
Abstract. The effect of spatial mode structure on nonlinear
processes in the active medium of lasers with elements having
an angular dispersion is investigated. It is shown that the
`spatially inhomogeneous broadening' of the spectrum may
result in a change in its shape and its broadening. The
algorithm for synthesising a continuous spectrum in reso-
nators with a controllable structure of the spectral function is
modiéed.

Keywords: dispersive resonator, active medium, nonlinear proces-
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1. Introduction

At present, tunable lasers serve as a widely accepted tool in
many scientiéc and technological applications (e.g., in
spectroscopy, communications, metrology and isotope
separation). Some of the applications require a single-
frequency lasing line which can be obtained by means of
elements that considerably increase the losses (Fabry ë Perot
interferometer or grazing incidence grating [1]). However,
lasers with a selection of radiation by means of more eco-
nomical and simpler elements (gratings, prisms and, less
frequently, interference polarisation élters [1]) with a line-
width of � 1ÿ 10 pm, which is sufécient for most practical
applications, are employed more frequently.

It can be assumed that most of the mechanisms
governing the selection of radiation and the formation of
its spectrum in tunable lasers have been established.
However, a number of questions still remain to be answered.
One of them concerns the effect of the active medium on the
lasing spectrum and its evolution. It is assumed that in case
of a homogeneous broadening of the emission spectrum of
the active medium (only such media are efécient in tunable
lasers), a narrowing of the spectrum is proportional to the
square root of the number of round trips of radiation in the
cavity. Such a narrowing does not depend on the nature of
the élter (see, for example, Ref. [2]).

However, lasers in which mode selection is provided by
the angular dispersion (in gratings and prisms) have a
distinguishing feature related to the speciéc nature of the
selection mechanism: a change in the wavelength within the
lasing linewidth is accompanied by a displacement of the
éeld in the transverse direction in the resonator and, in
particular, in the active medium. No signiécance has been
attached to this circumstance so far, and this prompted us to
study the effect of this peculiarity on the emission spectrum
of lasers with a simple lasing line and with a synthesised
complex spectrum [3]. The results of these investigations are
presented in this work, where it is shown that under certain
conditions, such a peculiarity can basically change the laws
governing the spectrum evolution.

2. Model and basic equations

At the stage of nonlinear generation, modes with different
transverse distributions (and even `longitudinal' modes) will
`saturate' the active medium in different ways, which is
equivalent to its `spatially inhomogeneous broadening'.
Consider a travelling-wave laser or a linear laser (Fig. 1) in
which the length Dz of a four-level active medium ( 1 ) and
its separation from mirror ( 2 ) (in the case of a linear laser)
are much smaller than the length l of the resonator (this
situation is typical of dye and other lasers). The medium
( 1 ) is assumed to be a thin layer brought in coincidence
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Figure 1. Optical scheme of a tunable laser: ( 1 ) active medium, ( 2 )
mirror, ( 3 ) diffraction grating, ( 4, 7 ) optical systems, ( 5 ) phase
modulator, ( 6 ) amplitude modulator.



with the mirror ( 2 ) in a linear resonator. This simpliées the
procedure of derivation of equations and makes it possible
to take into account the above-mentioned nonlinear effects
while preserving all the properties of a dispersive resonator
and the mechanism of mode selection in it (an increase in los-
ses upon a deviation from its tuning wavelength l0 by Dl).

We expand the éeld E(x; t) in the plane of the medium
( 1 ) in dispersive resonator modes funj(x)g, i.e., in eigen-
functions of the equation

Lu�x� �
�1
ÿ1

K�x; x1�u�x1�dx1. (1)

The kernel K(x; x1) (whose form will be discussed below)
characterises éeld transformations in linear elements,
including the diaphragms. The operator L has eigenvalues
Lnj � exp (ÿ gnj), where gnj deénes the loss logarithm and
the phase shift of modes; n � 0, 1, 2 ... is the transverse
mode index; and j � mÿm0 is counted relative to the
longitudinal index m0 for the mode with Dl0 � 0. The
spectral function G(l0 � Dl) � jL0j(Dlj�j2=jL00(0)j2 of the
dispersive resonator [3] deénes its selectivity. In this case,
we obtain

E�x; t� �
X
j

exp�iojt�
X
n

Enj�t�unj�x�, (2)

where Enj(t) are the time-dependent expansion coefécients
taking into account the variations related to the difference
in frequencies (oj) of longitudinal (n � 0) and transverse
modes. After a round trip of radiation through the
resonator, we obtain

Ekj�t� tc� �
X
n

Enj�t�Fknj�t�, (3)

where

Fknj�t� �
�
dx1

�
dx2K�x1; x2� exp�2sN2�x2; t�Dz�

� vkj�x1�unj�x2�; (4)

vkj(x) are the eigenfunctions of an equation conjugate to (1)
with an orthogonality

�
vkj(x)unj(x)dx � dkn [in a linear

resonator, vkj(x) � ukj(x)]; tc is the round-trip transit time
in the cavity; N2(x; t) is the population of the upper laser
level; and s � s(l0) is the cross section for active centres.

We determine the increment in Ekj per round trip and
divide it by tc. Going from énite differences to derivatives
and using the traditional approximation of smallness of the
changes during a round trip (for series expansion of the
exponent and for other applications), we arrive at the
following equation for Ekj:

dEkj

dt
�
P

n Enj�t�2sDz
�
N2�x; t�unj�x�vkj�x�dxÿ gkjEkj�t�

tc
. (5)

The constitutive equations have the conventional form
and are presented below.

3. Evolution of the spectrum of a single line with
a simple regular structure

The set of equations (5) can be simpliéed by using addi-
tional approximations that have been veriéed experimental-
ly and theoretically, in particular, for tunable lasers with
angular dispersion. Consider the case of `transmission' of a
resonator with a parabolic or Gaussian law, when the selec-
tion within the lasing line is associated with the displace-

ment of the éeld to lower reêectivity regions during mis-
alignment of the system by varying l [4]. In this case, which
is encountered in many lasers (with longitudinal pumping,
with a proéled reêection coefécient of the mirrors for im-
proving mode composition [5 ë 7], etc.), only longitudinal
modes are involved in lasing for a quite long duration of
the linear stage and for the diaphragm parameter b �
�pw 2=(ll )�1=2 < 10, where 2w is the width of the diaphragm
(for b > 10, resonators with angular dispersion reduce the
selectivity), while mode éelds and their losses are appro-
ximated by analytic expressions. We shall use these appro-
ximations for simplifying the equations.

Suppose that the laser contains a diffraction grating ( 3 ),
and the system ( 4 ) consists of Gaussian optics elements that
provide the generation of a single line. The kernel of Eqn (1)
with the reference plane on mirror ( 2 ) has the form [8, 9]

K�x1; x��
�
ÿ i
2p

�1=2
exp

�
i
�
f �x1 � x�� gx21 � gx2 ÿ 2x1x

2

��
,

where x � x�2p=(lBs)�1=2 is a dimensionless coordinate; f �
(2pBs=l)

1=2DaDl=2; g � As; As � 1� 2CB; Bs � 2BD; A, B,
C, D are the elements of the resultant resonator matrix
including the Gaussian diaphragm; Da is the angular
dispersion of the grating ( 3 ). The solutions of Eqn (1)
for the éeld u0j of longitudinal modes and their eigenvalues
L0j have the form

u0j �
��������������������
2
�������������
g2 ÿ 1

p
ip

s
exp

�
i
�������������
g2 ÿ 1

q �x�Yj�2
2

�
,

L0j �M 1=2 exp

�ÿi f 2
j

gÿ 1

�
,

where M � g� (g2 ÿ 1)1=2; fj � (2pBs=lj)
1=2DaDlj=2. The

`tunings' Dlj in the expression for fj are chosen from the
condition of reproducibility of mode éelds, while the signs
of radicals are chosen from the condition of a decrease in
the éeld at inénity. The complex éeld displacement (of its
amplitude and phase) in the transverse direction is deter-
mined by the expression Yj � fj=(gÿ 1). The spectral
function G(l) in this case is a Gaussian with the half-
width s0.

We will determine N2(x; t) from the rate equation, which
is conventionally used for many types of tunable lasers (dye
solution lasers neglecting triplet transitions, electron ë pho-
non transition lasers, etc.), taking into account the
parametric dependence on x, as in Ref. [10], and going
over to the multimode case, as in Ref. [11] (assuming the
modes to be statistically independent). The equation for the
number qj(t) of photons is obtained by differentiating the
relation qj(t) � jE j2 and taking Eqn (5) into account:

dqj�t�
dt
� 2qj�t�

�
sDz
tc

�
N2�x; t�F q

j �x�dxÿ
Re g0j
tc

�
, (6)

dN2�x; t�
dt

�W�t��NT ÿN2�x; t��

ÿUN2�x; t�
X
j

F N
j �x�qj�t� ÿ

N2�x; t�
t

, (7)

where qj is the number of the jth mode photons;
U � scDz=(Val ) is the Einstein coefécient for induced
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transitions; c is the velocity of light; Va is mode volume in
the active medium; t is the spontaneous emission lifetime;
Re g0j are the losses in the jth mode (both total and selec-
tive); W(t) is the pump power; NT is the number of active
centres.

It should be emphasised that preservation of the proper-
ties of dispersive resonator led to different `coupling'
coefécients in nonlinear terms of the equations for the
photon numbers and for inverse population. For a linear
laser (see Fig. 1), we can write

F
q
j �x� � 2Re �u0j�x�u0j�x��, FN

j �x� � u0j�x�u �0j�x�. (8)

Thus, Eqns (6) ë (8) differ not only in their `physical'
content, but also in the structure as compared to the
case of a spectrally inhomogeneous medium [10].

The set of equations (6) ë (8) was analysed numericall for
characteristic parameters of laser-pumped pulsed dye lasers
(e.g., rhodamine 6G laser, for which s � 1:3� 10ÿ16 cm2,
t ' 4 ns [11], etc.). The parameter b, the maximum excess
r �Wmax=Wth in pumping power over the threshold value,
and the number of modes (from 20 to 60) were varied. The
initial (seed) mode intensities at the threshold were estima-
ted from the typical experimental mean power P(r) of super-
luminescence noise, which was of about 0.05 ë 0.2 the power
of laser radiation for r � 5 and had a spectral density
p(l) � hY(l;N2), where Y(l;N2) � exp�2s(l)N2Dz� ÿ 1; h �
P(r)=

�
dlY(l;N2) is a parameter depending on the system

geometry [12]. The power per mode near the threshold was
Pj th � (h=r)Y(l0;N2 th)dl=w

2, where w is the ratio of the

divergences of noise and laser radiation (� 5ÿ 20 in our
case); dl is the spectral width, which was varied from the
mode separation l 2

0 =(2l ) to the limiting width l 2
0 =(2cT ) (T is

the mean duration of the lasing pulse). At the nonlinear
stage of the processes considered below, no changes were
observed due to a variation of the above-mentioned para-
meters, mode numbers, or the shape of the leading edge of
the pump pulse (as long as the duration of the linear stage is
kept long enough to ensure longitudinal mode separaion).

The solution of the set of equations (6) ë (8) was repre-
sented in the form Q(l; t) � Qn(l; t)I(t), where Q(l; t� �P

j qj(t); Qn(l; t) is the normalised part of the solutionÿ �
Qn(l; t)dl � 1

�
reêecting the change in the shape of the

spectrum; I(t) is the intensity of the spectrum. The results of
calculations of the function Qn(l; t) and its half-width s are
presented in Figs. 2 and 3a (the leading edge of the pump
pulse is a segment of a Gaussian). The inclusion of the vari-
ation of the spatial structure leads to a considerable rear-
rangement of the spectral dynamics over the pulse duration
for b5 3:5 and r > r0 (r0 depends on b and decreases with
increasing b ). Fig. 2 shows typical dependences of Qn(l; t)
on Z � t=tc for the case b � 4.

For small r (r � 5, Fig. 2a), the evolution of Qn(l; t) is
similar to the case considered in Ref. [2], i.e., it gradually
narrows down, but its shape is preserved. Upon an increase
in r (r � 15, Fig. 2c), the Qn(l; t) spectrum narrows down
only during the érst few round trips of the radiation in the
resonator (Z4 3), after which the spectrum is gradually
transformed (Z � 4ÿ 10), its wings are raised, and it is
transformed successively into a rectangular and double-
humped shape followed by the same transformations in the
reverse order to a Gaussian and a subsequent narrowing of
the spectrum. Samples of these phases, constituting the érst
cycle of the nonlinear dynamics of the spectrum, are shown
in Fig. 2c. The cycle is repeated upon an increase in the
pump duration: after a secondary narrowing (Z � 14ÿ 26),
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Figure 2.Dependences of the laser spectrum Qn on time (Z � t=tc) for the
diaphragm parameter b � 4 for r �Wmax=Wth � 5 (a), 10 (b), and 15 (c).
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Figure 3. Dependence of the current ratio s=s0 on time (Z � t=tc)
calculated for r � 15 and different b (a), as well as a comparison of the
dependences obtained from Eqns (6) ë (8) (curve 1 ) and those borrowed
from [10] (curve 2 ) for r � 15, b � 5 (b). The dashed curves show the
dependence of s=s0 on Z in accordance with Ref. [2].
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the spectrum is repeatedly transformed to a double-humped
curve (Z � 28ÿ 30), then into a Gaussian, and so on.

The time dependence of the spectral width (width of the
function Qn(l; t) on Z � t=tc in Fig. 3a) obtained by us
differs from that obtained in Ref. [2] (dashed curve). Note
the appearance of jumps upon the transition to the non-
linear stage and slowing down of the spectrum narrowing.
These effects are explained by the fact that at the linear stage
of the spectrum narrowing, peripheral regions are formed in
the active medium, which are weaker occupied by mode
éelds than the other regions. For b5 3:5, these regions are
large enough to accommodate the modes of new spectral
peaks. For r > r0, the degree of `saturation' at the centre is
so high that ampliécation at the nonlinear stage dominates
at the periphery and lasing is observed, which changes the
shape of the spectrum. For r � r0 (Fig. 2b), the dynamic
equilibrium may be observed between the processes at the
periphery and at the centre (the width and shape of the spec-
trum remain virtually unchanged).

The radiation emitted by the laser in the case considered
by us differs in principle from the radiation emitted by a
laser with spectrally inhomogeneous broadening of the laser
transition [10] in the following aspects (in spite of the
similarity of these effects): (1) the transition remains homo-
geneously broadened, and the role of an inhomogeneous
broadening is played by the regular variation of éeld
distribution within the lasing line; (2) a change in the
`coupling' terms (8) leads to a qualitative and quantitative
rearrangement of the dynamics of the emergence of these
phases, which is conérmed by a comparative analysis of
solutions of two types of equations carried out by us. Fig. 3b
illustrates an example of such a situation, in which the pas-
sage to Eqns (6) ë (8) (curve 1) is accompanied by a signié-
cant variation of the shape of the curve and by the emer-
gence of a jump during a transition to the nonlinear stage.

The average parameters of the output laser spectrum are
determined by the function Q(l; t). Fig. 4 shows the depend-
ences of the width of this function (spectral width) on
parameters b and r, while the corresponding dependences of
its form (spectral shape) averaged over the érst cycle are
shown in Fig. 5. For b > 3:5, an increase in the pump
energy (Fig. 4b) leads to a strong broadening of the
spectrum due to nonlinear processes. Fig. 5a shows the
transformation Q(l) � hQ(l; t)i with increasing b for a éxed
pump energy (r � 15) through a series of intermediate
phases, while Fig. 5b shows another aspect of this process
(r changes and b � 4) associated with an increase in the
effect of peripheral regions (for comparison, the function
G(l) is shown by the dashed curve).

Note that speciéc laser parameters were chosen for the
convenience of presenting the results, which are also
obtained for other parameters (other lasers) with increasing
the lasing duration by several orders of magnitude.

4. Effect of the active medium in a laser with
spectral synthesis

Another class of problems that can be studied by using
Eqn (5) involves the evolution of more complex spectra. We
will consider an important laser for practical applications
with a rearrangement (synthesis) of the spectral line [3],
whose analysis will be carried out by using the results and
solutions obtained in the previous section. The method used
for this analysis [3] is based on controlling the shape of the

function G(l) during a rearrangement of the transverse
spatial distribution of the amplitude and phase of the
transmission coefécient. The varying phase, controlled by
the modulator ( 5 ) in the system ( 7 ) (Fig. 1), `tunes' the
partial regions to different wavelengths, and their contri-
bution to G(l) is controlled by the amplitude a established
during the rearrangement of the shape of the acoustic wave
V(t) in the acousto-optical modulator ( 6 ).

For a discrete distribution of a, the resonator can be re-
presented as a system of partial resonators with a composite
function G(l) �P arGr(lÿ lr) (whose form is presented in
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Figure 4. Dependences of the ratio hsi=s0 averaged over the érst cycle of
spectral dynamics on b for different values of r (a) and on r for different
values of b (b).
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Ref. [3]), where Gr(l) is the spectral function of the partial
resonator r; lr is its tuning wavelength; and ar is the
amplitude of its contribution.

Let us see how the results of calculations vary when the
contribution of the above processes occurring in the active
medium is taken into account. In this case, a complete
analysis of the system (5) or (6) ë (8) requires the inclusion of
a large number of modes and is virtually impossible. Hence,
we use one more simpliécation in addition to those made
above. We present the intensity of radiation in terms of the
number qrj of photons in the partial resonator modes, and
characterise the spatial structure of these modes through the
distribution of the central longitudinal mode by putting
F

q;N
rj (x) � F q;N

r (x). Omitting simple transformations, we
arrive at the following equations:

dN2�x; t�
dt

�W �NT ÿN2�x; t��

ÿUN2�x; t�
X
r

FN
r �xÿ xr�qr�t� ÿ

N2�x; t�
t

, (9)

dqr�t�
dt
� qr�t�

�
UV

� �1
ÿ1

F q
r �xÿ xr�N2�x�dx

ÿ
X
j

Re grjFr�lj ÿ lr; t�=tc
�
, (10)

where qr(t) �
P

j qrj(t) is the éeld intensity of the resonator
r and Fr(lj; t) (

P
j Fr(lj; t) � 1) is a function characterising

the time dependence of the éeld spectrum of resonator r, for
which a solution of the set (6) ë (8) is a sufécient approxi-
mation. Substitution of Fr(lj; t) and Fr(x) into (9) and (10)
leads to a transition from lj to the wavelength lr of `tuning'
of the partial resonator, and from x to the coordiante xr of
the resonator axis. The resulting spectrum takes into ac-
count the evolution of the spectra of partial resonators and
the competition between their éelds:

Q�l; t� �
X
r

Fr�l; t�qr�t�.

A numerical analysis of the set (9), (10) was carried out
for a series of functions G(l) (with different asymmetries

and excesses). Fig. 6 shows the effect of the extent of `spa-
tially inhomogeneous broadening' m [ratio of the separation
between the peaks of the éelds of adjacent resonators in the
active medium to the half-width of the function Fr(x)] on
Q(l) in lasers with the same pumping kinetics and the same
asymmetric function G(l) (curve 1 ). Upon an increase in m,
the distribution of the mean values {hqr(t)i � Q(lr)} grad-
ually approaches the amplitude distribution farg for the
function G(l) (the difference between these distributions is
the largest for m � 0). In this case, the spectrum becomes
more and more distorted upon an increase in the duration
between {lr} due to a competition between modes in partial
resonators.

Taking these circumstances into account, we can modify
the algorithm of synthesis. We shall try to establish a simi-
larity of the spectrum not with G(l), but with an approxi-
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mation of this function to the average spectrum by replacing
Gr(lÿ lr) with the average spectra of partial resonators [in
the case of Gaussian functions, only the width of the func-
tion Gr(lÿ lr) is modiéed] and choosing the initial ampli-
tudes of farg in such a way as to ensure the required relation
between the average quantities {hqr(t)i}.

Fig. 7 conérms the eféciency of such an algorithm in a
laser with the spatial acoustic modulator ( 6 ) which provides
a stepwise distribution of the amplitude transmission for the
case of excess rearrangement. The experimental and theo-
retical average spectra are found to be in satisfactory
agreement.

5. Conclusions

The most important results of this work, associated with
the inclusion of the effect of spatial mode structure on
nonlinear processes can be formulated as follows:

(1) In tunable lasers with resonators having an angular
dispersion in the region of transition to the angular disper-
sion of the wide-aperture resonators (b > 3:5), the spectrum
may change its shape from single-humped to double-humped
and back through intermediate phases. The dynamics of the
spectral variation is considerably altered if we take into
account the real normalisation of the dispersive resonator
modes. This circumstance may also be important in other
problems whose solution in the nonlinear region depends on
ratios of mode conégurations, in particular, in lasers with
other types of resonators (for example, unstable resonators).

(2) The algorithm of continuous spectral synthesis,
which takes into account not only the peculiarities of
wave selection in dispersive resonators, but also the effect
of mode competition in lasers and nonlinear `spatially
inhomogeneous broadening' in the active medium, is sub-
stantiated.

The obtained regularities have a wider signiécance, since
they can also be responsible for other effects of practical
importance (e.g., a jumpwise displacement of the line upon a
shift in the spectral function tuning), including effects which
are manifested in a more complex manner under the inêu-
ence of nonstationary variations of the active medium para-
meters (thermal lens induction, transverse displacement of
the excitation band upon a change in the pump laser charac-
teristics, etc.) and interference effects in the active medium
(e.g., in corundum crystals with titanium ion impurities)
which change the form of the spectral function.
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