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Amplitude characteristics of excitation
of stimulated photon echo by noise and coherent pulses

S A Baruzdin

Abstract. The algorithm of excitation of a stimulated photon
echo by two incoherent white noise Gaussian pulses and delta-
like light pulses is studied. The average complex envelope of
the echo is determined by solving Bloch equations. The results
obtained can be used in spectroscopy and in the analysis of
nonlinear characteristics of excitation in photon processors
based on the saturation effect. The results can be also
generalised to the analogous regime of excitation of a spin
echo.
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1. Introduction

Studies of a photon echo have entered the stage of manu-
facturing of the first optical processors for optical data
processing [1]. Processors based on a photon echo can be
used as fast memory devices providing repeated data read-
out [2], for data storage (in cumulative regime) [3], and for
the signal delay with time inversion and for the self-
convolution of optical signals [4]. Along with the above-
mentio-ned algorithms, such processors can also perform
other integral transformations of optical signals, in parti-
cular, the correlation processing of determinate signals
[5, 6].

Of great interest is also the processing of random signals
based on excitation of a photon echo using incoherent noise
pulses [7]. In spectroscopy, this allows one to use long
incoherent lower power pulses instead of high-power short
coherent excitation pulses. For signal processors operating
in the optical range, the possibility opens up for performing
the correlation analysis of random signals. Note also that
the white Gaussian noise is a convenient model for
analysing nonlinear properties of systems [8].

A photon echo was first observed, using incoherent
optical sources instead of traditional coherent laser pulses,
in 1984 [9]. The photon echo formed by two incoherent
pulses was called incoherent. Unlike coherent sources, which
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produce pulses of duration 7 with the spectral width Af =
1/7, the spectral width of incoherent pulses in independent
of the pulse duration.

In Ref. [7], the algorithm is described for excitation of an
accumulated photon echo by two incoherent pulses from a
single source and by one short coherent pulse. It was shown
that the shape of the accumulated echo corresponds to the
correlation function of the electric field of the incoherent
source. The correlation interval of the electric field is
inversely proportional to the width of the source spectrum
and determines the time resolution in photon echo experi-
ments. This parameter plays an important role in the
measurements of relaxation times. The time resolution
achieved in first experiments was 220 fs. Later [10], a better
time resolution of 80 fs was achieved due to the use of a
light emitting diode as a radiation source.

2. Algorithm for photon echo excitation

The aim of this paper is to study the algorithm for
excitation of a stimulated photon echo using two noise
incoherent pulses and one short coherent pulse. Fig. 1
shows the time diagram of envelopes of the excitation and
stimulated photon echo pulses. The first excitation pulse
o15(1) and the third excitation pulse o3s(f — t3) are realisa-
tions of the white Gaussian noise of duration 7, which are
obtained from the same source by introducing the delay ;.
Note that the dimensionality of the function os(7) = yE(r)
is radian per second (y is gyroelectric ratio and E is the
electric field strength).
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Figure 1. Time diagram of envelopes of the excitation and stimulated
photon echo pulses.

The second excitation pulse represents a coherent pulse
at frequency wg, which coincides with the central frequency
of the inhomogeneous absorption line g(w). The duration of
this pulse satisfies the condition 75 < 1/(2Aw,), where 2Aw,
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is the width of the inhomogeneous line. We will call the
pulse satisfying this condition a delta-like pulse in a sense
that its spectral density is almost constant within the
frequency interval covered by the inhomogeneous line
and its properties are similar to those of the Dirac delta
function. The amplitude E5 and the duration 75 of this pulse
determine the area of its envelope o = Ejts.

We will analyse the photon echo using optical Bloch
equations [11]. Formally, the solution of these equations in
the coordinate system, which is rotated around the longi-
tudinal axis with the frequency w, coinciding with the
central frequency of the inhomogeneous absorption line
g(w), can be represented in the form [5, 6]

P(tv ‘Q) = A(t7 t07Q)P(t07‘Q) + Pi(t7 tng)s

p (D
P=|5p"],
p:

where P is the pseudopolarisation vector with complex
transverse components p and p* and the longitudinal
component p.; Q = w — w, is the detuning of the transition
frequency w relative to wgy; A(z,1ty,Q) is the transition
matrix of the system state; f, is the initial instant of time for
which the initial vector P(z,, Q) is specified; P;(z, ¢y, Q) is the
vector taking into account the inhomogeneity of the system
of differential Bloch equations.

If the duration of excitation pulses t <€ T, where T is
the longitudinal relaxation time, the second term in (1) can
be neglected and then the complex transverse component of
the pseudopolarisation vector, which corresponds to the
stimulated echo, can be represented in the form [6]

Pol1,Q) = ppaty () (Q)asy (Q)k, (1) exp[iQ(t — 1, — 13)],

1, —1t t—1t3 4+t (2)
kr(f):eXp(— 3T1 2 }2 2),

where p, is the modulus of the vector P at the instant of
time 7= —1/2 preceding the onset of the first excitation
pulse; T, is the transverse relaxation time; a,(('}) 1S a matrix
element of the transition matrix 4 for the nth excitation
pulse.

A matrix element of the transition matrix for the second
(delta-like) excitation pulse of interest to us has the form [6]

1 . .
a5y (@) = 3 sinaexp(ips). (3)

where ¢j is the initial phase of the delta-like pulse.
Under the initial conditions

0
P(t,2)=1| 0 4)
Do

the matrix elements ag? and agg) determine the correspond-
ing components of the pseudopolarisation vector at the

instant of pulse termination:

5H(Q) = poasy (Q), p(Q) = poaly (9). (5)

3. Mathematical expectation of the complex
envelope of a stimulated echo

Because the first and third excitation pulses are random
processes, the function py(z, Q) also a random function of
time. Let us calculate the mathematical expectation of this
function. For this purpose, we will use the relation

(@) (@) - LD, ©

which  follows from expression (5). To find
(p(Q,03)p"(Q,0,)) upon excitation by white Gaussian
noise, we consider stochastic Bloch equations in a
coordinate system at rest using the interpretation of
Stratonovich [12]:

dP = (CP + c¢)dt + DPdW(1), @)
75! o] 0
C=| -0 -T,'-d¢*2 0 ,
0 0 ~T7' =2
0 0 0 0
D=0 0 o],c= 0 ,
0 -0 0 po/ T

where P is the vector of the system state with the Cartesian
coordinates p;, p,, p3, which is a pseudopolarisation vector;
=0, pp=0, and p; =p, are the initial conditions;
dW(¢) = s(r)dt; W(t) is the Wiener process; as(f) is the
function describing the input action; and ¢ is a dimension-
less coefficient.

We assume that s(7) is the white Gaussian noise with the
spectral power density Ny = 1 rad® s~!. Then, the spectral
power density of the process described by the function as(7)
is N = ¢’N,.

Consider two pseudopolarisation vectors P(g;) and
P(c5), which correspond to the same transition at the
frequency , but excited by noise pulses with different
intensities o; and o3. Let us introduce the vector X with the
components

x; = pi(01), X2 = pa(01), X3 = p3(01), x4 = pi(03),

X5 = pr(03), X6 = p3(03). ®)

Let us define a covariance matrix Ky(¢) = (X(1)X'(¢)), where
X' is a transposed vector. According to the Ito theorem
[13], if there are d stochastic processes Xx;(¢) specified by
their stochastic differentials

dx; = f,dt + G, dW 9

and produced by the same Wiener process W(¢), then the
stochastic process Y(¢) = u(t,x(?), ...,x,4(t)) has the sto-
chastic differential

d d

d
dY(s) = (u, + Zux’,f,- +%Z
i=1

=1 j=

”'\-’_Xj GlG/> ds
1

d
+> u GAW(0), (10)
i=1

where u, - Ou/0t; u,, = 0u/0x;; u,, = azu/ax,@xj.
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In the case under study, u(t, x,(?), ..., x,(1) = X(O)X'(¢),
and stochastic processes x; in (8) and (9) are specified by
stochastic Bloch equations (7) for the parameter ¢ that is
equal to g, or o3.

The elements of the covariance matrix Ky(z) of interest
are determined by averaging the differential equations
obtained from (10):

d<)ziltx4> - _%<x1x4> + o{xax4) + o(xx5),

T TR
d<xdti4> = —o(x1Xg) — (%+%%><x2x4> +o(xxs),
d<xdztx5> = —o{x1x5) — O{Xsxy) (an
- (%Jr d ; - ) {x2x5) + 0103 (x3x),

d<x(;,x6> _ (T% ot -2F 6§>(x3x6> + 0105 (x2x5)

To find (6), we pass to the coordinate system, which
rotates around the longitudinal axis with the frequency wy:

PH(R,01) = (x; +ix,) exp(imgt),

P(8,03) = (x4 — x5) exp(—iwyt).

Let us introduce the notation
J; = <ﬁ*(9’61)1§(9’ 63)>’
5}* = <27(‘Qa0'1)ﬁ*(97 03)>7

y: = (x3(R,01)x6(2, 73)).

Then, the system of differential equations (11) in the
coordinate system at rest will correspond to the system of
differential equations in the rotating coordinate system

4 (Z+a)5+b
dty_ 7 a)y oy

dore ERA T
a’ T\ te)y b

G =g = (o 20+ )+ ()

The pulse duration in devices for signal processing
usually satisfies the condition 7 < T;, T,, which allows
one to ignore relaxation processes during pulsed excitation.
In this case, under the initial conditions (4), the solution of

(12) for the component of interest to us at the instant of
pulse termination has the form

- b
y= P(z) m [exp(r,7) — exp(r37)],
(13)

3 1
I‘2’3 = 7§Clj:§ (a2 + 2b2)l/2.

Using expressions (2), (3), (6), and (13), we can find the
mathematical expectation for the complex envelope ( j ()
of the stimulated echo. In this case, to take into account
contributions from all components of the inhomogeneously
broadened system, we should perform the weighted inte-
gration over the frequencies of all transitions:

(B(1)) = 2nipy sinaexp(io e () 4,G(1 = 1 = 1), (14)
b
A= S 2y ) — e (15
1 (> :
G(1) = EJ, 2(Q) exp(iQ1)dQ.

4. Discussion of results

The dependence of the average amplitude of the stimulated
echo on the parameters g;, o3, and 7 of noise pulses is
determined by the function A,. Fig. 2 shows the dependen-
ces Ay(a3) for Ny = 1 rad* s™!, © = 10 ns, and different ;.
These dependences are nonlinear because of the saturation
of the level populations. As the parameter o3 increases, the
echo amplitude first increases linearly, then, its increase
slows down, the amplitude reaches its maximum and begins
to decrease.
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Figure 2. Dependences of the average amplitude of a stimulated echo on
o for different ¢, Ny = 1 rad® s~! and t = 10 ns.

In the linear regime for the third pulse for o3 =
const < 5 x 10°, the echo amplitude first linearly increases
with increasing parameter ¢, (the curve for a; = 5 x 10%),
then, it reaches the maximum (the curve for o, = 1.2 x 104)
and begins to fall (the curve for a; = 2 x 10%). As a whole,
the echo amplitude behaves symmetrically with respect to
parameters ¢; and ¢3. Note also that the maximum of the
echo amplitude A, (g;) for o; = const shifts to a greater
values of the parameter g3 with increasing o.
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If 6; =03 =0, then the average echo amplitude is
described by the expression

1 3
A =3 {1 —eXp(—EGZ‘C):|,

which follows from (13) and (15).
This function is presented in Fig. 3. The average
amplitude of the stimulated echo tends to 1/3 with increas-

ing o2

(16)
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Figure 3. Dependence of the average amplitude of a stimulated echo on
2 _ _ _ 2 -1 _
- for oy =0, =0, Ny =1rad” s and t = 10 ns.

The average amplitude of the stimulated echo in the
algorithm with noise incoherent pulses can be compared
with the stimulated-echo amplitude in the algorithm with
coherent delta-like pulses [6]

A zisinoclsinocz sin o, an
where «; is the area of the envelope of the ith pulse. In the
second case, the maximum amplitude equal to 1/2 is
achieved for o = oy = 03 = /2.

The results obtained for the white noise can be gener-
alised to the case of coloured noise with the spectral power
density N(Q). The inhomogeneously broadened system
consists of a number of parallel narrow-band channels
with close frequencies, which form homogeneous lines.
The spectral width of such a narrow-band channel excited
by the white noise with the spectral power density N, is
determined by the natural width and the broadening caused
by the noise field and is described by the relation [14]

2 Ny

AQO = T2 + 2 .

If the spectral width of the function N(Q) equal to AQy
satisfies the condition AQy > AQ,, then such a coloured
noise can be treated as a white noise with respect to the
narrow-band channel with frequency Q and its spectral
power density can be considered constant and determined
from the condition Ny = N(Q2), Then, the coefficients ¢ and
b will be determined in terms of spectral power densities of
the first (V,(2)) and third (N;3(Q)) excitation pulses:

M@+ N(@)
4

The complex envelope of the stimulated echo will be
determined by the expressions

(18)

a(Q) . b(Q) = [N(Q)N3(2)]'2. (19)

(Ps(1)) = 2mipg sin aexp(ips)k: () Us(t — 12 = 13),
(20)

Us(1)

= ;—n J " 2(9)4.(9) exp(iQ1)d0.

—00

In the linear regime for ¢; = 0, = o, it follows from (16)
that
1

A,(Q) ~ = Ny(Q)r.

3 @

In this case, if the spectral power density of the noise is
concentrated within the frequency interval limited by the
inhomogeneous line and the line itself satisfies the condition
g(Q) ~ g, = const within this interval, then, according to
(20) and (21), the function Uy(¢) will have the form of the
correlation function of the noise, which is related to N(Q)
by the inverse Fourier transform.

For the determinate signal s(¢) with the corresponding
spectral density S(iQ2), we have A(Q) = |S(iQ)\2/2 in the
linear regime, which also corresponds to the autocorrelation
function of this signal.

5. Conclusions

The results obtained above allow one to optimise the
parameters of incoherent pulses for achieving the maximum
amplitude of a stimulated echo. It is also possible to analyse
nonlinear distortions and to determine the upper bound of
the dynamic range of the processor and the upper bound of
its linear interval in the correlation-processing regime. In
addition, note the possibility of analysis of the analogous
algorithm for signal processing in spin processors.
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