
Abstract. A solution of D'Alembert's equation for the vector
potential of an electromagnetic éeld is found in the form of a
wave packet, which does not spread in time and space. The
expression obtained for the vector potential of a photon is
used for the solution of some problems.
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1. Introduction

In many experimental studies of the interaction of electro-
magnetic radiation with matter, the radiation êuxes can
correspond to such a low photon density nph � w=Sc�hO
that the vector potential of this radiation, which is required
for theoretical calculations of some experimentally meas-
ured quantities, cannot be considered classical [1]. Here, w
is the power of electromagnetic radiation, S is the cross sec-
tion of the photon êux, c is the velocity of light in vacuum,
and O is the photon frequency.

The criterion for the éeld E to be classical at the cha-
racteristic time interval Dt has the form [1]

ÿ
E 2
�1=2

4
��hc�1=2
�cDt�2 �

��hc�1=2
�c=O�2 .

For example, when a helium-neon laser is used (�hO � 1 eV,
w � 10ÿ3 W, S � 0:01 cmÿ2), we have nph � 107 cmÿ3,
which is obviously insufécient for the fulélment of the
above criterion because (�hc)1=2(c=O)ÿ2 � 0:01 V mÿ1. A
similar situation takes place in experiments with X rays
[2]: for �hO � 104 eV and w=S � 10ÿ7 W cmÿ2, the value
(E 2)1=2 � (�hOnph)

1=2 � 10ÿ6 V mÿ1 is signiécantly lower
than (�hc)1=2(c=O)ÿ2 � 106 V mÿ1.

Thus, in a real situation we can deal with the interaction
of low-intensity radiation with matter, when we should
consider in fact the interaction of one material particle with
one photon. In this case, one the one hand, the vector
potential of a photon cannot be considered classical, and on
the other, a photon cannot be treated as a plane wave

localised over the entire space because this results in
physically meaningless results for some problems, as shown
below.

In this connection it is interesting to consider, at least
using a simple model, the problem of calculating the vector
potential of the electromagnetic éeld for one photon. The
corresponding result for the photon ensemble will represent
a sum of vectors of electromagnetic éelds for individual
photons.

In the model under study, a material particle is described
by a nonrelativistic one-dimensional harmonic oscillator. To
solve the formulated problem, we derived the expression for
the vector potential Aph(r, t) of a single external photon.
This vector potential satisées D'Alembert's equation and
describes the propagation of a localised one-photon wave
packet along a straight line. It is natural that the volume
integral of the energy density calculated over the entire
space with the help of Aph(r, t) should be equal to the
photon energy �hO. It is important to note that Aph(r, t) takes
into account the éniteness of the region of photon local-
isation, whose size cannot be less than the wavelength [3].

The results obtained in this paper can be used in some
problems related to the coherence and statistics of photons
[4] because they permit the consideration of effects caused
by the spaceëtime localisation of photons.

2. Vector potential of the electromagnetic éeld
of one photon

To calculate the vector potential Aph(r, t) of the electro-
magnetic éeld of one photon, we énd érst the expression
for the vector potential Aph(r, t) of the electromagnetic éeld
that appears upon scattering of one photon by a material
particle.

Consider the Schr�odinger equation

i�h
qC
qt
� ĤC (1)

for a system with the Hamiltonian

Ĥ � Ĥv � Ĥf � V̂f � V̂ph.

Here,

Ĥv � ÿ
�h 2

2m

q 2

q~s 2
� 1

2
m~O 2~s 2
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is the Hamiltonian of a one-dimensional nonrelativistic
harmonic oscillator; m, ~s, ~O are the oscillator mass, coor-
dinate, and frequency, respectively;

Ĥf � ÿ
�h

2

X
a

~oa

�
ÿ q 2

qx 2
a
� x 2

a

�
is the Hamiltonian of a quantised electromagnetic éeld,
where the variables xa can be formally treated as normal
coordinates of continuously distributed oscillators repre-
senting the quantised electromagnetic éeld;

V̂f �
e

mc

�h

i
ev
X
a

Âa�~s�
q
q~s

is the operator of interaction of the oscillator with the
quantised electromagnetic éeld;

Âa�~s� �
�
2p�h

V

�1=2
c

ea

~o1=2
a

��âa exp�iqeqev~s� � â�a exp�ÿiqeqev~s��;

V (V!1) is the volume of the quantised electromagnetic
éeld; e is the electron charge; ea is the unit polarisation
vector of the electromagnetic wave, which corresponds to
the subscript a � fq, sg representing a set of the wave
vector q � eqq and two polarisations s � 1, 2 of the trans-
verse electromagnetic éeld; eq is the unit vector in the
direction of the vector q; ~oa is the frequency of the mode a
of the quantised electromagnetic éeld;

04 ~oa � ~oq � cq4 cqmax � ~omax ;

âa �
1���
2
p
�
xa �

q
qxa

�
; â�a �

1���
2
p
�
xa ÿ

q
qxa

�
;

and ev is the unit vector along the straight line on which the
oscillator moves.

Note that in the problem under study, the frequency ~oa
is unlimited [1], which requires the renormalisation of the
mass and charge in quantum electrodynamics. In our non-
relativistic problem, it is sufécient to renormalise only the
oscillator mass, which is equivalent to the restriction of the
frequency spectrum by some frequency ~omax. The operator

V̂ph �
e

mc

�h

i
ev Âph�t; ~s�

q
q~s

describes the interaction of the oscillator with the electro-
magnetic éeld of one external photon. We assume that the
operator Âph(t; ~s ) parametrically depends on the variables
characterising some material system in the inénitely re-
moved region of space where the external photon has been
produced. Let us average equations (1) over the variables of
this system assuming that

ÂphC � ÂphC � Âph�t; ~s �C.

Let us introduce the dimensionless variables

s � ~s

��h=m~O�1=2
and oa � oq �

~oa

~O
,

where 04oa 4omax=~O � o. Then, by passing to new
variables xa � xao

ÿ1=2
a and taking into account that only

the region oa � 1 and s � 1 is important for the following
and that the inequality �h~O=mc 2 5 1 is satiséed (which
corresponds to the long-wavelength approximation), we
obtain in the momentum representation for the averaged
wave function (by omitting in it the upper bar for
simplicity)

Cfnlg�t; fQlg� �
Y
l

Fnl

h
s
1=2
l �Ql ÿ Zl�

i
� exp

�
i

�
1

~O

qZl
qt
�Ql ÿ Zl� ÿ ~O

� t

ÿ1
Ll�t�dt

��
, (2)

where Cfnlg�s 1=2l (Ql ÿ Zl)� is the wave function of the
harmonic oscillator

Zl�t� �
~Q

sl

� t

ÿ1
dtX0l f�t� sin

�
~Qsl�tÿ t��

and is determined by the equation [5]

1

~O 2

q 2Zl
qt 2
� s 2l Zl � X0l f �t� ;

f �t� � e

c
ÿ
m�h~O

�1=2 evAph�t�;

Ll�t� �
1

2~O 2

�
qZl
qt

�2
ÿ 1

2
s 2l Zl

2 � X0l f �t�Zl�t�;

fnlg and fQlg are the sets of quantum numbers and
normal coordinates, and [6]

Ql �
X
a

X0lza � X0lp; p �
X
l

X0lQl; za �
X
l

XalQl ;

X 2
0l � 1

�
dG

dz

����
z�zl

, Xal �
eaX0l

zl ÿ oa
2
,

where zl � s 2l are the roots of the equation

G�z� � zÿ 1ÿ
P

a e
2
a

zl ÿ oa
2
� 0; ea � 2

�
p
Vm

�1=2 evea
~O

.

First, we calculate the average value of the spaceëtime
operator Âa (r, t ) of the vector potential of the electro-
magnetic éeld over the quantum states determined by
expression (2):

Aa�r; t� �
Sp
�
exp

ÿÿ Ĥ�t! ÿ1�=Tr

�
Âa�r,t�

�
Sp
�
exp

ÿÿ Ĥ�t! ÿ1�=Tr

�� . (3)

Here, Tr is the temperature of the system of which the énal
result is independent due to the features of the model; and

Âa�r; t� � exp

�
i

� t

ÿ1
Ĥ�t�dt

�
Âa�r� exp

�
ÿ i

� t

ÿ1
Ĥ�t�dt

�
,

Âa�r� �
�
2p�h

V

�1=2
c

"
eaÿ

~Ooa
�1=2

#

� âa exp

�
i

~O
c
oaeqr

�
� â�a exp

�
ÿ i

~O
c
oaeqr

�" #
.
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The Hamiltonian Ĥ(t) in expressions for Aa(r, t) and
Âa(r, t) is written in the occupation number representation:

Ĥ�t� � ~O
X
l

�
â�l âl �

1

2
sl �

1���
2
p

sl
X0l�âl � â�l � f �t�

�
,

âa �
X
l

X0lâl ,

where

âa �
1���
2
p
�
Ql �

q
qQl

�
.

We will seek the expression for the vector potential of a
one-photon wave packet A(r, t) propagating along the z-axis
for t, jrj � r!1. The wave packet A(r, t) detected by an
observer located on the z-axis at the distance r0 !1
represents a superposition of expressions (3) over all the
modes of planes waves a with the weight function, i.e., with
the probability density that provides the fulélment of all the
requirements to a one-photon wave packet discussed in
Introduction.

As shown in Appendix 1, this weight function has the
form

Poa
�yq;jq; l; v� � C

a 2 � l 2
eÿuu ln�G�1� lv��ÿ1.

Here, G( . . . ) is the gamma function; C � 2a 2oa
~O 2vDR 2�

(pc 2)ÿ1; a is a parameter describing the variance of the
integration variable l (0 < l <1); v (v!1) is a param-
eter; yq and jq are the polar and azimuthal angles
determining the direction of the vector q; u � (oa

~O=c)2�
(1ÿ cos yq)vaDR

2; DR is a parameter characterising the size
of the localisation region of the one-photon wave packet.
The weight function provides the summation of only those
modes a of the vector potential (3) for which the directions
of the wave vectors q are suféciently close to the direction
of the z-axis along which a photon propagates.

Assuming that o4 1 and A(r, t) � 0 in the region
tÿ z=c < 0 to which the electromagnetic éeld A(r, t) did
not come yet, we obtain for the scattered one-photon packet
A(r, t)

A�r; t� � ÿ 3

p3
gu sin yvkei

�
ryr

���
2
p

DR

���1
0

dtevAph�t�

�
�
1ÿ cos

�
o~O
�
tÿ z

c
ÿ t
����

~O
�
tÿ z

c
ÿ t
��ÿ1

� p
2
O1

� tÿz=c

0

dtevAph�t� exp
�
ÿ g
2

�
tÿ z

c
ÿ t
��

� cos

�
O
�
tÿ z

c
ÿ t
��

y
�
tÿ z

c

��
. (4)

Here, u � ex cosjv � ey sinjv is the unit polarisation vector
of the wave packet A(r, t); sin yv � evu; ex, ey and ez are the
unit vectors along the axes of the Cartesian coordinate
system; yv and jv are the polar and azimuthal angles of the
vector ev;

O 2
1 � 1ÿ 2go

p~O
; g � 2

3

e 2 ~O 2

mc 3
; O � O1

~O;

kei�z� � K0�z exp�ip=4�� � K0�z exp�ÿip=4��
2i

;

and K0 is the Basset function. In expression (4), the
coordinate z � r cos yr � rÿ1=2ry

2
r and y (x) � 1 for x > 0

and y (x) � 0 for x < 0.
Note that expression (4) satisées all the requirements

formulated in Introduction. Indeed, it satisées D'Alembert's
equation with accuracy to the terms of the order�

g
~O

�2

5 1 , (5)

which are typical for the optical range (g � 107 ÿ 109 sÿ1,
~O � 1015 sÿ1). Expression (4) does not spread in time.
Finally, the volume integral of the energy density over the
entire space calculated with the help of (4) is equal to the
photon energy �hO:

1

8p

�
V

d3r

�
rot 2 A�r; t� � 1

c 2

�
qA�r; t�

qt

�2�
� �hO. (6)

Let us énd the vector potential Aph(t) using expression
(4). We will assume that the same oscillator as in the case
considered above is located at the point in space with the
radius vector r � ÿr0(r0 � jr0j ! 1). We assume that this
oscillator emits a photon along the z-axis, which excited the
oscillator considered by us, and the latter oscillator emitted
the same photon along the z-axis, which corresponds to
r � r0 and yr � 0.

By replacing tÿ z=c by the variable t and taking into
account that

A�r0; t� � Aph�t�; ÿkei�0� �
p
4
,

we obtain for Aph(t) � evAph(t) the equation

Aph�t� � gg
� � t

0

dtK�tÿ t�Aph�t�

�
�1
0

K1�tÿ t�Aph�t�dt
�
; t5 0 , (7)

where

K�t� � e g=2 cosOt ; K1�t� �
2

p
1ÿ cos�o~Ot�

Ot
;

(8)
g � 3O1

8p
sin2 yv .

It is shown in Appendix 2 that, taking into account the
solution of equation (7) and (8), we have

Aph�r; t� � ÿ
�
g 3�1ÿ g�3�h

pcO

�1=2
ukei

�
ryr

���
2
p

DR

�

� exp

�
ÿ g
2
�1ÿ g�

�
tÿ z

c

��
sin

�
O
�
tÿ z

c
ÿ t
��

, (9)

where tÿ z=c > 0; and z � r cos yr � rÿ ry 2
r =2. It follows

from (9) and the condition that the parameter DR in (4) is
the same for all three axes of the coordinate system that
DR � 2c=g(1ÿ g).
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Note that the model considered here and our calcu-
lations, including the renormalisation of the initial values of
the oscillator mass m 0 and its frequency O 0 (m 0, O 0 ! 1),
which is required for the formally inénite spectrum of
frequencies oa, are intrinsically consistent because we use
the nonrelativistic approximation. Indeed, the oscillator
mass m 0 is proportional to its frequency O 0 because the
energy quantum of the oscillator is �hO 0 � m 0e 4=�h 2 [8, 9]
and the coefécient of rigidity is m 0O 0 2 � e 2=a 3

0 , where a0 �
�h 2=m 0e 2. In this case, the condition of nonrelativity �hO 0 �
m 0e 4=�h 2 5m 0c 2 is valid.

Consider the problem where the consideration of the
spaceëtime localisation of a photon is important. This is the
problem on the calculation of the average occupation num-
ber n̂(t) for the energy levels of the oscillator in equation (1).

Let the vector potential Aph (t) of an external photon in
(1) be determined by expression (9), in which all the
parameters of this photon have the subscript zero. Upon
substitution of (9) into (1), we assume that ryr ' z ' 0,
which corresponds to the placement of the oscillator to the
coordinate origin. We will take into account that the
operator

n̂ � 1

2

�
ÿ q 2

qs 2
� s 2

�
ÿ 1

2

and n̂(t) is determined by expression (3), in which the
operator Âa(r) should be replaced by the operator n̂. Then,
taking into account the wave function (2), we obtain

n̂�t� � 1

8
~O
�� � t

0
exp

�
ÿ g
2

ÿ
tÿ t 0

��
cos
�
O
ÿ
tÿ t 0

��
f
ÿ
t 0
�
dt 0
�2

�
� � t

0

exp

�
ÿ g
2

ÿ
tÿ t 0

��
sin
�
O
ÿ
tÿ t 0

��
f
ÿ
t 0
�
dt 0
�2�

�
�
exp

�
�hO
Tr

�
ÿ 1

�ÿ1
.

Here, as in (2),

f �t� � e

c
ÿ
m�h~O

�1=2 evAph�t�.

After the calculation of integrals over the variable t, we
have

n̂�t� � 3p 2

512

gg 30
~OO0

sin2 yv0

��
exp

�
ÿ g
2
t

�
�a�o � ÿDO� cosOt

� b�o � ÿDg� sinOt� � exp

�
ÿ g0

2
�1ÿ g0�t

�

��ÿa�o � ÿDO� cosO0t� b�o � Dg� sinO0t�
�2

� exp

�
ÿ g
2
t

�
�a�o � DO� sinOtÿ b�o � Dg� cosOt�

� exp

�
ÿ g0

2
�1ÿ g0�t

�
�a�o � ÿDO� sinO0t

� b�o � Dg� cosO0t�
�2�
�
�
exp

�
�hO
Tr

�
ÿ 1

�ÿ1
.

Here,

sin yv0 � evu0; a�o� � o

DO 2 � Dg 2
� O� O0

�O� O0�2 � Dg 2
;

DO � Oÿ O 00; Dg � g
2
ÿ g0�1ÿ g0�

2
;

b�o� � o

DO 2 � Dg 2
� Dg

�O� O0�2 � Dg 2
.

One can see from the above expression that the function
n̂(t) depends on time according to the physical process of
interaction of the oscillator with the photon, i.e., it érst in-
creases by oscillating and then decreases to zero for t!1.
Note, in particular, that under the resonance conditions,
i.e., when jDOjt, jDgtj5 1, the above expression gives

n̂�t� � 3p 2

512
sin2yv0

g 4

~OO
t 2 exp�ÿgt� �

�
exp

�
�hO
Tr

�
ÿ 1

�ÿ1
.

Note that the result obtained for n̂(t) cannot be obtained
without considering the spaceëtime localisation of a photon.
Indeed, the expression for n̂(t) will have no physical sense if
we substitute into the expression for the function f (t) instead
of the vector Aph(t) the expression Aph(t) � 2c (2p�h=O0V)

1=2

�u0 sinO0t, which represents a monochromatic wave loca-
lised in the space of volume V!1.

3. Vector potential of the electromagnetic éeld
and the energy density for an ensemble
of parallel moving photons

Consider the conditions under which the average vector
potential of an ensemble of photons propagating along the
positive direction of the z-axis of the Cartesian coordinate
system transforms into a classical vector potential. For this
purpose, we should calculate an observable, namely, the
radiation intensity (the energy density) of the photon
ensemble, which is proportional to E 2.

Taking into account the result (9), the vector potential of
the photon ensemble has the form

A�r; t� �
XM
m�1

XLm

lm�1
Am lm

�
tÿ z

c
ÿ tlm ; q ÿ qm

�
, (10)

where

Am lm

�
tÿ z

c
ÿ tlm ; q ÿ qm

�
� ÿB0kei

� jq ÿ qmj�1ÿ g0����
2
p

c

�

exp

�
ÿ
�
tÿ z

c
ÿ tlm

�
g0�1ÿ g0�

2

�
sin

�
O0

�
tÿ z

c
ÿ tlm

��
;

tÿ z

c
ÿ tlm > 0; B0 �

�
g 30 �1ÿ g0�3�h

pcO0

�1=2
u0 ;

g0 �
3

8p
O10 sin

2 yv0 ;

q and qm are the radius vectors in the plane perpendicular
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to the z-axis. For simplicity, we assume that the values of
g0, g0, u0, O0 in (10) are the same for all photons in the
ensemble. The parameter tlm determined the instant of the
intersection of the xy plane by the lmth photon at the point
m with the radius vector qm. The integers M and Lm deter-
mine the total number of the points of intersection of the xy
plane by photons by the time t and the total number of
photons intersecting this plane at the point with the radius
vector qm, respectively. We assume that z and q in (9) are
énite and t, M and Lm !1.

The problem is reduced to the averaging of the vector
potential (10) and

E 2 �
�
ÿ 1

c

qA�r; t�
qt

�2
.

over the instants ftlmg and radius vectors fqmg.
We will perform averaging over the instants ftlmg with

the Bernoulli distribution density

P�tlm� �
almC

lm
Lm

T

�
tlm
T

�almÿ1�
1ÿ

�
tlm
T

�a �Lmÿlm
, (11)

where

0 < tlm < T ; T!1 ; 04 lm 4Lm ; Lm !1 ;

Clm
Lm
� Lm!

�Lm ÿ lm�!lm!
; 0 < a4 1 .

As will be shown below, the parameter a in (11)
determines the degree to which an electromagnetic éeld
is quasi-classical:

a � a�nph� � ÿ
n0
2nph

�
��

n0
2nph

�2
�
�

n0
nph

��1=2
. (12)

Here,

n0 �
�
O0

c

�3 g0�1ÿ g0�
128p2O0

;

nph � j=c is the photon density in the êux;

j � 1

4p
lim

Lm ;T!1
Lm

Ts0
� 1

4p
lim

fLmg;T!1

XM
m�1

Lm

TS

is the photon êux density; S is the area through which the
photon êux propagates in (10); and

s0 � S

�
lim

fLmg;T!1

XM
m�1

Lm

T

�
lim

Lm ;T!1
Lm

T
.

Note that the quasi-classical condition for the electro-
magnetic éeld corresponds to the condition a5 1, i.e.,
(n0=nph)

1=2 5 1. It is obvious that if we set Dt � ���
p
p

Oÿ10 �
f128O0�g0�1ÿ g0)�ÿ1=4g and take into account that E 2 �
�hO0nph, then this condition will coincide with the quasi-
classical condition [1].

Using expression (11), we can see that the relation

1

v0
� 1

�va
, (13)

is valid for the average value of the time interval 1=v0
between two nearest moments of the intersection of the
given area s0 by photons in the xy plane. Here, �v �
limLm;T!1 Lm=T � 4pcnphs0 and a is determined by expres-
sion (12).

Taking into account that the variable tlm < tÿ z=c!1
in (10) and that, according to (11), �tLm

� Lm=v0 (Lm !1),
we can assume for simplicity that Lm � E�v0(tÿ z=c)� in (10)
is independent of m, where E �x� is the integer of the number
x. Then, we can assume in (11) that

T � 1

v0
E

�
v0

�
tÿ z

c

��
, (14)

because it is reasonable to set T � Lm=v0.
Let us perform averaging of expression (10) over the

radius vectors qm in the xy plane with the probability den-
sity 1=S, where S!1 is the area through which the total
photon êux propagates. Then, we average the obtained
expression over the instants tlm with the probability density
(11). Taking into account that T!1 and, according to (5),
O0 4 g0, we obtain

A�r; t� � A0 exp

�
ÿ g0

2
�1ÿ g0�

�
tÿ z

c
ÿ T

��

� cos

�
O0

�
tÿ z

c
ÿ T

��
y
�
tÿ z

c
ÿ T

�
, (15)

where

T � T

�
tÿ z

c

�
� 1

v0
E

�
v0

�
tÿ z

c

��
; tÿ z

c
ÿ T > 0;

A0 �
32p2B0c

3anph
g 20 �1ÿ g0�2O0

; a � a�nph� .

We will see below that expression (15) directly deter-
mines an observable (the radiation intensity) only in the
classical case when

a �
�

n0
nph

�1=2

5 1 . (16)

We consider expression (15) for this case and estimate the
parameters entering this expression. We assume that�

n0
nph

�1=2
� 0:1; O0 � 1015 sÿ1; g0 � 108 sÿ1;

n0 �
�
O0

c

�3 g0�1ÿ g0�
128p2O0

� 104 cmÿ3.

Then, setting s0 � n
ÿ2=3
ph � 10ÿ4 cm2 for the estimate, we

obtain v0 � 4ps0(n0nph)
1=2c � 1012 sÿ1. Therefore, when the

condition (16) is valid, we have

g0 5 v0 5O0, (17)

In this case, the vector (15) represents the plane wave

A�r; t� � A0 cos

�
O0

�
tÿ z

c
ÿ T

��
, (18)
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when D(tÿ z=c)91=v0, where

A0 �
�8p�hO0nph�1=2u0c

O0

; tÿ z

c
ÿ T > 0 .

Assuming that the radius vectors qm in the xy plane are
distributed with the probability density 1=S0, where S!1,
we calculate the observable E 2. Taking into account that

E �
XM
m�1

XLm

lm�1
Emlm

,

where E and Emlm
are determined using (10), i.e.,

Emlm � ÿ
1

c

qAmlm

qt
,

we obtain

E 2�t; nph� � I1�t; nph� � I2�t; nph� ÿ I3�t; nph� . (19)

Here,

I1�t; nph� � lim
fLmg;T!1

�XM
m�1

XLm

lm�1
Emlm

�2
;

I2�t; nph� � lim
fLmg;T!1

XM
m�1

XLm

lm�1
E 2
mlm

;

I3�t; nph� � lim
fLmg;T!1

XM
m�1

XLm

lm�1
E

2
mlm

.

Taking into account inequalities (5) and expressions (10) ë
(15), we obtain for I1, I2, I3 averaged over the period 2p=O0

of a high-frequency vibration

I1�t; nph� � 2pI0�t; nph�anpha1,

I2�t; nph� � I0�t; nph�
�

O 2
0

c g0�1ÿ g0�
�
a2 ,

I3�t; nph� � 0 ,

where

I0�t; nph� � 4pB 2
0 anph exp

�
ÿ g0�1ÿ g0�

�
tÿ z

c
ÿ T

��
;

a1 �
�

8pc 2

g 20 �1ÿ g0�2
�2

; a2 �
pc 2

�g0�1ÿ g0��2
.

By substituting the above expressions for I1, I2 and I3 into
(19) and taking into account expression (12), we obtain

E 2 � 4p�hO0nph

�
a 2nph
n0
� a
�

� exp

�
ÿ g0�1ÿ g0�

�
tÿ z

c
ÿ T

��
. (20)

Because it is clear from the physical point of view that
the energy density E 2=4p of the photon éeld of a plane
electromagnetic wave should linearly depend on the con-

centration nph of photons both for a weak photon êux
(a � 1) and in a classical case (a5 1), we should set

a 2nph
n0
� a � 1 (21)

in (20). From equation (20), we obtain [see (12)]

a � ÿ n0
2nph

�
��

n0
2nph

�2
� n0
nph

�1=2
.

Note that a � 1 for nph5 n0 and a � (n0=nph)
1=2 for nph 4

n0.
Therefore, the average energy density in the êux of

parallel photons is

E
2

4p
� �hO0nph exp

�
ÿ g0�1ÿ g0�

�
tÿ z

c
ÿ T

��
and it does not depend on time for g0 5 v0.

Note that the classical electromagnetic éeld condition
(16) means that the term I1(t, nph) makes the main con-
tribution to expression (20), which is the square of the
electric éeld calculated with the help of the vector potential
(15) and averaged over the period of the éeld oscillation
with frequency O0. In essence, this means that the classical
electromagnetic éeld condition corresponds to the smallness
of the variance (Eÿ �E)2 5E 2.

Appendix 1

Taking into account the uncertainty relation for the
momentum and coordinate, we assume that the weight
function depends on

u � 1

�h 2

ÿ
Dp 2

xR
2
x � Dp 2

y R
2
y � Dp 2

z R
2
z

�
,

where

Dpx �
1

c
�hoa

~O sin yq cosjq; Dpy �
1

c
�hoa

~O sin yq sinjq;

Dpz �
1

c
�hoa

~O�1ÿ cosjq�
are the projections of the difference cÿ1 �hoa

~O�ez ÿ eq� of
momenta on the coordinate axes and Rx, Ry, Rz are the
projections of the characteristic sizes of the localisation
region of the plane wave (3) on the coordinate axes. We
assume that Rx � Ry � Rz !1. Thus,

u �
�
oa

~O
c

�2
�1ÿ cos yq�vaDR 2,

where vaDR 2 � R 2 and the parameter v!1 because a
and DR are énite.

The quantity u is in fact the number of states for the
mode a, i.e., the number of elementary cells in the phase
space whose geometrical part is connected with the part of
the spherical sector surface with the angle yq. The total
number of cells on the sphere surface is

N � u�yq � p� � 2

�
oa

~O
c

�2
R 2 !1.
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The probability of énding of m � lv� 1 (0 < l <1) cells
from N cells on this spherical sector surface is determined
by the expression

P

�
x <

1ÿ cos yq
2

�
� N !

�Nÿ lnÿ 1�!�ln�!

�
��1ÿcos yq�=2
0

dzz ln�1ÿ z�Nÿlnÿ1,

where x < (1ÿ cos yq)=2 is a random quantity.
Let us differentiate this expression with respect to the

angle yq and take into account that only the angles yq ! 0
are of interest to us and that N!1. Note that the number
of cells m (or, which is the same, the number of modes a
forming a one-photon wave packet A(r, t)) tends to inénity.
Let us assume that m and v are random quantities whose
distribution is described by the normal law. Then, the distri-
bution function of the ratio l � m=n is determined by the
Cauchy formula

P�l� � 2a

p

ÿ
l2 � a 2

�ÿ1
.

The product of the probability densities is P(l), dP�x <
1=2(1ÿcos yq))=dyq and determines the weight function
Poa

(yq,jq, l, v).
Expression (4) can be obtained in the following way.

Expression (3) is summed over polarisations s � 1, 2. The
obtained expression is integrated with the found weight
function over angles jq and yq taking into account the
dependence of vectors ea on angles jq and yq. These cal-
culations give the expression in which parameters m � ln
and v enter only in the degenerate hypergeometric function,
which has the form

1F1

�
1� ln; 1; ÿ r 2 sin2 yr

2DR 2av

�
�J0

��
l
a

�1=2
r sin yr

1

DR= ���2p
�

� J0

��
l
a

�1=2
ryr

DR=
���
2
p
�
,

because v!1, where J0 is the Bessel function. Then, the
integration over the parameter l is performed, summation
over the spectrum of frequencies sl and, énally, integration
over frequencies oa.

Appendix 2

Equation (7) can be solved by the method of Wiener ëHopf
[9]. However, its approximate solution can be obtained as
follows. Let us represent equation (7) in the form

d2Aph

dt 2
� g�1ÿ g� dAph

dt
�
�
O 2 � g 2

2

�
1

2
ÿ g

��
Aph

� dK1

dt
Aph��0� � K1�t�

dAph

dt

����
t��0
�
�1
0

dtK1�tÿ t�

�
�
d2Aph�t�

dt 2
� g

dAph�t�
dt 2

� O 2Aph�t�
�
; t > 0,

Aph��0� � gg
�1
0

K1�ÿt� 0�Aph�t�dt ,

where Aph(� 0) � Aph(t � �0).
The solution of the obtained differential equation, taking

into account the inequality (5) and the initial condition, has
the form

Aph�t� � Aph��0� exp
�
ÿ g
2
�1ÿ g�t

�

�
�
cosOt� O

gg
sinOt

�
; t > 0 .

If the condition t4 g=O 2 is fulélled, then

Aph�t� � C exp

�
ÿ g
2
�1ÿ g�t

�
sinOt ,

where C � Aph(� 0)O=gg. Finally, taking into account this
expression, we obtain expression (9) for a one-photon wave
packet from relation (4) using (5) and (6).
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