
Abstract. The differential and integral light scattering by
dielectric surfaces is studied theoretically taking a thin near-
surface defect layer into account. The expressions for the
intensities of differential and total integral scattering are
found by the Green function method. Conditions are found
under which scattering by the defect layer can be neglected
compared to scattering by the surface roughness. A method is
proposed to separate the scattering from the surface rough-
ness and the defect layer. Estimates are made of the typical
changes in the permittivity and scattering intensity which
correspond to the defect layer related to the higher con-
centration of structural defects in the near-surface region.

Keywords: differential scattering, total integrated scattering, defect
layer

1. Introduction

The methods of differential (angle-resolved) scattering
(ARS) and total integral scattering (TIS) are widely used
for the metrological study of optical surfaces [1]. These
methods involve measurements of the integral or angular
powers of radiation scattered by a surface, which is nor-
malised to the power of specularly scattered radiation. The
surface scattering is caused by the nonuniformity of optical
properties of the surface and the near-surface region, such
as the surface roughness and the defect layer, which appear
after precision surface processing.

The interpretation of experimental results on angle-
resolved and total integral scattering requires the develop-
ment of a complete physicomathematical model of light
scattering by an optical surface with the inclusion of all the
underlying effects. Adequately studied to date is only the
scattering by a rough surface [2ë4]. The issues related to
other possible mechanisms of surface scattering, in partic-
ular, to the nonuniformity of optical properties of the near-
surface region, are poorly known. As a consequence, in the

analysis of experimental data it is commonly assumed that
roughness is the only source of surface scattering; no
estimates of the accuracy of this approximation are made
in doing this.

Therefore, the absence of a well-developed theory of
surface scattering with the inclusion of both roughness and
the near-surface defect layer does not allow one to interpret
reliably experimental results obtained by the angle-resolved
and integral scattering methods, which involve measure-
ments of the scattered radiation intensity. Moreover, the
development of such a theory would enable determining the
differences in scattering characteristics related to roughness
and the defect layer and thereby proposing the method to
determine the parameters of roughness as well as the defect
layer with the use of the above methods. Note that the task
of determining the parameters of near-surface defect and
disturbed layers is topical in several problems of laser phy-
sics, such as improvement of the optical surface resistance to
laser radiation, frequency lock-in in the cavities of laser
gyroscopes, etc.

In this paper, we consider the problem of elastic surface
scattering related to the existence of a thin (compared to the
wavelength) near-surface layer with small êuctuations of the
permittivity or the index of refraction. The model under
consideration is an approximation for the description of
nonuniformities of the optical properties of the near-surface
layer related to the high concentration of structural defects
of different type (for instance, vacancies, dislocations,
vacancy pores, interstitial atoms, etc.) and also to defect
concentration êuctuations (a near-surface layer of this kind
will be referred to as a defect layer).

The defect layer appears mainly due to high stresses
arising in the precision surface processing, for instance,
upon grinding and polishing, resulting in a drastic lowering
of the production threshold of structural defects. In addit-
ion, the existence of a free surface leads to the appearance of
several surface defects (for instance, transition layer, surface
electron or Tamm states), which may also cause changes in
the optical properties in the near-surface region.

We studied the scattering problem, by the Green func-
tion method which was earlier applied to describe the scat-
tering by rough surfaces [3]. The dependences of angle-
resolved and total integral scattering on the parameters of a
defect layer were determined. We considered the conditions
for smallness of the intensity of radiation scattered by the
defect layer compared to the intensity of radiation arising
from roughness and also the possibility to distinguish the
scattering arising from the above mechanisms. A simple mo-
del was considered, which describes the effect of structural
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defects on the optical properties and makes it possible to
estimate the characteristic parameters of the defect layer and
the corresponding scattering related to the high concen-
tration of structural defects. Coefécients of total integral
scattering from a defect layer and roughness, as well as the
Mandel'shtam ëBrillouin scattering intensities for high-pre-
cision quartz substrates, are compared.

2. Formulation of the problem and basic
equations

Consider a plane monochromatic wave incident from
vacuum on a plane surface of an optical dielectric at an
angle y0 (the z-axis is directed normally to the dielectric
surface, the plane of incidence coincides with the xz plane,
Fig. 1):

E�R� � E0 exp�ÿiot� ik�0�R�. (1)

We will use the following model of the permittivity e (o).
The dielectric is assumed to be described by a constant
isotropic real permittivity. In a thin near-surface layer of
thickness d there exist small isotropic êuctuations of the
permittivity:

e�R� � e �0� ÿ De�x; y� exp z

d
; ÿd < z < 0,

(2)
e�R� � e �0�; z < ÿd ,
De
e �0�

5 1;
d

l
5 1 . (3)

Here, De (x, y) is a random function, which describes the
permittivity êuctuations.

The stationary problem of elastic surface scattering
involves the solution of the wave equation

D̂E�R� � e �0�
o 2

c 2
E�R� � ÿDe�R� o

2

c 2
E�R�

� 1

e �0�2
�E�R�gradDe�R��gradDe�R�, (4)

which follows from the Maxwell equations, with the boun-
dary conditions

En1 � eEn2 ; Et1 � Et2 ; z � 0 , (5)

where the indices 1 and 2 refer to vacuum and the dielectric,
respectively; n and t are the normal and tangential com-
ponents of the éeld vectors.

We will assume that the condition

De
d 2

sin y0 5 e �0�2
o 2

c 2
, (6)

for the smallness of De is fulélled, which means that the
gradient term in the wave equation (4) can be neglected.
Note that the condition (6) imposes a limitation on the
gradient in the longitudinal direction perpendicular to the
surface. The gradient in the transverse direction along the
surface is far smaller than the longitudinal one because
in the scattering problem, êuctuations of e over distan-
ces longer than or comparable to l are important, whereas
d5 l is the case of thin layers under study. The condition
(6) is fulélled, for instance, for a defect layer of thickness
d � 100

�
A and De � 0:01 for l � 0:63 mm.

Therefore, when the condition (6) is fulélled, the wave
equation takes the form

D̂E�R� � e �0�
o 2

c 2
E�R� � ÿDe�R� o

2

c 2
E�R� . (7)

When the smallness conditions (3) are fulélled, the right-
hand side of Eqn (7) can be considered as a perturbation of
the Fresnel problem

D̂E� e �0�
o 2

c 2
E � 0 , (8)

whose solutions are well-known and describe the incident,
specularly reêected, and refracted waves.

Therefore, to solve the problem (7), we can use the
perturbation theory. To énd the scattered radiation intensity
in the érst order of the perturbation theory, we will use the
Green function method and the expansion in terms of the
spatial Fourier integrals developed for the scattering by a
rough surface in Ref. [3].

3. Results of calculations

Let Pik be the intensity of radiation scattered in the
direction corresponding to the scattering angles y, j. Nor-
malisation was performed to the incident radiation intensity
I0 and a unit solid angle O, the subscripts i, k � s or p
denote the polarisation of the incident and scattered éelds,
respectively. After calculations, we obtain

Pik �
1

I0

dIik
dO
� o 4

p2c 4
g
ÿ��k? ÿ k �0�?

���Fik�y;j; y0; e�, (9)

where

g
ÿ��k? ÿ k �0�?

��� � � exp �ÿ i
ÿ
k? ÿ k �0�?

�
r
�
C�r�dS (10)

is the spectral power density (SPD) function of the
permittivity êuctuations in the defect layer, which is a
spatial two-dimensional Fourier transform of the correla-
tion function of the permittivity êuctuations

y

k?

j k �0�? x

k y

y0

k�0�
z

Figure 1. Geometry of the angles.
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C�r� � C�jr 0 ÿ r 00j� � hDe�r 0�De�r 00�i: (11)

The averaging is performed over a cylindrical volume with
thickness d and a base area equal to the irradiated surface
area;

k? � fkx; ky; 0g �
2p
l
fsin y cosj; sin y sinj; 0g,

(12)

k �0�? � fk �0�x ; 0; 0g � 2p
l
fsin y0; 0; 0g

are the wave vector components of the scattered and
incident waves perpendicular to the normal to the surface.
The expressions for the angular functions Fik(y, j, y0, e) are
given in the Appendix.

The total integral intensity, i.e., the intensity of radiation
scattered in the upper half-space, is derived by integrating
the corresponding expressions for angle-resolved scattering
over all possible scattering and azimuth angles:

PTISi�y0� �
� p=2

0

dy sin y
� 2p

0

dj�Psi�y;j; y0�

�Ppi�y;j; y0�. (13)

The correlation function of permittivity êuctuations in
the defect layer is assumed to be Gaussian,

Cg�r� � D�e 2d 2 exp

�
ÿ r 2

l 2

�
, (14)

with the SPD function

gg
ÿ��k? ÿ k �0�?

��� � pD�e 2d 2l 2 exp

�
ÿ
��k? ÿ k �0�?

��2l 2
4

�
, (15)

where l is the correlation length corresponding to the
characteristic transverse dimensions of permittivity êuctua-
tions.

In addition, we neglect the weak dependence of the
angular functions on the scattering angles. Then, for cor-
relation lengths longer than the wavelength ë the most
important case from the practical viewpoint ë we obtain the
following expression for PTIS for normal incidence (y0 � 0,
with normalisation performed to the intensity of specularly
reêected radiation):

PTIS �
�
4pd
l

D�e
eÿ 1

�2

; l5l . (16)

One can see that this expression will correspond to the
expression for PTIS for roughness if the rms roughness s is
replaced by dD�e (eÿ 1)ÿ1. Therefore, when the condition

D�e d
eÿ 1

< s (17)

is fulélled, the scattering by the defect layer is weak com-
pared to that from roughness.

4. Discussion of results

4.1 Possibility of separating the scattering from roughness
and the defect layer

Expression (9) describes the scattering caused by a defect
layer. This expression is of the same form as the expression
for scattering by roughness (see Ref. [4]), i.e., the scattered
radiation intensity is determined by the product of the
frequency raised to the fourth power, the SPD function,
and the angular function. A comparison of the angular
functions corresponding to scattering by the defect layer
with those corresponding to scattering by roughness shows
that they coincide for all types of scattering, except the pp-
type. For pp-type scattering by roughness, the intensity of
radiation scattered in the plane of incidence (j � 0)
vanishes for a scattering angle y 0 determined by the con-
dition

sin2 y 0 � e�eÿ sin2 y0�
eÿ sin2 y0�1ÿ e 2� . (18)

This minimum is observed only for angles of incidence
y0 > 408. However, when the scattering arises from the
defect layer, the scattered radiation intensity does not vanish
at any scattering angle. Fig. 2 shows the angular functions
F r
pp(y) fnd F b

pp(y), which correspond to the pp-type scatter-
ing by roughness and the defect layer in the plane of
incidence (j � 0), for an angle of incidence y0 � 458.

This difference in the dependences allows us to propose
the following method of separating the scattering from
roughness and from the defect layer, which is based on
the use of radiation of different polarisation and involves a
simultaneous determination of the corresponding SPD
functions:

(1) Two measurements of angle-resolved scattering indi-
catrix are accomplished in the plane of incidence (j � 0) for
s- [(Is(y)] and p-polarised [(Ip(y)] incident radiation for an
angle of incidence y0 � 40ÿ 558.

(2) The SPD functions of roughness gr(k) and the defect
layer gb(k) are found as follows:

ÿ90 ÿ60 ÿ30 0 30 60 90

F r
pp(y), F

b
pp(y)

F b
pp(y)

F r
pp(y)

Scattering angle
�
8

10ÿ7

10ÿ6

10ÿ5

10ÿ4

10ÿ3

10ÿ2

10ÿ1

Figure 2. Angular functions F r
pp(y) and F b

pp(y), corresponding to the pp-
type scattering by roughness (r) and the defect layer (b) in the plane of
incidence (j � 0), as functions of the scattering angle for an angle of
incidence y0 � 458.
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gr�k� �
1

Fbs�y�
Is�y�Fbp�y� ÿ Ip�y�Frs�y�

Fbp�y� ÿ Frp�y�
,

(19)

gb�k� �
1

Fbs�y�
Ip�y�Fbs�y� ÿ Is�y�Frp�y�

Fbp�y� ÿ Frp�y�
,

where Frs(y), Frp(y), Fbs(y), and Fbp(y) are the angular
functions corresponding to s- and p-polarised incident
radiation scattered by roughness (r) and the defect layer (b).

The weakness of scattering by the defect layer compared
to that by the roughness can also be determined in the
following way. In the pp-type scattering indicatrix recorded
for an angle of incidence of 40 ë 458, we énd a scattering
angle y 0 deéned by condition (18), at which scattering from
the roughness does not occur. If the indicatrix does exhibit a
minimum of the order of the measurement error, the scat-
tering from the defect layer is weak compared to that from
the roughness. If the minimum is not observed, the scatte-
rings from the layer and the roughness are comparable. In
this case, to make a correct measurement of the roughness
characteristics, the scattering from the defect layer should be
subtracted according to expressions (19).

As an example, Fig. 3 shows typical indicatrices of the
ss- and pp-type angle-resolved scattering measured on a
polished quartz substrate for an angle of incidence of � 458
(the 41 ë 498 angle range corresponds to irradiation by
specularly reêected radiation). Also plotted are the curves
which correspond to the theoretical approximation of the
experimental data employing expressions for the scattering
from a roughness with an exponential statistics [ g (k) �
2ps 2l 2=(1� k 2l 2)3=2, s � 5 nm, l � 0:7 mm]. One can see
that a well-deéned minimum is indeed observed for the pp-
type scattering and a scattering angle of � 708 correspond-
ing to expression (18). Furthermore, the experimental data
are in good agreement with the theoretical curves corres-
ponding to the scattering from roughness. Hence, the scat-
tering from the defect layer is much weaker than that from
the roughness for substrates of this type.

Therefore, measurements of the scattering parameters
for different polarisations of the incident radiation allow
separating the contributions to scattering associated with
roughness and the defect layer.

4.2 Estimate of the characteristic parameters of the defect
layer
We assume that, the defect layer is associated with the high
concentration of structural defects. Consider the following
simpliéed model of the inêuence of defects on the per-
mittivity in this layer. Let us assume that the inêuence of a
defect involves an isotropic deformation of the medium in
some region Vd around the defect, this deformation being
described by the simpliéed dependence:

D�R� � D0 exp

�
ÿ Rÿ a

ad

�
; R5 a, (20)

where D0 is the displacement of the atom nearest to the
defect; ad is the characteristic radius of the region of the
defect inêuence; and a is the average interatomic distance,
with

D0

a
5 1;

a

ad
5 1; ad 5 l . (21)

By using the expression for elastooptical effect, we can
estimate the average change e in the region Vd of the defect
inêuence (this approach corresponds to the traditional
technique employed in Ref. [5]):

D�ed � 6
D0

ad
p , (22)

where p is the elastooptical constant.
We determine the change of e in the region with the

point defect concentration Nd(R) from the formula for the
permittivity of a mixture [5]:

Dedb�R� �
4p
3

a 3
dDedNd�R� . (23)

The average change in the region with the defect density
Nd is

D�edb �
4p
3

a 3
dD�edNd . (24)

Note that D�ed is the average change of e in the region of the
defect inêuence and D�edb is the average change of the layer
with the defect concentration Nd.

Then, it is necessary to énd the correlation function and
the SPD of the defect layer. For correlation lengths of the
order of l, the correlation function is, as follows from the
smallness condition of the region of the defect inêuence (21),
related only to the êuctuations of the defect density:

C�r 0� � D�e 2db
hnd�r�n�r� r 0�i

n 2
d

; r 05l , (25)

where nd(r) is the number of point defects under a unit
surface area, i.e., nd(r) � Nd(R)d, nd � Ndd.

Two variants of the defect distribution are possible.
(1) The random (normal) distribution. In this case, the

variance of the number of defects in a circle of radius L may
be assumed to be equal to the number NdL

2d of defects in
this circle. The correlation function which corresponds to
random êuctuations of the point defect density can be
written in the form (for deéniteness, the random distribution
is assumed to be Gaussian):
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Figure 3. Indicatrices of the ss- and pp-type angle-resolved scattering
from a polished quartz substrate (the normalisation was made to the
intensity of specularly reêected radiation), along with theoretical appro-
ximations (curves) which make use of expressions for the roughness-
induced scattering and an exponential statistics (s � 5 nm, l � 0:7 mm).
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Cc�r 0� �
D�e 2db

L 2Ndd
exp

�
ÿ r 2

L 2

�
. (26)

(2) The regular distribution, when the defect density is
modulated to one extent or another by some mechanism. A
distribution of this kind may arise, for instance, during
polishing: the defect density rises sharply under the grain of
a polishing powder during the contact interaction to attain a
density of � 1019 cmÿ3 required for the multiplication of
dislocations whose motion is a plastic êow (see, for instance,
Ref. [6]). In the general case, the correlation function
corresponding to a regular defect density distribution is
difécult to obtain. Consider a special case when the defect
density at the maxima is much higher than the average
defect density. In this case, the variance of the number of
defects is, as follows from its deénition, equal to the square
of the number of defects at the density maxima, and
therefore the correlation function takes the simple form:

Cr�r� � D�e 2db exp
�
ÿ r 2

L 2

�
. (27)

The SPD functions which correspond to the random
[gc(k?)] and regular [gr(k?)] defect distributions are as
follows:

gc�k?� �
pD�e 2db
Ndd

exp

�
ÿ k 2

?L
2

4

�
, (28)

gr�k?� � pD�e 2dbL
2 exp

�
ÿ k 2

?L
2

4

�
. (29)

By using expressions (9) and (13), we can énd the
scattered radiation intensities for both methods of scattering
investigation in the presence of a defect layer caused by the
high concentration of structural defects.

Table 1 presents the characteristic D�ebd and integral
scattering intensities and their estimates made for parameter
values of the defect layer typical for high-precision polished
quartz substrates (ad � 100

�
A, D0 � 0:1, d � 100

�
A, l �

0.63 mm).
For comparison, Table 1 also gives the corresponding

expressions for the integral scattering by the surface rough-
ness and the coefécient of volume Mandel'shtam ë Brillouin
scattering (MBS) (D is the sample thickness) [5]. One can see
that only regular defect density êuctuations may be respon-
sible for a signiécant scattered radiation intensity, which is
nevertheless well below the intensity of radiation scattered
by the roughness.

Therefore, the scattering by the roughnessis prevalent in
high-precision quartz substrates. Nevertheless, this by no
means implies that the scattering from a defect layer may be
neglected for other types of surfaces without making
estimates.

Appendix

Expressions for the angular functions
The angular functions which appear in the expressions for
angle-resolved scattering from the defect layer (9) have the
following form (the érst and second subscripts denote the
polarisation of the scattered and incident éelds, respec-
tively; normalisation is accomplished to the incident
radiation intensity):

Fss �
cos y0 cos

2 y cos2 j�
cos y0 �

ÿ
eÿ sin2 y0

�1=2�2�
cos y� ÿeÿ sin2 y

�1=2�2 ,
Fsp �

cos y0 cos
2 y sin2 j�eÿ sin2 y0��

e cos y0 �
ÿ
eÿ sin2 y0

�1=2�2�
cos y� ÿeÿ sin2 y

�1=2�2 ,
Fps �

cos y0 cos
2 y sin2 j�eÿ sin2 y��

cos y0 �
ÿ
eÿ sin2 y0

�1=2�2�e cos y� ÿeÿ sin2 y
�1=2�2 ,

Fpp �
cos y0 cos

2 y cos2 j�
e cos y0 �

ÿ
eÿ sin2 y0

�1=2�2�e cos y� ÿeÿ sin2 y
�1=2�2

��ÿeÿ sin2 y0
�1=2ÿeÿ sin2 y

�1=2 ÿ sin y0 sin y
�2
.

When normalising to the specularly reêected radiation,
the angular functions are obtained from the above functions
by changing the plus signs to the minus signs in front of the
(eÿ sin2 y0)

1=2 factor in the denominators.
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Table 1. Characteristic magnitudes and scattered radiation intensities associated with the defect layer, roughness, and MBS.

Effect D�edb Estimate of D�edb ITIS Estimate of ITIS Parameters of the estimates

Roughness ë ë

�
4ps
l

�2

4� 10ÿ4 s � 10�A

Random distribution

of structural defects D�eda
3
dNd 10ÿ5

d

Nd

�
4p
lL

Dedb
eÿ 1

�2

4� 10ÿ13
D�ed � 10ÿ3, L � 1 mm,

Nd � 1015 cmÿ3

Regular distribution

of structural defects D�eda
3
dNd 10ÿ3

�
4pd
l

Dedb
eÿ 1

�2

4� 10ÿ8 D�ed � 10ÿ3; Nd � 1017 cmÿ3

MBS coefécient ë ë
p 2kT

64ru 2
D 10ÿ10

p � p11 � 0:13, u � 5� 105 cm sÿ1,
r � 2:65 g cmÿ3, D � 0:5 cm
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