
Abstract. A problem of scattering of an ensemble of photons
by material particles is solved. The vector potential of each of
the incident photons scattered by particles is described by a
nonspreading wave packet. The expressions for cross sections
for elastic and inelastic scattering of electromagnetic
radiation are derived taking the space ë time localisation of
photons into account. The possible experiments for verifying
these theoretical results are discussed.

Keywords: vector potential, scattering of photons, interaction of
radiation with matter.

1. Introduction

The quantities describing the interaction of electromagnetic
radiation with matter, for example, the cross section for
scattering of a photon by an atom (molecule) are commonly
calculated using the perturbation theory in the parameter of
interaction of the electromagnetic éeld with an electron,
while the vector potential of the photon is described by a
monochromatic wave [1, 2]. It was shown in Ref. [3] that
there exist problems that can be solved only by taking the
space ë time localisation of photons into account, i.e., when
the vector potential of photons is described by a wave
packet propagating along the z-axis, which has the form

Aph�r; t� � ÿ�g30�1ÿ g0�3�h=pcO0�1=2u0kei�ryrg0�1ÿ g�= ���
2
p

c�

� exp

�
ÿ g0

2
�1ÿ g0��tÿ z=c�

�
sin�O0�tÿ z=c��y�tÿ z=c�: (1)

Here, g0 � 2=3e
2 ~O2
�
m0c

3 is the radiative decay constant of
an oscillator emitting the wave packet (1); e is the electron
charge; ~O0 and m0 are the oscillator frequency and mass,
respectively; c is the velocity of light in vacuum; g0 �
(3O10=8p) sin

2 yv0; O1 � (1ÿ 2g0 �o0

�
p~O0)

1=2; �o0 � ~omax

�
�O0;

~omax is the cut-off frequency of the photon spectrum;
sin yv0 � ev0u0; ev0 and u0 are the unit vector of a straight
line along which oscillations occur and the photon polar-
isation vector, respectively; z � r cos yr � rÿ r y 2

r

�
2; kei(:::)

is the Thomson function; and O0 is the photon frequency.
Hereafter, the parameters of a photon incident on a particle
(an atom, a molecule) are labelled by `0'. The function
y x� � � 1 for x > 0 and y x� � � 0 for x < 0.

The problem in which the space ë time localisation of
photons should be taken into account is the problem of
scattering of an ensemble of parallel propagating photons
by material particles. We will solve this problem using the
following relation for the vector potential of a photon
propagating along the z 0-axis and appearing upon the
interaction between the incident photon and a material
particle [3]

A r; t� � � 3O1

2p2
gu sin yv kei

�
ry

0
rg 1ÿ g� �=

���
2
p

c
�

�
�tÿz 0=c
0

dtevAph�rc � r�r 0c�; t� exp
h
ÿ g
2
�tÿ z 0=cÿ t�

i

� cos�O�tÿ z 0=cÿ t��y�tÿ z 0=c�: (2)

Here, Aph rc � r r0c
ÿ �

; t
ÿ �

is described by expression (1):
O1, g, sin yv, ev, u, O are the same as in (1), however without
the subscript `0'. The radius vector rc � r r 0c

ÿ �
speciées the

position of the oscillator in the primed coordinate system.
In this paper, we reéne the expressions for cross sections

for elastic and inelastic scattering of electromagnetic radi-
ation taking the space ë time localisation of photons into
account. The exact criteria for classical scattering of an
electromagnetic éeld by matter are obtained and possible
experiments for verifying the results obtained are proposed.

2. Scattering by a harmonic ensemble of photons

Consider an ensemble of photons incident along the z-axis
on a medium in the form of a cylinder of radius Rs and
length hs. The vector potential of photons is described by
the expression

A0 r; t� � �
XM
m�1

XLm

lm

Amlm tÿ z=cÿ tlm ; q ÿ qm�:
ÿ

(3)

Here, the vector Amlm tÿ z=cÿ tlm ; q ÿ qm�
ÿ

is described by
expression (1), in which the replacement t! tÿ tlm ,
ryr ! q ÿ qm; should be made, where q; qm are radius
vectors in the plane perpendicular to the z-axis; r � q � ezz;
and ez is the unit vector along the z-axis. Note that,
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depending on parameters entering (3) and on the properties
of the distribution functions of random quantities in this
expression, the wave packets A0(r; t) have coherent proper-
ties.

For simplicity, we assume that the parameters of all
photons in expression (3) are identical and u0 � ex, where ex
is the unit vector along the x-axis. The quantity tlm
determines the instant of time of intersection of the xy
plane by the lmth photon at the point m with the radius
vector qm. Integers M and Lm give a total number of the
intersection points of photons with the xy plane to the
instant of time t and a total number of photons that
intersected this plane at the point with the radius vector
qm, respectively. We assume that z and q are énite, the time
t!1 and, hence, M;Lm !1.

Let us assume that the ends of radius vectors qm in
expression (3) are distributed over the area S in the xy plane
with the probability density 1=S, where S!1. We also
assume for simplicity that all material particles are identical
and their positions are determined by the radius vectors rn,
where the number of a particle is 14 n4N. We assume
that the particles differ only in the spatial orientation of the
unit vectors along which oscillations occur. We assume also
that photons are weakly absorbed by particles. Then, using
(1) ë (3) and making the replacement r! rÿ rnj j; yr ! ynlm ;
ev!evn; u! unlm ; yv!yvnlm; g 1ÿ g� �= ���

2
p

c!g 1ÿgnlm
ÿ �

=
���
2
p

c
in (2), we obtain the expression

A�r; t� �
XN
n�1

An r; t� �: (4)

for the vector potential of an ensemble of photons scattered
by particles. Here,

An r; t� � � PM
m�1

PLm

lm

Anmlm r; t� �;

Anmlm
r; t� � � ÿ 3

2p2
O1g unlm sin yvnlm

�kei g
2c

1ÿ gnlm
ÿ �

rÿ rnj jynlm
��

�
��tn

0

dt evnAmlm
t; qn ÿ qm� � exp ÿ g

2
�tn ÿ t� �

h i
� cos O��tn ÿ t�� �y �tn� �;

�tn � tÿ rÿ rnj j=c� rÿ rnj jy 2
nlm=2cÿ zn=cÿ tlm > 0; the bar

means averaging over the instants of time tlm and positions
of vectors qm, as well as over spatial variables rn; evn; yvnlm ,
etc. We will perform averaging in (4) over the instants of
time ftlmg with the distribution density [3]

P�tlm� �
almC

lm
Lm

T

�
tlm
T

�almÿ1�
1ÿ tlm

T

� �a �Lmÿlm
,

where 0 < tlm < T; T!1; 04 lm 4Lm; Lm !1;

Clm
Lm
� Lm!

Lm ÿ lm� �!lm!
;

a � a nph� � � ÿ n0
2nph

�
�

n0
2nph

� �2
� n0
nph

�1=2
0 < a < 1� �;

n0 �
�O0=c�3g0 1ÿ g0� �

128p2O0

;

nph � j=c is the mean volume photon density in the
ensemble incident on matter; j is the photon êux density;
and lm is the photon number.

Let us calculate the mean value of the vector potential
for an ensemble of photons scattered by particles and then
calculate the quantity E 2, which gives the scattered radi-
ation intensity (E � ÿ(1=c)(qA=qt)).

Note that, because r!1 and vectors eknlm and er are
substantially different (er is the unit vector along the vector
r), expression (4) vanishes after averaging. The nonzero
result is obtained only when eknlm � er. In this case, we have

unlm �
evn ÿ eknlm�eknlmevn��
1ÿ �eknlmevn�2

�1=2 � evn ÿ er�erevn��
1ÿ �erevn�2

�1=2 ;
sin yvnlm � unlmevn �

�
1ÿ �erevn�2

�1=2 � sin yvn; (5)

sin ynlm � ynlm �
�
2�1ÿ eknlmer�

�1=2
;

where eknlm is the unit vector along the wave vector knlm ,
which determines the propagation direction of the lmth
photon scattered by the nth particle.

We assume that a scattering layer of matter represents a
solid solution of identical particles, which are randomly
distributed in space. The latter circumstance permits the
averaging of expression (4) over the directions of the wave
vectors of scattered photons with the uniform probability
density

p�jnlm
; ynlm� � 1 4p:= (6)

Let us calculate A(r; t) assuming that rÿ rnj j � rÿ errn.
Using the above expression for the distribution density
P(tlm ) and expressions (5) and (6) and taking into account
that the result of averaging over angles ynlm in (4) is mainly
determined by the angles for which the inequalities
gr y 2

nlm
; grny

2
nlm

5 1 are satiséed, we obtain

A�r; t� � ÿ 3

4
A0j j

gO0cns
r

�T
0

dtlm

�p
0

dyvn sin yvn

��evn ÿ er�erevn���evnex�
�
Vs

d3rnJ�tlm ; rn; yvn�; (7)

where the explicit expression for J(tlm ; rn; yvn) is presented in
Appendix 1.

Let us analyse the result obtained. Note érst of all that
only those values of r are of interest for which

r=rc; r=rc0 5 1; (8)

where rc � 8cO g2 � rcn(o � O)
�

and rc0 � 8cO0 g2 ��
rcn(o � O0). It is in this range of values, as follows from
(7), that the vector A(r; t) is inversely proportional to r.
Note, for example, that for the values O; O0 � 1015 sÿ1,
and g; g0 � 108 sÿ1, parameters rc and rc0 are so large that
inequalities (8) are valid for all values of r of interest.

The conditions imposed on the radius r, under which the
vector A(r; t) is inversely proportional to r, will be more
exact if we take into account the results [3] and the
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behaviour of the asymptotics of functions ci(x) � ln x and
si(x)ÿ si(ÿx) � 2x for x � r=rcn 5 1. These conditions have
the form

c

g
5 r5

rc
ln�rc=r�

;
(9)

c

g0
5 r5

rc0
ln�rc0=r�

:

Note that, within the framework of our model, under the
conditions that are reverse to conditions (8), (9), the vector
A(r; t) is inversely proportional to r2, as follows from (7).

Further, we are interested only in the situation corre-
sponding to conditions (9). Assuming for simplicity that Rs,
hs 5 c=O and Rs; hs 5 c=O0 and using (7), we obtain

E�r; t� � 1

r
g cNjE0j�ex ÿ er�erex��a

�
nph
2n0

�1=2

� 1

O
exp

�
ÿ g
2

�t
��� O0 ÿ O

�O0 ÿ O�2 � �gÿ g0�1ÿ g0��2=4

(

� O0 � O

�O0 � O�2 � �gÿ g0�1ÿ g0��2=4

�
sinO�t

�
� �gÿ g0�1ÿ g0��=2
�O0 ÿ O�2 � �gÿ g0�1ÿ g0��2=4

ÿ �gÿ g0�1ÿ g0��=2
�O0 � O�2 � �gÿ g0�1ÿ g0��2=4

�
cosO�t

�
(10)

ÿ 1

O0

exp
h
ÿ g0

2
�1ÿ g0��t

i�� O0 ÿ O

�O0 ÿ O�2 � �gÿ g0�1ÿ g0��2=4

� O0 � O

�O0 � O�2 � �gÿ g0�1ÿ g0��2=4

�
sinO0�t

�
� �gÿ g0�1ÿ g0��=2
�O0 ÿ O�2 � �gÿ g0�1ÿ g0��2=4

� �gÿ g0�1ÿ g0��=2
�O0 � O�2 � �gÿ g0�1ÿ g0��2=4

�
cosO�t

�)
;

where E0j j � (8p�hO0nph)
1=2; �t � tÿ r cÿ T= ; T � (1=n0)E�

�n0(t ÿr c)�= ; E is the integer part of a number; and
1 n0 � 1=4pcnphs0a
�

is the mean time interval between two
nearest instants of intersection by photons of a part of the
xy plane of area

s0 � S

�
lim

fLmg;T!1

XM
m�1
�Lm=T�

�
lim

fLmg;T!1
�Lm=T�:

The parameter 1=s0 determines the order of the surface
density of incident photons in the xy plane.

To obtain the expressions for scattering amplitudes of an
electromagnetic wave, we consider expression (10) in a
classical situation, i.e., when a � (n0=nph)

1=2 5 1 [3]. In
addition, we will assume that the condition

g0 5 n0 5O0; g5 n0 5O (11)

is fulélled.

The term containing the factor exp (ÿ g=2�t ) in expres-
sion (10) represents a diverging electromagnetic wave caused
by inelastic scattering of the incident electromagnetic wave.
The term containing the factor exp�(ÿ g0=2)(1ÿ g0)�t �
represents a diverging electromagnetic wave caused by
elastic scattering of the initial electromagnetic wave.

Let the frequency range be determined by inequalities

jgÿ g0�1ÿ g0�jO0 5O2
0 5O2: (12)

In this case, taking into account the condition a �
(n0=nph)

1=2 5 1 and inequalities (11), we obtain the ampli-
tude of inelastic scattering

Au �
2
���
2
p

3
reN�O0 O� ex ÿ er�erex�j;j= (13)

where re � e2 mc2
�

is the Thomson radius; m is the electron
mass; and O;O0 6� 0.

For the frequency range under study, the amplitude of
elastic scattering is

Ae �
2
���
2
p

3
reN ex ÿ er�erex�j j: (14)

When conditions (12) are fulélled for the model under
study, expression (14) is independent of the photon
frequency O0 and the oscillator frequency O [1, 4]. For
the frequency range

O0 4O4 g; g0; (15)

we have

Au �
2
���
2
p

3
reN�O=O0� ex ÿ er�erex�j j;

(16)

Ae �
2
���
2
p

3
reN�O=O0�2 ex ÿ er�erex�j:j

Note that scattering amplitudes (16) in the frequency
range (15) decrease with increasing photon energy �hO0,
which correlates to some extent with the behaviour of
scattering amplitudes of fast electrons and atoms [5].

Finally, consider the resonance case, when the corre-
sponding results differ from those obtained in Refs [1, 2]
assuming that the electromagnetic éeld of a photon repre-
sents a plane inénite wave. The difference consists, in
particular, in the fact that the `resonance' denominators
in expressions (10) contain the difference �gÿ g0(1ÿ g0)� 2= ,
whereas denominators in the corresponding expressions in
Refs [1, 2] contain �gÿ g0(1ÿ g0)� 2= .

The amplitude (cross section) of resonance scattering,
which is determined by the condition

jO0 ÿ Oj5 n0: (17)

differs from the known results [1, 2] more substantially.
Taking into account inequalities (11), from which it

follows that the quantities

jO0 ÿ Oj�t � fn0�tÿ r=c� ÿ E�v0�tÿ r=c��gjO0 ÿ Oj=v0;
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g�t � fn0�tÿ r=c� ÿ E�v0�tÿ r=c��gg=n0;

g0�t � fn0�tÿ r=c� ÿ E�v0�tÿ r=c��gg0=v0

in (10) are small, and performing in (10) the expansions in
these quantities, we obtain

E�r; t� �
���
2
p

3
E0j j

re
r
N�ex ÿ er�erex��O�t cosO �t: (18)

Because it follows from (16) that the resonance scattering
amplitude Ares(t) � (

���
2
p

=3)reNO �t �ex ÿ er(erex)� is a peri-
odic function with the period 1 n0= , we will deéne Ares as

Ares �
���
2
p

3
reNO ex ÿ er�erex�j j �t 2


 �1=2
; (19)

where

�t 2

 � � n0

�1=n0
0

t 2dt � 1 3n20
�

.

Finally, using the expressions for a and n0 presented
above and taking into account that (n0=nph)

1=2 5 1, we
obtain from (19)

Ares �
���
2
p

288

c

O
1

s0

�
re

�1ÿ g0�nph

�1=2
ex ÿ er�erex�j j:

Note that the condition reverse to inequality (17) is a
criterion for the possibility of frequency separation of
electromagnetic radiation into inelastic and elastic scatter-
ing.

3. Scattering cross section for a photon ensemble

By using the expression under the averaging bar in (4), we
calculate the quantity E 2(r; t), which is directly related to
the experimentally measured intensity of scattered electro-
magnetic radiation

E�r; t� �
X
n;m;lm

Enmlm
�r; t�; Enmlm

�r; t� � ÿ 1

c

qAnmlm

qt
:

Under the assumptions used in deriving (10) and assuming
that gn 5 1 in (7), we obtain

E 2�r; t� � I1�r; t� � I2�r; t� � I3�r; t�: (20)

Here,

I1�r; t� � lim
fLmg;T!1

 XN
n�1

XM
m�1

XLm

lm�1
Enmlm

�r; t�
!2

�
�
E�r; t�

�2
,

E(r; t) is described by the expression (10)

I2�r; t� � lim
Lmf g;T!1

XN
n�1

XM
m�1

XLm

lm�1
E 2
nmlm
�r; t�;

I3�r; t� � lim
Lmf g;T!1

XM
m�1

XLm

lm�1

 XN
n�1

Enmlm

* +2
n

* +
mlm

ÿ
XN
n�1

Enmlm


 �2
n

* +
mlm

!
;

angle brackets :::h in mean averaging over all random
variables containing the subscript n; angle brackets
:::h imlm

mean averaging over all random quantities entering
the expression for the vector Enmlm

, which contain only
subscripts m, lm; the quantities I1, I2, I3 are assumed to be
averaged over periods of high-frequency oscillations 2O;
2O0, O0 � O. Because the expressions for I1, I2, I3 are
cumbersome they are presented in Appendix 2.

After averaging expressions E 2 4p � �hO0nph exp�ÿg0(1ÿ=
g0)(tÿ z cÿ T)�= [3] and (18) over the oscillation period 1 n0= ,
we obtain the intensity of radiation scattered by matter
within a unit solid angle os:

E 2r 2 � E 2
0 s
0 f1ÿ exp�ÿg0�1ÿ g0�=v0�g

g0�1ÿ g0�=v0
: (21)

Here, s0 � s01 � s02 � s03 � ds=dos is the cross section for
scattering of the photon êux per unit solid angle, and s01,
s02; s

0
3 correspond to I1, I2; I3.
For simplicity, we present here expressions for s01; 2; 3

only for two typical cases determined by the inequalities

g; g0 5 v0; (22)

g; g0 4 v0: (23)

We assume that the inequality

g; g0; v0 5O0;O

is fulélled.
Consider érst scattering far from the resonance, i.e., we

assume that the inequality reverse to (17) is valid. Then,

s0 � s01u � s02u � s03u � s01e � s02e � s03e; (24)

where s01u;2u;3u are components of the cross section for
inelastic scattering (secondary emission) per unit solid angle
and s01e;2e;3e; are components of the cross section for elastic
scattering per unit solid angle.

Let conditions (12) and (22) be fulélled and

Oÿ O0j j4 g; g0; v0: (25)

In this case, we have for terms in (24)

s01u �
4

9
r2eN

2�O0=O�2�1ÿ �erex�2�a2nph=n0;

s02u �
2

5
N
ÿ
cO0=O

2
�2�

1ÿ 2

3
�erex�2

�
am�1ÿ g0� m0;=

s03u �
4

9
N�Nÿ 1�re�O0=O�2�1ÿ �erex�2�am�1ÿ g0�=m0;

(26)

s01e �
4

9
N 2re�1ÿ �erex�2�a2nph=n0;

s02e �
8

5
N�cO0=O

2�2
�
1ÿ 2

3
�erex�2

�
a;

s03e �
4

9
N�Nÿ 1�r2e �1ÿ �erex�2� a:
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Because a2nph=n0 � a � 1 [3], the quantity s01e � s03e �
4=9N(Nÿ a)r2e �1ÿ (erex)

2� does not depend on frequencies
O, O0 and the photon êux density j � c nph in the quasi-
classical region where a5 1. If conditions (15), (22), and
(25) are fulélled, then

s01u �
4

9
N 2re�O=O0�2�1ÿ �erex�2�a2nph=n0;

s02u �
8

5
N
ÿ
c=O0

�2�
1ÿ 2

3
�erex�2

�
am�1ÿ g0� m0;=

s03u �
4

9
N�Nÿ 1�r2e�O=O0�4�1ÿ �erex�2�a;

(27)

s01e �
4

9
N 2r2e�O=O0�4

�
1ÿ �erex�2

�
a2nph=n0;

s02e �
8

5
N�c=O0�2

�
1ÿ 2

3
�erex�2

�
a;

s03e �
4

9
N�Nÿ 1�r2e�O=O0�4

�
1ÿ �erex�2

�
a:

Note that s01e � s03e � 4=9N(Nÿ a) r2e(O=O0)
4�1ÿ (erex)

2�.
Provided conditions (12), (23), and (25) are fulélled, we
should make the substitution

s01u !
g0�1ÿ g0�

g
s01u; s

0
2u !

g0�1ÿ g0�
g

s02u;
(28)

s03u !
g0�1ÿ g0�

g
s03u; s

0
1e ! s01e; s

0
2e ! s02e; s

0
3e ! s03e

in expression (24). In this case, s01u;2u;3u and s01e;2e;3e are
described by expressions (26). When conditions (15), (23),
and (25) are fulélled, the substitution in (24) should be
analogous to (28), however, s01u;2u;3u and s01e;2e;3e are now
described by expressions (27).

Finally, consider the resonance case and present the
expressions for terms entering the formula for s0 � s0res in
(21) where

s0res � s01res � s02res � s03res (29)

and where, obviously, there are no longer the separation
into inelastic and elastic scattering and each term in (29)
corresponds to the appropriate term in (20).

If the condition (22) is fulélled and O0 ! O, then

s01res �
1

6
N 2�c g=n0O�2�1ÿ �erex�2�a2nph=n0;

s02res �
16

5
N�c=g�2

h
1ÿ 2

3
�erex�2

i
a
.h

1� g0
g
�1ÿ g0�

i
; (30)

s03res � 2N�Nÿ 1��c=O�2�1ÿ �erex�2�a
.h

1� g0
g
�1ÿ g0�

i
:

When the condition (23) is fulélled and O0 ! O, then

s01res � 2N 2�c=O�2�1ÿ �erex�2�a2�nph=n0�g=�g� g0�1ÿ g0��;

s02res �
16

5
N�c=g�2

h
1ÿ 2

3
�erex�2

i
a
h
3� 25g0�1ÿ g0�=g

ÿ11�g0=g�2�1ÿ g0�2 � �g0=g�3�1ÿ g0�3
i

� g0�1ÿ g0�=g�1� g0�1ÿ g0�=g�4; (31)

s03res � 2N�Nÿ 1��c=O�2�1ÿ �erex�2�a
�
3� 25g0�1ÿ g0�=g

ÿ11�g0=g�2�1ÿ g0�2 � �g0=g�3�1ÿ g0�3
�

� g0�1ÿ g0�=g�1� g0�1ÿ g0�=g�4:

Let us énd out érst of all in what of the cases from (26)ë
(31) a classical situation can be realised for the scattered
electromagnetic éeld, which corresponds, as was noted in
Ref. [3], to the condition E 2ÿ E

2
5E

2
, or, taking (19) into

account, to the inequalities s01 4s02; s
0
3.

Taking into account the conditions of deriving expres-
sion (10) and expressions for n0 and g [see (1) and (13)], we
can represent the inequalities providing classical scattering
of the electromagnetic éeld when expressions (26) and (28)
are valid in the form

ns�c=O0�3; ns�c=O�3 4N4 �O0=O�2m=8
���
2
p

pm0�r3enph�1=2;
(32)

ns�c=O0�3; ns�c=O�3 4N4 �O0=O�4=8
���
2
p

p�r3enph�1=2;
where, according to (12), O4O0. The érst and second
inequalities in (32) provide quasi-classical inelastic and
elastic scattering of the electromagnetic éeld, respectively. It
is obvious that, despite the smallness of re � 10ÿ13 cm,
inequalities (32) can be fulélled for physically reasonable
values of parameters contained in them. For example,
assuming that ns � 1021 ÿ 1022 cmÿ3, O0 � 1015 sÿ1,
O � 1016 sÿ1, and m m0 � 10ÿ3

�
, we see that inequalities

(32) are fulélled for physically reasonable values nph �
1016 ÿ 1018 cmÿ3. The conditions for the electromagnetic
éeld of an ensemble of parallel propagating photons to be
classical are substantially less stringent than that for an
ensemble of scattered photons [3].

In the cases when formulas (26) and (28) are valid,
expression (19) is in general a nonlinear function of the
parameter a, which in turn depends nonlinearly on the
photon êux density j � c nph. Therefore, the intensity of
scattered radiation is a nonlinear function. It is possible that
this nonlinear dependence of (21) on j can be observed
experimentally. Note that corrections in scattering cross
sections concerning the intensity of the incident radiation
reêect the inêuence of statistical properties of an ensemble
of incident photons on the scattering process and are not
related to collective scattering from oscillating particles.

Under conditions (27), the electromagnetic éeld is
scattered classically when the formal conditions

ns�c=O0�3; ns�c=O�3 4N4 �O0=O�2m=8
���
2
p

pm0�r3enph�1=2,
(33)

ns�c=O0�3; ns�c=O�3 4N4 �O0=O�4=8
���
2
p

p�r3enph�1=2;
are valid, where, according to (15), O0 4O. Because
O0 4O and re � 10ÿ13, conditions (13) can be satiséed
only for a very high volume photon density nph, which
cannot be physically attained. This means that the inequal-
ity s02 � s02u � s02e 4 s01 � s01u � s01e, s03 � s03u � s03e takes
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place instead of the inequality s01 4 s02; s
0
3, i.e., classical

scattering of the electromagnetic éeld cannot occur under
conditions (27), and when conditions (22) are fulélled, ex-
pression (21) takes the form

E 2 � E 2
0 �s02u � s02e�: (34)

When conditions (23) are fulélled, the expression of the
type (34) takes place.

In the resonance case, when O0 ! O, expressions (30)
and (31) are valid, and the formal criterion for classical
scattering of the electromagnetic éeld has the form

ns�c=O0�3; ns�c=O�3 4N4 �n0c=O2re�2=8
���
2
p

p

��1�m�1ÿ g0�=m0��r3enph�1=2 for v0 4 g; g0;
(35)

ns�c=O0�3; ns�c=O�3 4N4m=8
���
2
p

p

�m0�1�m=m0�3�r3enph�1=2 for v0 5 g; g0:

It is obvious that inequalities (35) cannot be fulélled for
physically possible values of nph. Therefore, the scattered
electromagnetic éeld cannot be classical, i.e., the inequality
s02res 4 s01res; s

0
3res takes place instead of the inequality

s01 4s02; s
0
3, which corresponds to the relation

E 2 � E 2
0 s
0
2res: (36)

Here, s02res is deéned in (30) if inequalities (22) are valid. If
inequalities (23) are valid, then s02res from (36) is deéned in
(31). Note that, because of the dependence of a and n0 on
nph, expressions (35) and (36) are nonlinear functions of
j � cnph.

Therefore, within the framework of our model, the con-
ditions of classical scattering of the electromagnetic éeld by
matter are determined by inequalities (n0=nph)

1=2 5 1, (12),
and (32). As follows from expressions for scattering cross
sections (26), (27), (30), and (31), these conditions depend
substantially on the parameters m;m0; g; g0; g0 determining
the spatial localisation of electromagnetic éelds of photons.

Note in conclusion that, although material particles were
described here by harmonic oscillators, nevertheless our
result that the space ë time localisation of photons should be
taken into account in some problems on the interaction of
the electromagnetic radiation with matter is quite general. In
this connection, it would be interesting to verify these
theoretical results experimentally. Obviously, these should
be laser studies of the spectral characteristics of resonantly
scattered radiation, which are described by expressions (19),
(30), and (31), as well as experiments aimed at the discovery
of corrections in the intensity of the incident photon êux in
scattering cross sections, which are not related to the non-
linear properties of matter [see expressions (23), (27), (30),
and (31)].

Appendix 1

The parameter J(tlm ; rn; yvn) ��h
Ic o � O;G � g

2
; tnlm

� �
ÿIc o � O0;G �

g0
2
�1ÿg0�; tnlm

� �i

��O0 ÿ O� ÿ Is o � O;G � g
2
; tnlm

� �h
ÿIs o � O0;G �

g0
2
�1ÿ g0�; tnlm

� �i
�
�
g
2
ÿ g0

2
1ÿ g0� �

�� �
O0 ÿ O� �2� g

2
ÿ g0

2
1ÿ g0� �

h i2 ��

�
�
Ic o � O;G � g

2
; tnlm

� �
ÿ Ic o � O0;G �

g0
2
�1ÿ g0�tnlm

� �ih
��O0 � O� � Is o � O;G � g

2
; tnlm

� �h
� Is o � O0;G �

g0
2
�1ÿ g0�; tnlm

� �i
�
h g
2
ÿ g0

2
1ÿ g0� �

i� �
O0 ÿ O� �2ÿ g

2
ÿ g0

2
1ÿ g0� �

h i2 �
:

�

Here, A0 � 32p2B0c
3a nph=g

2
0(1ÿ g0)

2O0;B0 � ex�g30(1ÿ g0)
3

��h=pcO0�1=2; ns � N=Vs is the density of material particles
in the volume Vs scattering photons; T is determined after
all integrations in (7), as in Ref. [3]; and

Ic o;G; tnlm
ÿ � � ÿ 1

o
eÿGtnlm

�
eÿr=rcn sin�otnlm�ÿ

1

p
cos otnlm�
ÿ

��ÿ sinh�r=rcn��ci�ÿir=rcn� � ci�ir=rcn�� � i cosh�r=rcn�

��si�ÿir=rcn� ÿ si�ir=rcn���
�

;

Is o;G; tnlm
ÿ � � 1

o
eÿGtnlm

�
eÿr=rcn cos�otnlm��

1

p
sin otnlm�
ÿ

��ÿ sinh�r=rcn��ci�ÿir=rcn� � ci�ir=rcn�� � i cosh�r=rcn�

��si�ÿir=rcn� ÿ si�ir=rcn���
�

;

tnlm � tÿ r=c � errn=c ÿ ezrn ÿ tlm ;

rcn � rcn�o� � 8co=g2�1ÿ gn�2; gn �
3

8p
O1 sin

2 yvn:

Appendix 2

The parameter

I1 r; t� � � N 2E 2
0 g

2c 2 1ÿ erex� �2
h i

a2nph=4n0O
2
0r

2
ÿ �

� O0=O� �2eg �tiu o � ÿDO; G� � eÿ gÿ2G� ��tie o � DO;G��
�h

ÿ2ÿO0 O= �eÿ gÿG� ��t ir o � ÿDO;G� � cos DO�t� �
i
:

Here,

iu o;G� � � ÿo
o2 � G2

� O� O0

O� O0� � � G2

� �2
� G2

o2 � G2
ÿ �2 ;

DO � Oÿ O0; G � �gÿ g0�1ÿ g0��=2; �t � tÿ r=cÿ T;
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ie�o;G� � iu�o;G�; ir�o;G� � 1=�o2 � G 2�:
The parameter

I2 r; t� � � 2

5
E 2
0N 1ÿ 2

3
erex� �2

� �
ac2 r2
� �ÿ

�
�

O=O0� �2eÿg �tiu o � ÿDO; G� � gÿ 2G� �=g� �

�eÿ gÿ2G� � �t ie o�ÿDO;G� �

ÿ 4 O=O0� �2eÿ�gÿG� �tir o � ÿDO; G� �

� gÿ G� � gÿ 2G� �=ÿDO2 � gÿ G� �2�i�pOr=DOrc�1=2h
�
�
cos�2Or=DOrc�

�
1

2
ÿ S�2Or=DOrc�1=2

�
ÿ sin�2Or=DOrc�

�
1

2
ÿ C�2Or=DOrc�1=2

�
cos�DO�t �

��
;

where

S x� � � 2������
2p
p

�x
0

sin t 2dt; C x� � � 2������
2p
p

�x
0

cos t 2dt

are Fresnel integrals; other designations are as above [see
also (7) and (10)].

The parameter

I3 r; t� � � N Nÿ 1� �E 2
0 g

2c2 1ÿ erex� �2
h i

a
�
4O2

0r
2

ÿ �
�
h
eÿg �tiu o � ÿDO;G� � � eÿ gÿ2G� ��tie o � ÿDO; G� �

ÿeÿ gÿG� � �tir o � ÿDO;G� �

� gÿ G� � gÿ 2G� �=ÿDO2 � gÿ G� �2�
i
cos DO �t� �

i
:

h
The expressions for I1(r; t); I2(r; t); I3(r; t) were obtained

by neglecting the terms that are small according to inequal-
ities (11).
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