
Abstract. The effect of the initial chirp and ébre loss on the
eféciency of soliton-effect picosecond pulse compression are
analysed by simulating numerically the transmission of pico-
second pulse in ébres by the split-step Fourier method. Ana-
lysis of changes in the compression factor, the optimum ébre
length, and the compression eféciency showed that the initial
chirp and ébre loss affect the compression of a picosecond
pulse in opposite ways. A further study revealed that an addi-
tional properly created initial chirp provides good pulse com-
pression.
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1. Introduction

The practical use of pulse-compression techniques in non-
linear ébre optics is of tremendous technological value
[1, 2]. Optical pulses at wavelengths exceeding 1300 nm
generally experience both self-phase modulation (SPM) and
anomalous group-velocity dispersion (GVD) during their
propagation in silica ébres. Such a ébre can act as a com-
pressor. By an appropriate choice of the ébre length, the
input pulses can be compressed. Such a compressor is re-
ferred to as the soliton-effect compressor to emphasise the
role of solitons [3]. Compared to the ébre-grating compres-
sion and all-ébre compression, the soliton-effect compres-
sion techniques are used widely due to their compactness,
convenience, and good compression effect. The soliton-
effect compression has been studied taking into account the
ébre loss in Refs [4, 5] and the effect of the initial chirp was
considered in Ref. [6]. In this paper, the effects of both ébre
loss and initial chirp on soliton-effect picosecond pulse
compression are studied in optical ébres.

In a real soliton-based communication system, the effect
of ébre loss on the compression of pulses can be neglected if
the wavelength of the input pulse is about of 1500 nm. On
the other hand, the optical pulses generated by direct cur-
rent modulation are chirped, and the initial chirp should be
considered. In this paper, the propagation of picosecond
pulses in ébres is simulated numerically by the split-step

Fourier method in four cases. By comparing the effect of
ébre loss with that of initial chirp on the soliton-effect com-
pression, we have analysed in detail the physical mechanism
of these effects. Finally, a new method is presented which
can improve the compression effect in the presence of ébre
losses.

2. Theoretical model and numerical method

The propagation of optical picosecond pulses in single-
mode ébres in the presence of losses is described by the
nonlinear Schr�odinger equation:
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where U is the normalised amplitude of the pulse envelope;
P0 is the peak power of the input pulse; x and t are the
normalised distance and time, respectivily; Ld is the disper-
sion length; T0 is the half-width of pulse (at the 1=e-inten-
sity level); b2 is the GVD parameter; g is the nonlinear
parameter responsible for SPM; a accounts for the ébre
loss. The érst and second terms in the right-hand side of (1)
describe GVD and SPM, respectively.

When x; t;N;G are dimensionless quantities, it is con-
venient to solve Eqn (1) numerically. Among many numeri-
cal methods, the split-step Fourier (SSF) method is widely
used, which is much faster than other énite-difference calcu-
lation schemes [7, 8]. This is caused by the use of the fast
Fourier transform (FFT) algorithm. Let us describe brieêy
the SSF method.

To explain the concept of the SSF method, we write
Eqn (1) formally in the form

qU
qx
� D̂� N̂
ÿ �

U; (3)

where D̂ is a differential operator that accounts for dis-
persion and absorption in a linear medium and N̂ is a non-
linear operator that describes the effect of ébre nonline-
arities on the pulse propagation. These operators are given
by

D̂ � i

2

q2

qt2
ÿ G; N̂ � iN 2jUj2: (4)
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Generally, dispersion and nonlinearty act together along
the length of the ébre. The SSF method gives an appro-
ximate solution by assuming that upon propagation of the
optical éeld over a small distance Dx, the dispersive and
nonlinear effects can be treated independently. More speci-
écally, the propagation from x to x� Dx is described in two
steps. In the érst step, the nonlinearity acts alone, and
D̂ � 0 in Eqn (3). In the second step, dispersion acts alone,
and N̂ � 0 in Eqn (3). Mathematically, this is written as

U x� Dx; t� � � exp DxD̂
ÿ �

exp DxN̂
ÿ �

U x; t� �: (5)

The action of the exponential operator exp (hD̂) can be
written in the Fourier representation as

exp DxD̂
ÿ �

B x; t� � � Fÿ1 exp DxD�io� ��F� 	
B x; t� �; (6)

where F is the Fourier-transform operator. The function
D(io) is obtained from operator (4) by replacing the
differential operator q=qt by io; and o is the frequency in
the Fourier representation. In this case, D(io) �
ÿio2=2ÿ G.

If the step sizes in x and T are selected carefully to main-
tain the required accuracy, the SSF method can provide a
detailed and accurate description of the propagation of
picosecond pulse in ébres.

3. Numerical results and discussion

We assume that input pulse has a hyperbolic secant shape,
and its amplitude has the form:

U 0; t� � � Nsech t� � exp ÿiCt2=2ÿ �
; (7)

where N is the soliton order and C is the chirp parameter.
We also calculated the compression of pulses of other types,
for example, Gaussian pulses.

We assumed in calculations that, the width of an input
pulse is TFWHM � 30 ps. For hyperbolic secant shape, T0

and TFWHM are related by

TFWHM � 2 ln 1� ���
2
pÿ �

T0 � 1:76T0: (8)

In this case, T0 � 17 ps. We will use the typical ébre para-
meters b2 � ÿ4:6 ps2 kmÿ1, g � 1:3 Wÿ1 kmÿ1 and a �
0.092 kmÿ1, which correspond to the input beam with a
wavelength about of 1320 nm propagating in a single-mode
ébre. The ébre loss parameter calculated from (2) is
G � 2:9. In the program, we sampled 8192 points in time
for the input pulse and selected the cut-off points at �8. In
addition, the step over the spatial axis was taken equal to 1/
2000 of the dispersion length.

The propagation of solitons was simulated numerically
in single-mode ébre for four cases to obtain the effects of
initial chirp and ébre loss separately and the combined
effects of them on soliton-effect compression. Generally, the
ébre output is selected at the ébre length where pulse is
compressed into a narrowest one. The maxima of the curves
shown in Fig. 1 are the érst maxima of the compression and
quality factors, and the corresponding ébre length. Here, the
length that corresponds to the maximum of the compression
factor is an optimum ébre length denoted by zopt.

To characterise the performance of a soliton-effect com-
pressor, it is useful to deéne two parameters as

Fc �
TFWHM

Tcomp
; Qc �

� TFWHM

ÿTFWHM
U x; t� �j j2dt� TFWHM

ÿTFWHM
U 0; t� �j j2dt

; (9)

where Tcomp is the FWHM of the compressed pulses and Fc

is the compression factor. The parameter Qc is the quality
factor that measures the quality of the compressed pulse.

The results of numerical solution of Eqn (1) with the
initial pulse U(0; t) � Nsech(t) exp (ÿiCt2=2) are shown in
Figs 1a ë d for different values of C and G and different
soliton orders N � 2:5 and 10.

Figs 1a ë d show that an optimum value of the ébre
length exists for which both Fc and Qc are maximum, which
is a common feature of such compressors. This is consistent
with numerical calculation of the pulse compression in ébre-
grating compressors [3]. Comparison of Fig. 1a and Fig. 1b
reveals that the initial chirp induces the increase in Fc and
Qc and the decrease in zopt. In Fig. 1c, Fc and Qc decrease
clearly, and the maxima of Qc for second-order and éfth-
order soliton disappear in the presence of ébre losses.
Furthermore, ébre losses increase the optimum ébre length
zopt for éfth-order and tenth-order solitons. Finally, com-
paring Fig. 1d with other three plots, we see that the values
of compression parameters of solitons in Fig. 1d lie between
the values of compression coefécients shown in Fig. 1b and
Fig. 1c. This means that the initial chirp and ébre losses
affect the compression of bicosecond pulses in the opposite
ways. Note that the optimum length for the second-order
solitons in Fig. 1d is larger than zopt in Fig. 1c, whereas for
solitons of the éfth and tenth orders, the opposite situation
takes place.

By enhancing the ébre loss parameter G, the higher-
order soliton-effect compression is simulated numerically.
The result shows that the opposite change mentioned above
also occurs for higher-order solitons (N5 2) when the ébre
loss is large enough. This can be explained by the fact that a
critical value Gcr of ébre loss exists for a given amount of
pulse energy (corresponding to the soliton order). If ébre
losses exceed Gcr, the optimum length increases with the
chirp. In the above examples, the ébre loss G � 2:9 exceeds
Gcr for the second-order soliton.

The soliton-effect compressor makes use higher-order
solitons supported by the ébre as a result of an interplay
between SPM and anomalous GVD. In the anomalous-
dispersion regime of the ébre, the SPM-induced chirp is
positive while the dispersion-induced chirp is negative. For
values of N4 1, Eqn (1) suggests that the effects of SPM
should dominate over those of GVD, at least during the
initial stages of pulse evolution. Thus the net chirp is
positive and leads to the pulse compression. This means
that the main effect of SPM is to decrease the broadening
rate imposed on the pulse by the GVD alone. During the
pulse propagation, the initial positive chirp enhances the
SPM-induced chirp while ébre losses reduce the effect of
SPM. This interprets the contrary effects of initial chirp and
ébre loss on soliton-effect compression.

To obtain higher compression factor Fc and quality
factor Qc, we can enhance the initial chirp of pulses for a
given amount of ébre loss G. Fig. 2 shows that Fc and Qc

increase signiécantly. This increase is larger for pulses with a
higher soliton order. Furthermore, unlike Fig. 1c and d, the
maxima of Qc for second-order and éfth-order solitons
appear in Fig. 2 because the initial chirp compensates for
the effect of ébre loss on the pulse compression. As a result,
we can obtain ideal compressed pulses at the outputs of
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ébres by this method. However, an important point is that
the advantage is achieved only at the expense of reduced
optimum ébre length. Therefore, the choice of the initial
chirp should be appropriate. Finally, Fig. 3 shows the
evolution of the second-order soliton for (a) C �
1:0;G � 2:9 and (b) C � 8:0;G � 2:9.

4. Conclusions

We showed, érst, that the compression factor Fc and the
quality factor Qc achieve their maxima simultaneously for
the optimum value of the ébre length. Second, the initial
chirp increases Fc and Qc and decreases zopt whereas ébre
loss produces the opposite effect. We have also found that a
critical value Gcr of ébre loss exists for a given amount of
pulse energy (corresponding to the soliton order). If ébre
loss exceeds Gcr, the effects of initial chirp and ébre loss on
soliton-effect compression change contrarily compared to
those on higher-order soliton. Finally, a method is provided
to obtain higher compression factor Fc and quality factor
Qc, and good compression effect is achieved.
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Figure 1. Calculated properties of the compressed pulse in single-mode ébre as functions of the distance z=Ld: (a) C � 0;G � 0; (b) C � 1:0;G � 0; (c)
C � 0;G � 2:9; (d) C � 1:0;G � 2:9.
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Figure 2. Calculated properties of the compressed pulse in single mode
ébres as functions of the distance z=Ld: C � 8:0;G � 2:9.
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Figure 3. Evoluation of the second-order soliton in single-mode ébres
for (a) C � 1:0;G � 2:9; (b) C � 8:0;G � 2:9.
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