
Abstract. The Green function is found for three-wave coup-
ling problems. The function was used for analysis of paramet-
ric ampliécation in dissipative and active media. It is shown
that the parametric increment in active media can become
exponential. As an example, the nonstationary stimulated
scattering of electromagnetic waves by sound and tempera-
tures waves is considered.

Keywords: three-wave coupling, Green function, parametric incre-
ment, active medium.

1. Introduction

Three-wave interactions encompass a broad scope of
nonlinear phenomena: various types of stimulated scatter-
ing of electromagnetic and acoustic waves by waves of the
different nature, the generation of sum- and difference-freq-
uency waves, second harmonic generation, parametric amp-
liécation, etc. When the approximations of slowly varying
amplitudes and inénite plane waves are used and the de-
pletion of a pump wave is neglected, all these interactions
can be described with the help of a system of two coupled
érst-order partial differential equations. Methods for deri-
ving these equations and the substantiation of the appro-
ximations used are described in detail, for example, in Refs
[1 ë 5]. In this paper, we solve these equations using the
Green function.

2. Speciéed éeld approximation

Under phase-matching conditions, a standard system of
equations describing the three-wave coupling in the
approximation of the speciéed éeld of a pump wave has
the form [6 ë 12]

A0

qF
qt
� A1

qF
qx
� A2F � A3C

�P,

(1)

B0

qC �

qt
� B1

qC �

qx
� B2C

� � B3FP
�,

where F, C, P are the complex amplitudes of the interact-
ing quasi-plane, quasi-monochromatic waves with freq-
uencies o1, o2, o0 and wave vectors k1, k2, k0, respectively
o1 � o2 � o0, k1 � k2 � k0; the amplitude P � P0 of the
pump wave is independent of the time t and coordinate x;
the x axis is directed along the propagation direction of the
exciting wave; Ai and Bi are constants determined by the
physical statement of the problem. In a number of physical
problems, dissipative coefécients A2,B2, and nonlinear
coupling coefécients A3 and B3 can be complex. The ratios
of coefécients A1=A0 and B1=B0 (velocities of the corre-
sponding waves along the x axis) are assumed real.

System of equations (1) should be supplemented with
boundary conditions. For deéniteness, we write them in the
form

F�0; t� � F0�t�; C ��0; t� � C0�t�,
(2)

F�x; 0� � C ��x; 0� � 0.

Here, the boundary conditions are speciéed at the input to
the nonlinear medium (x � 0), which is convenient when
the waves propagate along the x axis. This corresponds to
the conditions A1=A0 > 0 and B1=B0 > 0. If one of the
waves propagates in the opposite direction, it is convenient
to specify the boundary conditions for this wave at the
medium boundary x � L.

System (1) was solved in previous papers using various
simplifying approximations. For example, in Ref. [10], this
system was solved for B1 � A2 � 0, in Refs [6, 7], for B1 � 0
and using some assumptions about temporal and spatial
limits, in Ref. [8], for A0 � A2 � B2 � 0, and in Ref. [9], for
A2 � B2 � 0 and F0(t) � 0. In Ref. [11], an exact integral
solution of system (1) was also obtained for A2 � B2 � 0,
but for arbitrary functions F0(t), C0(t). This solution was
written in the Riemann form using the average characteristic
for the waves C and F. In paper [11], the procedure is also
described which takes the quantities A2 and B2 into account,
but the énal expressions containing A2, B2 6� 0 are not
presented because they are cumbersome.

Below, we show that the exact solution of system (1) can
be written in a convenient integral form in terms of the
Green function G (x, t); and énd the expression for this
function. A similar integral solution was obtained for the
érst time in Ref. [12] for a particular case of system (1) for
A0 � B0 � 1. The Green function obtained below is valid
for any coefécients Ai, Bi, including their zero values. This
allows one to use this function for a broader class of
problems, for example, those considered in section 3.
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Using the method of generalised functions [13], system
(1) can be transformed to the following equations with
homogeneous boundary conditions:

A1B1

q 2F
qx 2
� �A1B0 � B1A0�

q 2F
qxqt

� A0B0

q 2F
qt 2

��A2B0 � B2A0�
qf
qt
� �A2B1 � A1B2�

qF
qx

� ÿA2B2 ÿ A3B3jP0j2
�
F � g�x; t�,

(3)

C � � 1

A3P0

�
A0

qF
qt
� A1

qF
qx
� A2F

�
.

Here,

g�x; t� � A1B1F0�t�
dd�x�
dx
�
�
A1B2F0�t� � A3B1P0C0�t�

�A1B0

dF0�t�
dt

�
d�x�;

d (x) is the delta function.
The solution of inhomogeneous equation (3) is deter-

mined in terms of the Green function in the form

F�x; t� � ÿ
� x

0

dx 0
� t

0

G�x 0; t 0�g�xÿ x 0; tÿ t 0�dt 0

� ÿ
� t

0

�
A1F0�tÿ t 0�

�
B1

qG�x; t 0�
qx

� B0

qG�x; t 0�
qt 0

�B2G�x; t 0�
�
� A3B1P0C0�tÿ t 0�G�x; t 0�

�
dt 0, (4)

where the Green function satisées the equation with homo-
geneous boundary conditions

A1B1

q 2G

qx 2
� �A1B0 � B1A0�

q 2G

qx qt
� A0B0

q 2G

qt 2

��A2B0 � B2A0�
qG
qt
� �A2B1 � A1B2�

qG
qx

� ÿA2B2 ÿ A3B3jP0j2
�
G � ÿd�x�d�t�. (5)

To énd the Green function, we will apply to (5) the two-
dimensional Laplace transform (t! o, x! p). As a result,
we obtain the Laplace transform of the Green function

G�o; p� � ÿ��A1p� A0o� A2�

��B1p� B0o� B2� ÿ A3B3jP0j2
�ÿ1

. (6)

The inverse Laplace transform applied to expression (6)
(using tables from [14]) gives the required Green function
for system (1):

G�x; t� � exp�Z1�x; t��
A1B0 ÿ B1A0

J0�Z2�x; t���Z�t2� ÿ Z�t1�� , (7)

where t1 � tÿ xA0=A1; t2 � tÿ xB0=B1; Z1(x, t) � (A2B1t2
ÿA1B2t1)=(A1B0 ÿ B1A0); Z2(x, t) � 2(A1B1A3B3jP0j2t1�
t2)

1=2(A1B0 ÿ B1A0)
ÿ1; J0 is the zero-order Bessel function

of the érst kind; and Z is the Heaviside function.
Expression (7) deénes more accurately the Green func-

tion and generalises it to a broad class of three-wave coup-
ling problems described by the system of equations (1). This
function was érst presented in Ref. [12], without any rigo-
rous mathematical substantiation, for SBS (a particular case
of such problems). Note that the form of the Green function
(7) remains the same under other boundary conditions that
differ from condition (4). Only the form of the `source'
g (x, t) will change in inhomogeneous equation (3) and the
integrand in (4).

As an example of the application of the Green function,
consider the solutions of the system of equations describing
nonstationary SBS. This system, in the approximation of the
speciéed pump-wave éeld E0, is similar to system (1) [7]:

qE1

qt
� cj1

qE1

qx
� ca1E1 � iAP �E0,

(8)

qP �

qt
� usj2

qP �

qx
� usa2P

� � ÿiBE1E
�
0 ,

where j1 � k1k0=(k1k0); j2 � k2k0=(k2k0); E1 and P � are
the complex amplitudes of a scattered electromagnetic wave
(with frequency o1 and wave vector k1) and of an acoustic
wave (o2 � o0 ÿ o1, k2 � k0 ÿ k1); a1, a2, c, us are the
absorption coefécients and velocities of the corresponding
waves; A � 0:25Ybso1=n

2; B � o2Y=16p; Y is the nonli-
nearity parameter of the electrostriction coupling; bs is the
adiabatic compressibility coefécient; and n is the refractive
index.

Let us supplement system (8) with boundary conditions
E1(0, t) � E10(t), P �(0, t) � P0(t), E1(x, 0)�P �(x, 0) � 0.
Expressions (4) and (7) allows one to write immediately the
dependences E1(x, t) and P �(x, t) in the form

E1�x; t� �
1

2

� t

0

E10�tÿ t 0� exp�Z1
0 �I1�Z2

0 �Z2
0

t 01

��Z�t 01� ÿ Z�t 02�
�
dt 0 � E10�t1� exp

�
ÿ a1x

j1

�
Z�t1� (9a)

� iAE0usj2

cj1 ÿ usj2

� t

0
P0�tÿ t 0� exp�Z1

0 �I0�Z2
0 ��Z�t 01� ÿ Z�t 02�

�
dt 0,

P ��x; t� � ÿ iBE �0 cj1

cj1 ÿ usj2

� t

0

E10�tÿ t 0� exp�Z1
0 �I0�Z2

0 �

��Z�t 01� ÿ Z�t 02�
�
dt 0 � P0�t2� exp

�
ÿ a2x

j2

�
Z�t2� (9b)

� 1

2

� t

0

P0�tÿ t 0� exp�Z1
0 �I1�Z2

0 �Z2
0

t 02

�
Z�t 01� ÿ Z�t 02�

�
dt 0,

where Iv is the modiéed v-order Bessel function of the érst
kind;

Z1�x; t� � ÿ
a2uscj1t1
cj1 ÿ usj2

� a1uscj2t2
cj1 ÿ usj2

;
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Z2�x; t� �
2�ÿABjE0j2uscj1j2t1t2�1=2

cj1 ÿ usj2

;

t1 � tÿ x

cj1

; t2 � tÿ x

usj2

; Z 01;2�x; t� � Z1;2�x; t 0�;

t 01;2�x; t� � t1;2�x; t 0�.

The misprints committed in expressions for amplitudes
E1(x, t) and P �(x, t) in paper [12] are eliminated in
expressions (9).

Using (9), we can determine the time ts of the establish-
ment of stationary SBS in the form

ts �
x

cj1
� x�cj1 ÿ usj2�

2cj1usj2

�
1ÿ

�
a2
j2
ÿ a1
j1

�
�cj1usj2�1=2

�
�
cj1usj2

�
a2
j2

ÿ a1
j1

�2
� 4ABjE0j2

�ÿ1=2�
.

Here, ts corresponds to the maximum of the exponent of
exponentials in integrals in (9); note that Iv(z) �
exp z(2pz)ÿ1=2 for z4 1. When the duration of the pump
electromagnetic radiation pulse t < ts, the ampliécation
coefécient u of the scattered wave in the nonstationary
regime is twice the exponent in integrals in (9), i.e., for
Z2 4 1, we have u � 2�Z1(x, t)� Z2(x, t)�. For t > ts, the
stationary SBS regime is established with the known
ampliécation coefécient [7]

us � u�ts� � ÿ
�
a2
j2

� a1
j1

�
x

�
��

a2
j2

ÿ a1
j1

�2
� 4ABjE0j2

uscj1j2

�1=2
x.

Any three-wave interactions described by system (1) can
be considered similarly using the Green function. Of course,
exact integral solutions written in terms of the Green
function and in the Riemann form should coincide with
each other. Expression (9a) can be compared, for example,
with expression (2.7) from paper [11], which was obtained
for a1 � a2 � 0. In Ref. [11], the parametric interaction of
wave packets in a speciéed éeld of a plane monochromatic
wave was considered. The amplitudes of the waves are
written in the Riemann form using the average characteristic
Z12 � (Z1 � Z2)=2, where Z, Z2 are the characteristics of the
interacting waves. The integration was performed over the
variable Z12=v12, where v12 is the mismatch of reverse group
velocities of the wave packets.

Expression (9a) (for a1 � a2 � 0) and relation (2.7) from
Ref. [11] can be reduced to the same form accurate to
notation. The difference is as follows. First, the second term
in the integrand in (9a) contains the factor i and, second,
division by t 01 rather than by t 02 is performed in the érst
integral in (9a). These differences are not important and are
possibly caused by some inaccuracies or misprints in [11].
The use of the Green function in such problems is more
convenient than the Riemann method because there is no
need to pass from variables x, t to the characteristics of the
interacting waves, to redeéne the boundary conditions for
these characteristics, and to eliminate dissipative terms using

special substitutions. The integral solutions written in terms
of the Green function can be readily generalised to any
boundary conditions.

3. Three-wave coupling in the speciéed éeld of a
dissipating pump wave

In dissipative media with large decrements a0 at the pump-
wave frequency, the speciéed éeld approximation P � P0
proves to be inadequate to the three-wave coupling con-
ditions even for small amplitudes of the scattered wave
(F, C �5P0). In this case, the speciéed amplitude approx-
imation for a dissipating pump wave is less crude [15 ë 19]:

P � P0 exp�ÿa0x�. (10)

Below, we will énd, using the Green function (7), the
solution of system (1) for the coefécient B1 � 0 and the
pump-wave amplitude (10). The approximation B1 � 0 is
used, for example, for the description of scattering of
electromagnetic (STS) and sound (STSS) waves by temper-
ature waves [15 ë 20], scattering of acoustic waves by vortex
perturbations [21], SRS [22], as well as SBS and stimulated
enthalpy scattering at large acoustic decrements [10, 23].

Now, the initial system of equations has the form

A0

qF
qt
� A1

qF
qx
� A2F � A3C

�P0 exp�ÿa0x�,
(11)

B0

qC �

qt
� B2C

� � B3FP
�
0 exp�ÿa0x�.

Using boundary conditions (2), we introduce new functions

�F � F exp

�
A2x

A1

�
; �C � C � exp

�
a0x�

A2x

A1

�
(12)

and new variables

y � tÿ A0x

A1

; x � 1ÿ exp�ÿ2a0x�
2a0

. (13)

Using expressions (12) and (13), system (11) can be written
in the form

A1

q�F
qx
� A3

�CP0,

(14)

B0

q �C
qy
� B2

�C � B3
�FP �0 .

Solutions (14) follow from expressions (4) and (7) (in
which coefécients A0, A2 and B1 should be set to zero):

�F�x; y� � ÿA1

� y

0

F0�yÿ y 0�

�
�
B0

qG�x; y 0�
qy 0

� B2G�x; y 0�
�
dy 0, (15)

�C�x; y� � A1

A3P0

q�F�x; y�
qx

. (16)

Here,
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G�x; y� � ÿ exp�ÿB2y=B0�
A1B0

J0�Z�x; y��Z�y�,
(17)

Z�x; y� � 2

�
ÿ A3B3jP0j2yx

A1B0

�1=2

.

Returning to variables x, t in expressions (15) ë (17), we
obtain the required expressions for the amplitudes of the
interacting waves:

F�x; t� � ÿA1 exp

�
ÿA2x

A1

�� t

0

F0�tÿ t 0�

�
�
B0

qG�x; t 0�
qt 0

� B2G�x; t 0�
�
dt 0,

(18)

C�x; t� � exp�a0x�
A3P0

�
A0

q
qt
� A1

q
qx
� A2

�
F�x; t�,

where

G�x; t� � ÿ exp�ÿB2�tÿ xA0=A1��
A1B0

J0�Z�x; t��Z
�
tÿ xA0

A1

�
;

Z�x; t� �
�
ÿ 2A3B3jP0j2�tÿ xA0=A1�

1ÿ exp�ÿ2a0x�
A1B0a0

�1=2
.

These results can be readily generalised to any boundary
conditions. For example, if the boundary condition for the
wave F is speciéed at the boundary x � L, then x in
expressions (12), (13) should be simply replaced by xÿ L.
In this case, system (14) retains its form, but coefécients A3
and B3 are multiplied by exp (ÿ a0L).

Let us use the expressions obtained above for describing,
for example, nonstationary STS. The system of equations
describing STS (by neglecting electrocaloric effect) in the
approximation of the speciéed dissipating pump amplitude
has the form [20]

qE1

qt
� cj1

qE1

qx
� ca1E1 � ATE0 exp�ÿa0x�T �1 ,

(19)
qT �1
qt
� a2T

�
1 � BTE

�
0 exp�ÿa0x�E1,

where E0 and E1 are the amplitudes of the pump and scat-
tered electromagnetic waves with frequencies o0, o1 and
wave vectors k0, k1; T1 is the amplitude of the temperature
wave with the frequency o2 � o0 ÿ o1 and the wave vector
k2 � k0 ÿ k1 (for Stokes scattering o2 > 0 and o2 < 0 for
anti-Stokes scattering); a0, a1 are decrements of the electro-
magnetic waves; a2 � io2 � wk 2

2 ; w is the thermal diffusivity;
AT � io1(qe=qT )p=(4n

2); BT � a1n
2(2pr0cp)

ÿ1; e is the die-
lectric constant; cp is the speciéc heat capacity at constant
pressure p; and r and T are the density and temperature of
the medium, respectively.

For the boundary conditions (2), which are valid for
y < p=2 (y is the scattering angle), we obtain from (18)

E1�x; t� � ÿ
1

2

� t

0
E10�tÿ t 0�Z

0
T

t 0
J1�Z 0T� exp

�
ÿ a2t

0 ÿ a1x
j1

�

� Z�t 0�dt 0 � E10�t� exp
�
ÿ a1x

j1

�
Z�t�, (20)

where J1 is the érst-order Bessel function of the érst kind;

ZT �
�
ÿ 2ATBTjE0j2t

1ÿ exp�ÿ2a0x�
a0c

�1=2
; t � tÿ x

cj1
;

t 0 � t 0 ÿ x

cj1

; Z 0T � ZT�x; t 0�; E1�0; t� � E10�t�.

This dependence coincides with that presented, for example,
in Ref. [20] for a0 � 0, E10 � const, and by neglecting the
time derivative and the dissipative term �a1 in the érst
equation in (19).

Expression (20) allows one to determine the ampliéca-
tion coefécient of the scattered wave in the nonstationary
regime (for ZT 4 1):

uT � 2Re

�
ÿ a2tÿ

a1x
j1

� iZT sign

�
BT

�
qe
qT

�
p

��
, (21)

where sing a � �1 or ÿ1 for a > 0, or a < 0 respectively.
The time of the establishment of stationary STS corre-

sponds to the maximum of the integrand in expression (20)
and is equal (for a2 > 0) to the modulus of the quantity

tst �
x

cj1

� ATBTjE0j2�1ÿ exp�ÿ2a0x��
2ca22a0

. (22)

Taking expression (22) into account, the ampliécation coef-
écient in the stationary regime (t > jtstj) can be written in
the form

ust � uT�tst� � ÿ2a1
x

j1
(23)

� o2�1ÿ exp�ÿ2a0x��jATBTjjE0j2sign�BT�qe=qT�p�
a0c�o 2

2 � w 2k 4
2 �

.

In papers [15 ë 19], the system of equations (11) at
A0 � 0 and F0 � const was transformed, using a special
self-similar substitution, to the Bessel equation. Due to this
procedure applied to the boundary value problem, the
solutions of the system of equations (11) lost their integral
form. The wave amplitude F (x, t) in [15ë19] virtually
coincided with the érst term in (18) (after integration at
A0 � 0 and F0 � const). Such a self-similar solution does
not allow one to observe the establishment of the stationary
regime of scattering. In papers [15 ë 19], the quantity tM
(coinciding in fact with jtstj), at which the wave amplitude
becomes maximal, is treated as a time during which the
nonstationary parametric increment achieves its maximum.
Based on this (not integral) solution, the conclusion was
made that the nonstationary increment is a nonmonotonic
function and tends to zero at t4 tM. The integral form of
the solution of systems (11) and (19) leads to a qualitatively
different conclusion: for t < jtstj, the parametric increment
increases, and for t > jtstj, the stationary regime is estab-
lished with the increment ust. For a0 � 0, expression (22) for
the time of the stationary-regime establishment coincides
with that presented in Ref. [20].

In the case of backscattering (y > p=2), the replacements
x! xÿL, AT, BT !AT exp (ÿ a0L),BT exp (ÿ a0L) should
be performed in expressions (20) ë (23). As a result, upon
forward scattering of electromagnetic waves (y < p=2),
the ampliécation will take place at BTo2(qe=qT)p > 0,
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while upon backscattering, the ampliécation will occur at
BTo2(qe=qT)p < 0.

Expressions (20) ë (23) are valid for a2 > 0 and for any
signs of a0 and a1 (the case of a0 � 0, a2 < 0 was studied in
Ref. [24]), but the coefécient BT changes in the active (in-
verted) medium. For example, the authors of Ref. [25] used
the effective absorption coefécient aeff � ja1jo0=O (where O
is the transition frequency from the lower laser level to the
ground level) instead of a1 in the expression for the coefé-
cient BT in the case of fast relaxation of the lower laser level
in the inverted carbon dioxide. Theoretically, the situations
are possible in nonequilibrium media when BT < 0.

Consider separately the cases of dissipative (a0, a1 > 0)
and active (a0, a1 < 0) media. In the dissipative medium,
(qe=qT )p < 0 for most substances [10, 20], so that the ampli-
écation in the case of forward scattering can only occur in
the anti-Stokes region (o2 < 0). Parametric increments (21)
and (23) are linear at a0x5 1. The presence of dissipation
with the decrement a0 restricts the nonlinear interaction
length x � 1=a0. For a1 > 0, STS is a threshold process. The
threshold pump intensity increases, according to (23), by a
factor of 2a0x=�1ÿ exp�ÿ2a0x�� compared to the case of
a0 � 0.

In the active medium at a0, a1 < 0, STS has no thresh-
old, and along with electromagnetic waves the temperature
wave will be also ampliéed even in the case of weak
parametric coupling (when the second term in (23) is small
compared to the érst one). The amplitude T1 � exp (ÿ a0x
ÿa1x=j1) of the temperature wave will rise as the Stokes
and anti-Stokes components of the scattered light. A similar
transfer of the increment of an unstable wave to a weak
signal wave is sometimes called in the literature the super-
heterodyne ampliécation [26, 27].

For large jE0j2 or large x, the second term in (23) domi-
nates and forward scattering will be at BT(qe=qT )p < 0, as in
a dissipative medium, anti-Stokes, while backscattering will
be Stokes. The consideration of the pump-wave ampliéca-
tion (a0 < 0) results in an exponential increase in the incre-
ment along the x axis instead of a linear one and, hence, in a
faster increase in the amplitudes E1 and T1 than in the dis-
sipative medium. This conclusion was made for the érst time
in Ref. [28] where the stationary parametric ampliécation of
ultrasonic waves in piezoelectric semiconductors was stu-
died. The establishment time (22) of the stationary scatter-
ing regime will also increase exponentially with increasing x.

Similar variations in the properties of the parametric
interaction in active media should be also expected for the
interacting waves of a different nature, for example, upon
the interaction of acoustic waves with temperature and
vortex waves in media with a negative second (volume)
viscosity [29].

4. Conclusions

The Green function and the solutions of systems of equa-
tions of the nonstationary three-wave coupling obtained in
this paper can be used for investigating many problems, in
particular, in the studies of SBS, STS, STSS and similar
processes. The consideration of the pump-wave ampliéca-
tion in the active medium leads to an exponential increase
in the parametric increment instead of a linear one and to
an exponential increase in the time of establishment of the
stationary regime.
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