nonlinearity. The features of the propagation of
nondiffracting beams are considered and it is shown that their
interaction in the medium with diffusion nonlinearity is
accompanied by the energy redistribution resulting in the
fusion of the beams.
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1. Introduction

Studies of spatial solitons in photorefractive crystals (PRCs)
have attracted great recent attention. These crystals exhibit
strong nonlinearity already at the radiation intensity of the
order of several microwatts per square centimetre, thus be-
ing promising media for nonlinear optical devices for data
processing. From practical point of view, of most interest is
the interaction between soliton beams, which is inelastic, as
a rule [1]. In the presence of a strong external static éeld,
the regime of considerable drift nonlinearity can be realised
in a PRC in which solitons of three types can exist: quasi-
stationary solitons, which are formed during slow screening
of the external static éeld [2, 3]; stationary solitons, which
are observed in the nonuniformly screened external éeld
[4 ë 7]; and photovoltaic solitons, which can be observed in
PRCs with high photovoltaic currents [8, 9].

The features of the interaction of coherent [10 ë 13] and
incoherent [14, 15] quasi-stationary and stationary solitons
in PRCs with drift nonlinearity are well studied. However,
the nonlinear response of PRCs is nonlocal due to the pre-
sence of the natural diffusion component [16 ë 18]. The dif-
fusion nonlinear component in the presence of a signiécant
drift component causes the self-bending of a beam during its
propagation [19 ë 26] and also is manifested in the additional
energy redistribution between the interacting beams [24].
The possibility of the experimental realisation of solitons in
a PRC with diffusion nonlinearity was discussed for the érst
time in Ref. [20].

In this paper, we perform for the érst time numerical
simulations of spatial solitons in a PRC with diffusion
nonlinearity. Special attention is given to the study of the
interaction between nondiffracting soliton beams in PRCs.

2. Theoretical model

The material response of a photorefractive medium with
diffusion nonlinearity in the 1D case is described by the
system of equations for an internal electric éeld Esc(x; y; t)
produced by the photoinduced distribution of a spatial
charge [27]:

qne
qt
� qn�d

qt
ÿ 1

e

qj
qx
;

qn�d
qt
� s I� Idark� � nd ÿ n�d

ÿ �ÿ grnen
�
d ; (1)

j � e&neEsc ÿ &kBT
qne
qx

;

qEsc

qx
� 4pe

e
ne � na ÿ n�d
ÿ �

:

Here, ne; nd; n
�
d and na are concentrations of free charge

carriers, donors, ionised donors, and acceptors, respectively;
j is the current density; s is the photoionisation cross sec-
tion; I is the incident radiation intensity; Idark is the effective
dark intensity; gr is the two-body recombination constant;
e and & are the charge and mobility of free carriers, taking
their sign into account (negative for electrons and positive
for holes); e is the static dielectric constant of the PRC; kB is
the Boltzmann constant; and T is the temperature of the
medium. Optical radiation propagates along the z axis.

The system of constitutive equations (1) is solved to-
gether with the standard reduced wave equation for the
complex éeld amplitude A(x; z; t)
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written in the paraxial approximation. In equation (2),
k0 � on=c is the wave number; dn � (1=2)reff n

3Esc(x; z; t) is
the nonlinear addition to the unperturbed refractive index n
of the PRC, which appears in the éeld Esc(x; z; t) due to
linear electrooptical effect; reff is the effective electrooptical
coefécient. Equations (1) and (2) represent a closed self-
consistent system, which adequately describes the relation
between the spatial distribution of the incident beam inten-
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sity and the internal electric éeld Esc in the photorefractive
medium.

We consider the system (1) in the stationary state when
q=qt! 0. Taking into account that na 4 ne for a typical
PRC, the system (1) can be solved for Esc � (kBT=e)
�(qI=qx )�I� Idark)

ÿ1. By substituting this expression into
(2), we obtain the reduced wave equation for the normalised
complex amplitude q(Z; x) of the light éeld:
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Here, q(Z; x) � (Ldif=Lref)
1=2A(Z; x)I ÿ1=2dark the dimensionless

amplitude of the light éeld; Z � x=x0 is the normalised
transverse coordinate; x0 is the characteristic transverse
scale (for example, the input beam radius); x � z=Ldif is
normalised longitudinal coordinate; Ldif � k0x

2
0 is the dif-

fraction length corresponding to x0; Lref � 2ex0=(k0n
2reff

�kBT ) is the nonlinear refraction length; S � Lref=Ldif is
the parameter determining the relative role of diffusion
effects. The typical values of the parameter S in a SnBaNb
crystal for 633-nm HeëNe laser beams of intensity of seve-
ral microwatts per square centimetre, the initial laser beam
diameter x0 � 50 mm, the effective electrooptical coefécient
reff � 10ÿ9 m Vÿ1, and the unperturbed refractive index
n � 2:3 are � 1:0ÿ 2:0.

3. Proéles of nondiffracting soliton-like beams

Note érst of all that, using the known solution q(Z; x;S) of
equation (3) and the transformation qnew(Z; x;Snew� � u1=2

�q(uZ; u2x;S), where u is an arbitrary scaling coefécient, we
can énd a solution for the new parameter Snew � S=u. By
using the known method of transformation to a curved
coordinate system in an arbitrary reduced wave equation
[28], we will seek the stationary solutions of equation (3) in
the form of a beam with the proéle
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which is invariable along the parabolic trajectory
Z � ÿax2=2, where a is the curvature of the parabolic tra-
jectory; b is the propagation constant; r(Z� ax2=2) is the
real envelope. By substituting the éeld in this form into
equation (3) and introducing the parabolic coordinate
z � Z� ax 2=2, we obtain that the beam envelope, as a
function of the variable z, satisées the ordinary differential
equation
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Note that the propagation constant b can be eliminated
from equation (5) with the help of a linear shift along the z
axis.

An analytic solution of equation (5) can be obtained in
two limiting cases: for small amplitudes (r5 1), when
nonlinear terms in the right-hand side of (5) can be neglected
compared to linear terms, and for large amplitudes (r4 1),
when the last term in the right-hand side of (5) can be
linearised. In these limiting cases, the solutions of equation
(5) has the form

r�z� � mAi��2a�ÿ2=32�bÿ az�� �m� 1�;

r�z� � mAif�2a�ÿ2=3�2�bÿ az� � 4Sÿ2�g (6)
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where m is an arbitrary constant. The érst of the solutions
(6) describes the proéle of a beam that does not diffract in a
linear medium [29] and has, generally speaking, the inénite
energy

w �
�1
ÿ1

r2�z�dz; (7)

because the Airy function is not square integrable because
of the presence of a slowly decaying oscillating tail. The
diffusion nonlinearity in the limit of large amplitudes causes
the compensation of the oscillating tail of the nondiffract-
ing beam and its localisation [the second of the solutions of
(6)]. As S decreases (i.e., the role of nonlinear effects
increases), the beam localisation increases.

Because analytic solutions of equation (5) cannot be
obtained in the general case, the numerical integration is
required. We sought spatially localised soliton-like solutions
of (5) by the shooting method, which allows one to reduce
the two-point boundary problem to the Cauchy problem.
The initial conditions were chosen based on the fact that for
z! ÿ1, when the amplitude r is suféciently small, non-
linear terms in (5) can be neglected. In this case, the initial
conditions are speciéed by the asymptotics of the Airy
function and have the form
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Fig. 1 shows typical proéles of nondiffracting beams with
different energies w. In accordance with linear asymptotics
(7), the approximate expression for the beam proéle for
z! ÿ1 has the form �1=2�mpÿ1=2xÿ1=4 exp�ÿ�2=3�x3=2�,
where x � 2�2a�ÿ2=3(bÿ az).
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Figure 1. Proéles of nondiffracting beams with different energies w for
a � 1:0 and S � 1:0.
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For z! �1, however, the nonlinear term in equation
(5) can no longer be neglected, because the derivative dr=dZ
increases with decreasing amplitude r due to the increase in
the frequency of oscillations at the right wing of the beam.
The inêuence of diffusion nonlinearity of the PRC is énally
manifested in the decrease in the light éeld amplitude at
z! �1 that occurs faster than zÿ1=2 (in contrast to the
Airy function), so that the soliton-like beams with an
arbitrary amplitude have a énite energy w and are localised
in space. Therefore, the diffusion mechanism of the spatial
charge redistribution in the PRC, as the drift mechanism,
can cause the formation of speciéc soliton structures.

4. Formation, stability, and interaction
of nondiffracting beams

Of practical interest is the problem of generation of
nondiffracting soliton beams by beams with an arbitrary
transverse distribution of the light éeld intensity due to
photoinduced scattering. It is known that the evolution of a
beam with an arbitrary input distribution of the light éeld
in a medium with a purely Kerr nonlinearity or local
saturating nonlinearity (except some special cases facilitat-
ing the formation of bound states) leads to the formation of
one or several diverging soliton beams. A medium with
diffusion nonlinearity has essentially new properties in this
respect.

Fig. 2 shows the typical evolution of a super-Gaussian
beam in a medium with diffusion nonlinearity. The beam
propagation is accompanied by its gradual spreading and
energy scattering to the region of negative Z at certain
angles. The scattering intensity and the number of maxima
in the scattered radiation substantially increase with increas-
ing width (energy) of the initial super-Gaussian beam (cf.
Figs 2a and 2b). Note that scattering occurs into the region
of negative Z, whereas the nondiffracting beam has an
oscillating tail at Z! �1. This means that nondiffracting
beams do not evolve from the beams with an arbitrary
spatial distribution of the light éeld, and to perform
experiments with them, one should produce by holographic
methods the initial conditions that are similar to those
shown in Fig. 1.

The study of the stability of soliton-like solutions
obtained above involves certain problems because of the
absence of an analytic expression for the spatial distribution
of the éeld. The criterion qw=qb > 0 for the stability of
solitons in media with a local nonlinear response cannot be
applied for a medium with diffusion nonlinearity. For this
reason, we studied the propagation dynamics of solitons
with the perturbed input proéle by numerical simulations
using the method of splitting over physical factors. The
results of numerical simulations demonstrated the stability
of nondiffracting beams both to small (up to 10% in
intensity) harmonic and noise perturbations of the input
proéle. During the beam propagation, a small perturbation
experiences decaying oscillations with period gradually
increasing along the x axis, while the energy excess produced
by the perturbation is gradually scattered into the region of
negative values of Z.

The nondiffracting beams in a medium with diffusion
nonlinearity exhibit a quite unusual behaviour upon colli-
sions. We studied collisions of the beams by specifying the
initial condition at the input to the nonlinear medium in the
form

q Z; x � 0� � � r Z� Zc� � exp ÿiZ� ic� �

� r Zÿ Zc� � exp iZ� �; (9)

where r(Z) is the beam proéle; 2Zc is the distance between
centres of the beams at the input to the medium; v is the
intersection angle of the beams; c is the initial phase dif-
ference. Fig. 3a shows the free propagation of a nondif-
fracting beam. The collision dynamics for two nondiffrac-
ting beams are presented in Figs 3b and 3c. The speciéc
feature of the interaction is that, irrespective of the phase
difference and collision angles, only one stable nondiffrac-
ting beam is always formed.

The fraction of the energy scattered during collisions at
any angles is negligible compared to the total energy of the
interacting beams. The curvature of the trajectory of the
beam formed in the medium with the given value of S is
determined by its energy (which is in fact equal to a sum of
energies of the colliding beams). The phase difference of the
beams determines the dynamics only in the overlap region of
the éelds (cf. Figs 3b, 3c). Note that the interaction of two
localised beams (for example, Gaussian beams) in the PRC
with diffusion nonlinearity at suféciently large intersection
angles also results in the elimination of one of the beams.

5. Conclusions

Thus, the diffusion mechanism of nonlinearity of a PRC
can lead to the formation of speciéc soliton-like beams,
which have a énite energy and steadily propagate along the
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Figure 2. Propagation dynamics of a super-Gaussian beam with the
initial proéle r(Z) � �1=2� exp�ÿ�Z=Z0)8� and the width Z0 � 3:0 (a) and
8.0 (b) in a PRC with diffusion nonlinearity for S � 1:0.
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parabolic trajectory in the PRC. Such beams do not evolve
from the beams with an arbitrary distribution of the light-
éeld intensity. Irrespective of the collision angle and the
initial phase difference, the interaction of two nondiffract-
ing beams results in the elimination of one of them and the
formation of one beam with the energy that is almost equal
to a sum of energies of the interacting beams. Such
behaviour of the nondiffracting beams upon their inter-
action is interesting from the practical point of view and
can be used in optical switches.
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Figure 3. Propagation dynamics of a single nondiffracting beam in a
PRC with diffusion nonlinearity (a) and the collision dynamics for in-
phase (b) and out-of-phase (c) nondiffracting beams for the beam energy
w � 3:88, the collision angle v � 1:5;S � 1:0, and the parabolic parame-
ter of the beam proéle a � 0:1.
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