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Scattering of an ensemble of photons
taking their space — time localisation into account

B I Makshantsev, V B Makshantsev

Abstract. A problem of scattering of an ensemble of photons
by material particles is solved. The vector potential of each of
the incident photons scattered by particles is described by a
nonspreading wave packet. The expressions for cross sections
for elastic and inelastic scattering of electromagnetic
radiation are derived taking the space—time localisation of
photons into account. The possible experiments for verifying
these theoretical results are discussed.
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1. Introduction

The quantities describing the interaction of electromagnetic
radiation with matter, for example, the cross section for
scattering of a photon by an atom (molecule) are commonly
calculated using the perturbation theory in the parameter of
interaction of the electromagnetic field with an electron,
while the vector potential of the photon is described by a
monochromatic wave [1, 2]. It was shown in Ref. [3] that
there exist problems that can be solved only by taking the
space —time localisation of photons into account, i.e., when
the vector potential of photons is described by a wave
packet propagating along the z-axis, which has the form

A (r,1) = — [ (1 — g0) 1 /meQ) P ukei(r0,70(1 — g)/v/2¢)

=21 = g0)(1 = 2/0)[sinfe (s = /)0l ~ =/c). (1)

Here, y, :2/ 362{22 /moc3 is the radiative decay constant of
an oscillator emitting the wave packet (1); e is the electron
charge; Q, and m, are the oscillator frequency and mass,
respectively; ¢ is the velocity of light in vacuum; g, =
(3Q1/8m)sin® O,; Q) = (1 — 2900 /7)"*; Dy = Dyyan /
Omax 18 the cut-off frequency of the photon spectrum;
sin 0,9 = eyouy; e, and u, are the unit vector of a straight
line along which oscillations occur and the photon polar-
isation vector, respectively; z =rcos0, ~r — r0,2/2; kei(...)
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is the Thomson function; and Q, is the photon frequency.
Hereafter, the parameters of a photon incident on a particle
(an atom, a molecule) are labelled by ‘0’. The function
0(x) =1 for x>0 and 0(x) =0 for x < 0.

The problem in which the space—time localisation of
photons should be taken into account is the problem of
scattering of an ensemble of parallel propagating photons
by material particles. We will solve this problem using the
following relation for the vector potential of a photon
propagating along the z’-axis and appearing upon the
interaction between the incident photon and a material
particle [3]

3Q . o
A(r,t) = 2—7[21;)14 sin 0, kei [r0,7(1 — g)/\/ic]

t—z'/c N
XJ dtey Ay, (re = #(rc), 7) exp [—%(t—z’/c—r)}
0

xcos[Q(t —z'Je —1)]0(t — 2 /¢). )

Here, A, (r. = r(rc),7) is described by expression (1):
Q,7,sinb,, e,, u, Q are the same as in (1), however without
the subscript ‘0°. The radius vector r. = r(r.) specifies the
position of the oscillator in the primed coordinate system.

In this paper, we refine the expressions for cross sections
for elastic and inelastic scattering of electromagnetic radi-
ation taking the space—time localisation of photons into
account. The exact criteria for classical scattering of an
electromagnetic field by matter are obtained and possible
experiments for verifying the results obtained are proposed.

2. Scattering by a harmonic ensemble of photons

Consider an ensemble of photons incident along the z-axis
on a medium in the form of a cylinder of radius R, and
length h,. The vector potential of photons is described by
the expression

Ly,

M
AO("a t) = Z ZAml,,, (l - Z/C - tl”,ap _pm)‘ (3)

I

m=

Here, the vector 4, (l —z/c—1,,p—py) is described by
expression (1), in which the replacement ¢—¢—7¢; ,
r, — p — p,,;; should be made, where p,p,, are radius
vectors in the plane perpendicular to the z-axis; r = p + e.z;
and e. is the unit vector along the z-axis. Note that,
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depending on parameters entering (3) and on the properties
of the distribution functions of random quantities in this
expression, the wave packets Ay(r, t) have coherent proper-
ties.

For simplicity, we assume that the parameters of all
photons in expression (3) are identical and u, = e,, where e,
is the unit vector along the x-axis. The quantity ¢,
determines the instant of time of intersection of the xy
plane by the /,th photon at the point m with the radius
vector p,,. Integers M and L,, give a total number of the
intersection points of photons with the xy plane to the
instant of time ¢ and a total number of photons that
intersected this plane at the point with the radius vector
P, respectively. We assume that z and p are finite, the time
t — oo and, hence, M, L,, — oc.

Let us assume that the ends of radius vectors p,, in
expression (3) are distributed over the area S in the xy plane
with the probability density 1/S, where S — oco. We also
assume for simplicity that all material particles are identical
and their positions are determined by the radius vectors r,,
where the number of a particle is 1 <n < N. We assume
that the particles differ only in the spatial orientation of the
unit vectors along which oscillations occur. We assume also
that photons are weakly absorbed by particles. Then, using
(1) - (3) and making the replacement r — |r —r,|,0, — 0, ,
€y = Cyy, U — Uy, HVH()VI’![,,JV(l - g)/\/ic 4“/<1 7gnl,,,)/ 2¢
in (2), we obtain the expression

N
A(V,Z)ZZAH(V,I). “4)
n=1

for the vector potential of an ensemble of photons scattered
by particles. Here,

L

M
An("a l) = Z Anmlm (V7 [);

m m

3 .
A, (1,1) = = 55 217 Uy, S0 Oy
T
xkei( 2 (1= g, )Ir = 1,0, )
2(,' Nl ni¥nly,

!
n Y o
X JO dr evnAml,,, (Ta Pn— pm) exXp {_ E (tn - T)i|

x cos[Q(7, — 1)]0(%,);

tL,=t—|r—r,/c+|r— rn\G,,Q,m/Zc —z,/c—1;, > 0; the bar
means averaging over the instants of time 7, and positions
of vectors p,,, as well as over spatial variables r,, ey,, 0y, ,
etc. We will perform averaging in (4) over the instants of
time {¢, } with the distribution density [3]

Pl ),“’mci’;, 0\ ()
DT\ T T ’

where 0 <t;, <T; T—o00; 0< 1/, <Ly,; L, — o0;
o Lat
o=

" (Lm - lm)!lm! ’

2 1/2
Ny ny Ny

= = — — — O<a<l);

8 O‘(”ph) 2nph * [<2nph> +nph:| ( * )7

_ (90/5)37’0(1 —go),
0 12872Q,

npy =j/c¢ is the mean volume photon density in the
ensemble incident on matter; j is the photon flux density;
and /,, is the photon number.

Let us calculate the mean value of the vector potential
for an ensemble of photons scattered by particles and then
calculate the quantity E2, which gives the scattered radi-
ation intensity (E = —(1/¢)(0A4/01)).

Note that, because r — oo and vectors ey, and e, are
substantially different (e, is the unit vector along the vector
r), expression (4) vanishes after averaging. The nonzero
result is obtained only when ¢, = e,. In this case, we have

u o €yn — €knl, (eknlmevn) ~ vy — er(erevn)
iy = 112~ 271/2°
[l - (eknl,,,evn) ] / [l - (erevn) ] /
. 1/2 .
sin ()vnl,,, = unlmevn ~ [1 - (erevn)z] / ~ Sin ()vna (5)

. 1/2
sinf,, ~ 0, ~ [2(1— ey, e,)] 2

m

where ey, is the unit vector along the wave vector k,; ,
which determines the propagation direction of the /,th
photon scattered by the nth particle.

We assume that a scattering layer of matter represents a
solid solution of identical particles, which are randomly
distributed in space. The latter circumstance permits the
averaging of expression (4) over the directions of the wave
vectors of scattered photons with the uniform probability
density

P(Pu,s Ou,) = 1/4m. (6)

Let us calculate A(r, 7) assuming that |[r —r,| = r — e,r,.
Using the above expression for the distribution density
P(1;,) and expressions (5) and (6) and taking into account
that the result of averaging over angles 0,, in (4) is mainly
determined by the angles for which the inequalities
yr 0,,2,”’, yr,ﬂnz,m < 1 are satisfied, we obtain

0 T 7
A(l‘, t) = _§|AO|MJ dll J devn sin an
4 r 0 " o
Klew — eeenllenes) | dndln,n00), )

s

where the explicit expression for J(¢; ,r,,0,,) is presented in
Appendix 1.

Let us analyse the result obtained. Note first of all that
only those values of r are of interest for which

r/"c7 r/”c0< 17 (8)

where 7, =8¢Q/y* X ro(w=Q) and ry=8cQy /7’ =
ro(w = Q). Tt is in this range of values, as follows from
(7), that the vector A(r,f) is inversely proportional to r.
Note, for example, that for the values Q, Q, ~ 10 571,
and y, o ~ 10% s7!, parameters r, and ry are so large that
inequalities (8) are valid for all values of r of interest.
The conditions imposed on the radius r, under which the
vector A(r,t) is inversely proportional to r, will be more
exact if we take into account the results [3] and the
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behaviour of the asymptotics of functions ci(x) ~ Inx and
si(x) — si(—x) = 2x for x = r/r,, < 1. These conditions have
the form

Coarate
- << < —

v In(re/r) )
¢ T'eo

— XTI ——.

7o In(reo/7)

Note that, within the framework of our model, under the
conditions that are reverse to conditions (8), (9), the vector
A(r, 1) is inversely proportional to , as follows from (7).

Further, we are interested only in the situation corre-
sponding to conditions (9). Assuming for simplicity that R,
hy < ¢/Q and R, hy < ¢/Q, and using (7), we obtain

| 12
B0 = eV Bl ~ eere.)lo( 52 )

2nyg
1T, QQ-Q
X{Qe p( 2 I) H(Qo — Q)+ [y —y9(1 —go)*/4
4 2+ ]sinQ?
(Q0+2)° + [y = 70(1 — g0))°/4
{ [y —70(1 —0)]/2
+ 3 2
(Q = Q)"+ [y —7o(1 — o)l /4
B [ = 2o(1 — £0)]/2 7
(Q0+ 2 + [y =71 go)}z/“] COSQI} "

Yo . Q) -Q
T, P [_7(1 _gO)l} H(Qo — Q) + [y — o1 —g)) /4

. Q+Q
(Q0+ Q)7 + [y —70(1 — go)]* /4

{ [y =01 — 80)]/2
(Q - Q)+ [7 — o1 —go)}2/4

[v2 Yo(1 — £0)1/2 i }cosQ?} 7
(Qo+ Q)"+ [y —vo(1 —go)]"/4
where |Ey| = (thQOnph)l/z; t=t—rfc—T; T=(1/v)EX
[vo(t —r/c)]; E is the integer part of a number; and
| / Vo = /4Tcnpysoo is the mean time interval between two
nearest instants of intersection by photons of a part of the
xy plane of area

M
=S / Jlim S (D / lim (/1)

m=1

] sin Q¢

The parameter 1/s, determines the order of the surface
density of incident photons in the xy plane.

To obtain the expressions for scattering amplitudes of an
electromagnetic wave, we consider expression (10) in a
classical situation, i.e., when oc%(no/nph)l/2 <1 [3]. In
addition, we will assume that the condition
(11

Yo K Vg KLy, 7Ly <KL

is fulfilled.

The term containing the factor exp ( — y/2f) in expres-
sion (10) represents a diverging electromagnetic wave caused
by inelastic scattering of the incident electromagnetic wave.
The term containing the factor exp[(— y,/2)(1 — go)7]
represents a diverging electromagnetic wave caused by
elastic scattering of the initial electromagnetic wave.

Let the frequency range be determined by inequalities

[y = 70(1 — £0)|Q0 < 2 < 2. (12)
In this case, taking into account the condition o =
(ng /nph)l/ ? < 1 and inequalities (11), we obtain the ampli-
tude of inelastic scattering

%reN(‘QO/Q)‘ex - er(erex)‘v

Ay = 3

(13)

where r, = ez/ me” is the Thomson radius; m is the electron
mass; and Q,Q, # 0.

For the frequency range under study, the amplitude of
elastic scattering is

2v/2
A, = ?\/_re]wex - er(erex)|'

(14)
When conditions (12) are fulfilled for the model under
study, expression (14) is independent of the photon
frequency Q, and the oscillator frequency Q [1, 4]. For
the frequency range

QO>Q>V7V()7 (]5)
we have
22
Ay = T\/—reN(‘Q/QO)‘ex - er(efeX)"
(16)
Ae = &I’EN(Q/Qo)ﬂex - er(erex)|'

3

Note that scattering amplitudes (16) in the frequency
range (15) decrease with increasing photon energy 7€,
which correlates to some extent with the behaviour of
scattering amplitudes of fast electrons and atoms [5].

Finally, consider the resonance case, when the corre-
sponding results differ from those obtained in Refs [1, 2]
assuming that the electromagnetic field of a photon repre-
sents a plane infinite wave. The difference consists, in
particular, in the fact that the ‘resonance’ denominators
in expressions (10) contain the difference [y — 7,(1 — g¢)]/2,
whereas denominators in the corresponding expressions in
Refs [1, 2] contain [y — yo(1 — go)]/2.

The amplitude (cross section) of resonance scattering,
which is determined by the condition

120 — Q| < . (17)
differs from the known results [1, 2] more substantially.

Taking into account inequalities (11), from which it
follows that the quantities

Q0 = QI = {vo(t = r/c) = E[vo(t = r/c)[}[Q0 = Q| /vo,
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vt ={vo(t = r/c) = Elvo(t = r/c)]}7/vo,

Yol = {vo(t —r/c) = E[vo(t — r/c)]}v0/vo
in (10) are small, and performing in (10) the expansions in
these quantities, we obtain

V2

Elr.1) = - |Ey| r—:N[ex —e,(ee,)]|Qicos Q1. (18)

Because it follows from (16) that the resonance scattering
amplitude A, (1) = (V2/3)r.NQ17 e, — e,(e,e,)] is a peri-
odic function with the period 1/vy, we will define A, as

V2

o 1)2
Ares = TreN‘Q ‘e.\* - el'(el'el’)‘<t2> 9

(19)

where

1/vo

o

t*dt = 1/3vj.

Finally, using the expressions for « and v, presented
above and taking into account that (no/nph)l/2 <1, we
obtain from (19)

V2 el Te v 2| ( )

= | e, —e.(ee))|

res 288950 (1 —go)nph . T

Note that the condition reverse to inequality (17) is a
criterion for the possibility of frequency separation of
electromagnetic radiation into inelastic and elastic scatter-
ing.

3. Scattering cross section for a photon ensemble

By using the expression under the averaging bar in (4), we
calculate the quantity E?(r,f), which is directly related to
the experimentally measured intensity of scattered electro-
magnetic radiation

E nml,,,

nm,l,

1 aAnmlm
¢ ot

nml,,, ( t) =

Under the assumptions used in deriving (10) and assuming
that g, < 1 in (7), we obtain

EX(r,t) = L,(r,t) + L(r, t) + L(r,1). (20)

Here,

L,

N M 2
I(r,t) = " 1}11}100 (ZZZE, ) ) = (E(r, z))z,

n=1 m=11[,=1

E(r,?) is described by the expression (10)

N M L,

YX D EL, (n0);

n=1 m=11[,=1

M L, N 2
Lir)= lim > %" <<<2Em,>>
{L”’}’T_)xm:l 1,=1 n=1 nl mi

m

12(]’, t) = " 1}1171:1_00

N 2
- Z <E”’”[m >n )
n=1 ml,,

angle brackets (..), mean averaging over all random
variables containing the subscript »n; angle brackets
(-+)py, mean averaging over all random quantities entering
the expression for the vector E,,, , which contain only
subscripts m, 1,,; the quantities I}, I, I; are assumed to be
averaged over periods of high-frequency oscillations 2Q,
2Q), Qp+ Q. Because the expressions for I, I,, I3 are
cumbersome they are presented in Appendix 2.

After averaging expressions E2/4n = 11Qynp, expl—po(1—
g0)(t — z/c — T)] [3] and (18) over the oscillation period 1 /vy,
we obtain the intensity of radiation scattered by matter
within a unit solid angle wy:

) > {1 —exp[- “/o(l—go)/"o}}
% =Eyo 7o(1 —0)/vo

@

Here, ¢' = o} + 05 + 05 = do/dw is the cross section for
scattering of the photon flux per unit solid angle, and o/,
%, a5 correspond to I, I, I5.

For simplicity, we present here expressions for o) ; ;
only for two typical cases determined by the inequalities

Vs y() < V(), (22)

7,70 > Vo- (23)

We assume that the inequality
Y5705 Y0 < QO: Q

is fulfilled.
Consider first scattering far from the resonance, i.e., we
assume that the inequality reverse to (17) is valid. Then,

/ / / / / ’ /
0 =01y + 02y + 03y + 01 + 02 + 03¢, (24)

where 0,,,3, are components of the cross section for
inelastic scattering (secondary emission) per unit solid angle
and 0'/1e,2e,3e, are components of the cross section for elastic
scattering per unit solid angle.

Let conditions (12) and (22) be fulfilled and

|2 — Qo] > 7,70, vo- (25)

In this case, we have for terms in (24)

4
Gl =g re N2 (Q/2)°[1 - (e

9 rex)z]aznph/n()v

oho = 3N(e/ @)’ |1 = S e, o1 = )/,

NV = 1Dre(@0/ (1 — (esen)am(1 — g) /o,

/
O3y = 9
(26)
4
Tle =g N re[l = (ese) oy /o,

oh = SN/ @1 S e

N=1)r2[1 = (e,ex) o

4
O-ge :§N(
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Because o’ny/ng+ o =1 [3], the quantity o, + o} =
4/9N(N —arg[l — (e,ex)z] does not depend on frequencies
Q, Q, and the photon flux density j = cnyy, in the quasi-
classical region where o« < 1. If conditions (15), (22), and
(25) are fulfilled, then

4
OJlu = §N2V6(Q/Qo)2[l - (erex)zlaznph/n()a

oho = SN(e/ )71 =5 (re ] a1 o)

P = g NV = 1r2(0/90) [l ~ (e,

(27
4
OJle = §N2rg(Q/QO)4 [l - (erex)zl OCZ”ph/”O?

O-,Ze = %N(C/QO)2 |:1 - % (ere.\‘)z:| o,

l)rez(‘Q/‘QO)4 [l - (erex)zl(x'

Note that o, + b ="/oN(N — 0) r2(Q/20)*[1 — (e,e.)?)].
Provided conditions (12), (23), and (25) are fulfilled, we
should make the substitution

4
o4 = §N(N -

r v —g) 0, vl —g)
Oy — lus 92u ,‘ O2u;
’ (28)
/ (1 - gO) / ’ / / / /
O3y — 63u7 Ole =7 Olesy O2¢ =7 02y 03¢ —7 03¢

in expression (24). In this case, U/lu,2u43u and 0’16,26,36 are
described by expressions (26). When conditions (15), (23),
and (25) are fulfilled, the substitution in (24) should be
analogous to (28), however, 67,53, and o3, are now
described by expressions (27).

Finally, consider the resonance case and present the
expressions for terms entering the formula for ¢’ = ¢/ in
(21) where

O—;es = U/Ires + OJZres + Gl3res (29)
and where, obviously, there are no longer the separation
into inelastic and elastic scattering and each term in (29)
corresponds to the appropriate term in (20).

If the condition (22) is fulfilled and Q, — Q, then
N2 (ep/v@)[1

1 2
O—/lres = 6 - (erex) laznph/nOa

e =N/ [1 =3 e/ [ 14 21 = )] GO

e = 2N(N = 1)(c/Q)*[1

~ (el /|14 200 - g0)].
When the condition (23) is fulfilled and Q, — Q, then

Flres = 2N?(c/Q)7[1 — (ee)’ 1o (npn /m0)7/ [y + 70 (1 — o)),
, 16

s =5 N3P [1 =2 (e ]34+ 25301 — )

—11(0/7)(1 = g0)” + (/1) (1 — 20|

X 70(1 = o) /7[1 +70(1 — o) /71", 31)

O-gres = 2N(N_ ])((’/Q)le - (erex)zla[3 + 25V0(1 _gO)/V

—11(7’0/7)2(1 - go)2 + (ro/7)’ (1 = go)3l

< 70(1 = o) /7[1 +70(1 — g0) /71"

Let us find out first of all in what of the cases from (26)—
(31) a classical situation can be realised for the scattered
electromagnetic field, which corresponds as was noted in
Ref. [3], to the condition E>— E < E’, or, taking (19) into
account, to the inequalities ¢} > 75, o5.

Taking into account the conditions of deriving expres-
sion (10) and expressions for n, and y [see (1) and (13)], we
can represent the inequalities providing classical scattering
of the electromagnetic field when expressions (26) and (28)
are valid in the form

n(c/Q0)* n(c/Q)* > N > (Q0/Q) m/8v/2mmy (riny,) ',
(32)
n(e/Q0) ny(c/Q)* > N > (Q0/2)*/8v2n(riny,) "2,

where, according to (12), @ > Q,. The first and second
inequalities in (32) provide quasi-classical inelastic and
elastic scattering of the electromagnetic field, respectlvely It
is obvious that, despite the smallness of r, ~ 107" cm,
inequalities (32) can be fulfilled for physwally reasonable
values of parameters contained in them. For example,
assuming that ng~ 10°' =102 cm™, Q, ~ 10" s,
Q~10"%s7" and m/mo ~ 1073, we see that inequalities
(32) are fulﬁlled for physically reasonable values ny, ~
10" — 10" cm ™. The conditions for the electromagnetic
field of an ensemble of parallel propagating photons to be
classical are substantially less stringent than that for an
ensemble of scattered photons [3].

In the cases when formulas (26) and (28) are valid,
expression (19) is in general a nonlinear function of the
parameter o, which in turn depends nonlinearly on the
photon flux density j= cnpy,. Therefore, the intensity of
scattered radiation is a nonlinear function. It is possible that
this nonlinear dependence of (21) on j can be observed
experimentally. Note that corrections in scattering cross
sections concerning the intensity of the incident radiation
reflect the influence of statistical properties of an ensemble
of incident photons on the scattering process and are not
related to collective scattering from oscillating particles.

Under conditions (27), the electromagnetic field is
scattered classically when the formal conditions

ns(c/Q)’ ny(c/Q)* > N > (Qo/lem/S\/iﬂmo("gnph)]/2,
(33)
ns(c/‘QO)Sans(c/g)3 > N> (90/9)4/8\/§n(r2nph)1/2a

are valid, where, according to (15), Q, > Q. Because
Qy> Q and r, ~ 107", conditions (13) can be satisfied
only for a very high volume photon density np,, which
cannot be physically attained. This means that the inequal-
ity o5 =0h, + 05 > 0] =0y + 0he, 0% =04, + 05 takes
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place instead of the inequality ¢} > 65,05, ie., classical
scattering of the electromagnetic field cannot occur under
conditions (27), and when conditions (22) are fulfilled, ex-
pression (21) takes the form

E’ ~ Ej (0h + 05). (34)
When conditions (23) are fulfilled, the expression of the
type (34) takes place.

In the resonance case, when Q;, — Q, expressions (30)
and (31) are valid, and the formal criterion for classical
scattering of the electromagnetic field has the form

ny(¢/Q)’ ny(¢/Q) > N> (voe/Qr.)* /8V2n

x[1+m(l *go)/mo](rgnph)l/z for vy > 7,7,
(35)

’/ZS(C/‘QO)Svns(C/Q)3 > N> n’l/S\/iTE

xmy(1 +m/m0)3(rgnph)l/2 for vy <7, 70.

It is obvious that inequalities (35) cannot be fulfilled for
physically possible values of n,,. Therefore, the scattered
electromagnetic field cannot be classical, i.e., the inequality
Ohres 3 Olress Oares  takes place instead of the inequality
¢ > %, a5, which corresponds to the relation

E? ~ E{ o). (36)
Here, 05, is defined in (30) if inequalities (22) are valid. If
inequalities (23) are valid, then %, from (36) is defined in
(31). Note that, because of the dependence of o and v, on
npp, €xpressions (35) and (36) are nonlinear functions of
J = cngy.

Therefore, within the framework of our model, the con-
ditions of classical scattering of the electromagnetic field by
matter are determined by inequalities (no/nph)l/2 <1, (12),
and (32). As follows from expressions for scattering cross
sections (26), (27), (30), and (31), these conditions depend
substantially on the parameters m,ny, 7,7y, 8y determining
the spatial localisation of electromagnetic fields of photons.

Note in conclusion that, although material particles were
described here by harmonic oscillators, nevertheless our
result that the space—time localisation of photons should be
taken into account in some problems on the interaction of
the electromagnetic radiation with matter is quite general. In
this connection, it would be interesting to verify these
theoretical results experimentally. Obviously, these should
be laser studies of the spectral characteristics of resonantly
scattered radiation, which are described by expressions (19),
(30), and (31), as well as experiments aimed at the discovery
of corrections in the intensity of the incident photon flux in
scattering cross sections, which are not related to the non-
linear properties of matter [see expressions (23), (27), (30),
and (31)].

Appendix 1

The parameter J(; , 1y, 0,,) =

Y Y
|Ilc<w =QI= §7tnlm) -1 (U) = QO7F = 50(1ng)7 tnlm>:|

x“%—Q%—hGuzQFZ%Jm)

_[S(w = QI = %0(1 _gO)atnlm)}
(30w /fio-ar]

+|:|:Ic(w:97]ﬂ:%7[nlm)f Ic(w:Q(hF:yfo(l 7g0)tnl,,,>:|

N~

—%0(1 —go)r]

X(‘QO +{2) + |:]%(0‘) = Q,F = %alnlm)

+Is (CO = QO7F = VEO(I - g0)7 tnl,”)i|

X[fguf&ﬂquwwﬁfgf%m—@ﬁy

Here, Ay = 321 By ony /75(1 — 20)*Qo; By = e [0(1 — &)’
Xh/ano}l/z; ng = N/Vy is the density of material particles
in the volume V¥ scattering photons; T is determined after
all integrations in (7), as in Ref. [3]; and

[N

1 . 1
I(o, Tt )=- 56’”’”'" {e”/'“” sin(wt,; )— Ecos(wtn,m)

X [_ Sinh(r/rcn) [Ci(_ir/rcn) + Ci(ir/rcn)] + iCOSh(r/rcn)
X [Si(_ir/rcn) - Si(ir/rcn)”};

]s ((U, F7 Ll

m

1 . 1.
) = —¢ Tum {e’r/’“” cos(wt, )+—sin (wt,,lm)
) m

X [_ Sinh(r/rcn) [Ci(_ir/rcn) + Ci(ir/rcn)] + iCOSh("/rcn)
(i) — siCn/ )]

i, II—V/C + errn/c —er, =1

m

3 .
Fen = rcn(w) = 80@/72(1 _gn)z; &n 2591 51n2 evn'

Appendix 2

The parameter
Ii(r,t) = N2E02y2c2 {1 — (e,Aex)z} (otznph/4n0§2%r2)
x[(@0/@)¢ iy (0 = ~AQ, 1) + e~ i(0 = AQ,T)
—2@%/Qk’wdjﬁxw::—AQJﬁcoqAQD]

Here,

)
w? 417

Q+9Q
(Q+ Q) +1I?

) = | r+ (@ fﬂ)z |

AQ=Q-Qy; I'=[)—y(1-g)l/2; t=t-r/c-T,
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io(0, ) =iy(w,1); i(w,T)=1/(w?+T?).

The parameter
L(r,t) = %E&N {1 - % (e,.ex)z} (ac? /1)
o @/ae i = -a2. Dl 21171
+e 0207 (w=—AQ,T)
—4(Q/Q) e "D (0 = —AQ, T)
x| = 1) = 20)/(AQ + (v = 1)) (r2r/ A1)
x [cos(2Qr/AQrC) B - S(2Q;‘/AQrC)1/2}

— sin(2Qr/AQr.) B - C(zgr/AQrc)‘ﬂ} cos(AQi)} }

where

X X

sinz?dr,  C(x) = cos t2dr

2 2
V2n ,[0 V2n Jo
are Fresnel integrals; other designations are as above [see
also (7) and (10)].

The parameter

S(x) =

]3(,'7 [) = N(N— I)Eg"/zcz [1 - (erex)z} (o(/4Q%}’2)
x[eiy(@ = ~AQ, 1) + ¢ i = ~AQ, T)
_e7(7'7r) ;Z,(CU = —AQ, F)

X [(y — D)y —20)/(AQ* + (7 — r)2)] cos(AQ f)} .

The expressions for I;(r, ), I,(r, t), 3(r, ) were obtained
by neglecting the terms that are small according to inequal-
ities (11).
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