
Abstract. Reêection and transmission of a plane electro-
magnetic wave propagating in a layered dielectric structure
with an arbitrary number of layers of various thicknesses are
investigated. For the general case of oblique incidence of the
wave on this structure, the reêection and transmission coefé-
cients are calculated for both TE and TM waves using a
multiple reêection method. An algorithm to apply the
obtained formulas for numerical and analytical calculations
is suggested.

Keywords: layered dielectric structure, electromagnetic wave, obli-
que incidence, reêection coefécient.

1. Introduction

The classical problem of electromagnetic wave propagation
in a one-dimensional stack of dielectric layers [1] is still a
hot topic due to the permanent interest to optic and electro-
optic devices based on multilayered dielectric coatings. The
development of laser physics constantly stimulates the
search for new multilayered coatings for mirrors and élters
of optical resonators. This search is often restricted by the
use of different numerical methods where the material
properties of layers can be easily varied in a computer
program that calculates the change of the reêection and
transmission properties of a layered structure.

However, in order to énd the regions of parameters
where new properties of these structures appear (in order to
identify the class of real materials for the layers where these
properties exist) and in order to understand physical
processes occurring in them, it is still reasonable to use
analytical methods. For example, some new possibilities for
using the layered structures as ideal reêecting mirrors for all
polarisations of incident electromagnetic waves, were ob-
tained in principle in a quite recent, but already well-known
article [2], from a more thorough analytical examination of
the classical problem about the localisation of forbidden and
allowed regions of frequencies in a two-layered periodic
structure. Originally, this problem was considered as far

back as [3]. In previous articles [4, 5], also using an analyti-
cal approach rather than numerical, we obtained some new
results about the electromagnetic wave propagation in énite
layered periodic structures for the case of normal incidence.
In particular, it was shown the possibility of using these
structures as an operating medium for light shutters [5].

As for methods which are applicable to an arbitrary
layered (not necessary periodic) structure, usually one of
many modiécations of the so-called transfer matrix method
which was initially proposed by Abeles for optic [6] and by
Thomson and Haskell for acoustic waves [7, 8] is used. A
detailed and modern analysis of matrix approaches was
done in a review [9]. Some recursive methods are also widely
used, the essence of which are to relate some physical para-
meters in successive layers. For example, it was shown in
papers [10, 11] that recursive expressions relate the reêection
coefécients in ( j� 1) and j layers for the case of normal
wave propagation. Using these recursive relations the neces-
sary number of times, the reêection and transmission coefé-
cients of a total layered structure are easily obtained.

The basic idea of matrix and recursive approaches is to
derive the system of algebraic equations for the amplitudes
of reêected and transmitted waves, using boundary con-
ditions, that means, in the case of electromagnetic waves, the
continuity of electric and magnetic éelds across the inter-
faces, i.e. at the points of discontinuity of the refractive
index.

The characteristic feature of both matrix and recursive
methods is that they become essentially numerical if the
number of layers in a stack is more than éve (including the
semi-inénite media on either side of the layered structure
itself). This due to the fact that although analytical exp-
ressions for the reêection and transmission coefécients can
be obtained in principle, they become so cumbersome that
their use makes no practical sense. As a result, the matrix
and recursive methods employ directly the numerical values
of the layer parameters and wavelength of the wave incident
on the stack.

The goal of the present paper is to develop an approx-
imate analytical method for the calculation of the reêection
coefécient for an electromagnetic wave incident at an arbi-
trary angle upon a layered structure (not necessary periodic)
with an arbitrary number of layers. The basic idea of the
suggested method is to represent the wave reêected (trans-
mitted) from a total stack as a sum of waves multiply
reêected from the interfaces between individual layers. For a
single layer that is placed between two semi-inénite media
the method is a well-known one. It is called the multiple
reêection method. The application of this method to an elec-
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tromagnetic wave normally incident upon the layer can be
found in Ref. [1] and the application to the propagation of
electrons in one-dimensional potential barriers can be found
in Ref. [12].

It was already noted that the multiple reêection formal-
ism developed in this paper for electromagnetic waves
includes the case of oblique incidence as well. Therefore,
two possible polarisations of an incident wave, that are so-
called TE and TM modes, are considered. Moreover, the
expressions obtained for the reêection coefécients can be
used for both wave polarisations. Besides, we suppose that
the structure can have physical absorption or ampliécation,
i.e. the dielectric permittivity of each layer is complex in
general.

2. Properties of Electromagnetic Waves in
Layered Complex Dielectric Media

The geometry of the problem at hand is shown in Fig. 1. A
layered dielectric structure of length L is surrounded by two
semi-inénite media with a real dielectric permittivity e0 and
with a complex dielectric permittivity ef. Such a structure
can be represented as m plane homogeneous layers with
complex dielectric permittivities ej and thicknesses dj �
zj ÿ zjÿ1, where j � 1, 2, . . . ,m, z0 � 0, zm � L, d0 � 0:

e�z� �

e0; z < 0;
e1; 0 < z < z1;
: : : , . . . ,
em; zmÿ1 < z < zm;
ef; z > L :

8>>><>>>: (1)

We remind the reader that the complex dielectric
permittivity means the presence of a real physical absorption
in the medium. We suppose that, in each layer m � 1, i.e.
B � H. Let a plane monochromatic wave with angular
frequency o and wave number in vacuum k is obliquely
incident on a layered structure from the medium e0 under an
arbitrary angle y0 to the interface normal.

According to the Maxwell equations, the coordinates
x, y can be selected so that the electromagnetic éeld inside
the dielectric structure (1) depends only on one of them, for
example, on the coordinate x. This means that plane mono-
chromatic waves propagating in this structure can have two
independent polarisations. In the érst case the éeld E is per-
pendicular to the plane of propagation xz, i.e. it is directed
along the y axis, and the magnetic éeld H lies in this plane
(the case of TE waves). In the second case the electric éeld E
lies in the plane xz, and the éeld H is directed along the y
axis (the case of TM waves). However, there are some
general rules for both kinds of waves that follow from the
Maxwell equations. For example, in each layer ej the disper-
sion relation between the wave vector kj, which is complex

in general, and the wave frequency o have the form,

k 2
j �

o 2

c 2
ej ,

or in the more detailed notation

k 0 2j ÿ k 00 2j � 2i k 0j k
00
j �

o 2

c 2
�e 0j � ie 00j �, (2)

where k 0j and k 00j are real vectors with directions perpen-
dicular to equiphase and equiamplitude planes respectively
in a wave; e 0j and e 00j are the real and imaginary parts of the
dielectric permittivity ej . Then, due to the uniformity of the
problem in the plane xy, for each layer the relation

k0x � kjx ; j � 1; 2; . . . ;m , (3)

is valid, where k0 is the wave vector of the incident wave in
the medium e0. The relation between the electric and
magnetic éelds of a plane monochromatic wave, propagat-
ing in a nonmagnetic medium, has the form, see for
example [13],

Hj �
c

o
kj � Ej ; Ej � ÿ

c

oej
kj �Hj , (4)

where all three vectors are complex. Note that the relations
(2) ë (4) are obviously valid for semi-inénite media e0, ef as
well.

One can see from the relation (2), that even for a
transparent medium e0 (e 000 � 0) k0 can be complex if
k 00 ? k 000. However, such a situation occurs only in the
case of a total internal reêection, i.e., it is logical to consider
the wave vector of the incident wave k0 as a real vector by
deénition. Then its modulus and projections on the x- and y
axis are determined by the formulas

k0 �
o
c
e 1=20 ; k0x �

o
c
e 1=20 sin y0; k0z �

o
c
e 1=20 cos y0 , (5)

where y0 is the angle between the wave vector k0 of the
incident wave and the z axis. The relation (3) means that
the x components of the wave vectors are real in any layer
ej and in the medium ef as well. As a result, k 00j is directed
along the z axis in any layer, i.e. absorption in any layer
occurs perpendicular to its interfaces. Therefore, the angle
yj between vectors k 0j and k 00j in any layer j is the angle
between the vector k 0j of a refracted (reêected) wave and the
z axis, i.e. the ordinary angle of the refraction (reêection).
We emphasise that such an angle yj is always real. In the
case of the total internal reêection at the interface between
any two layers it equals p=2 in the second layer. We should
note that for the description of total internal reêection and
for the description of absorptive media it is sometimes rea-
sonable to use complex angles of reêection and refraction
[14].

From expressions (2), (3), and (5), we can easily obtain
the expressions for the projections of a complex vector kj on
the x and z axis

kjx �
o
c
e 1=20 sin y0,

(6)

kjz � �
o
c

�ÿ
e 0j � ie 00j

�ÿ e0 sin
2 y0
�1=2

,

0 z1 z2 z3 zmÿ1 zm z

e0
e1

e2

e3 em

ef
e

Figure 1. Layered dielectric structure.
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where the sign ä+ã corresponds to the wave propagating
under an acute angle (the direction of a vector k 0j ) with the
z axis. It was already noted that the projection kjx is always
real and does not depend on the layer number j. As for the
projection kjz, it is complex. Therefore, its expression in (6)
is a bit formal as it does not show explicitly the real and
imaginary parts. Moreover, in order to pick out these parts
we need to énd the vectors k 0j and k 00j themselves, and the
angle yj between them as well, a very cumbersome problem
[15].

According to the Maxwell equations the electromagnetic
éelds of TE and TM waves in each layer ej ( j �1, 2; . . . , m)
can be expressed as

ETE
jy �x; z; t� � fAj exp�ikjz�zÿ zjÿ1��

�Bj exp�ÿikjz�zÿ zjÿ1��g exp�i�kjxxÿ ot��,

HTE
jx �x; z; t� � ÿ

kjz
k
fAj exp�ikjz�zÿ zjÿ1��

(7)

ÿBj exp�ÿikjz�zÿ zjÿ1��g exp�i�kjxxÿ ot��,

HTE
jz �x; z; t� �

kjx
k
fAj exp�ikjz�zÿ zjÿ1��

�Bj exp�ÿikjz�zÿ zjÿ1��g exp�i�kjxxÿ ot��
and

HTM
jy �x; z; t� � fAj exp�ikjz�zÿ zjÿ1��

�Bj exp�ÿikjz�zÿ zjÿ1��g exp�i�kjxxÿ ot��,

ETM
jx �x; z; t� �

kjz
kej
fAj exp�ikjz�zÿ zjÿ1��

(8)

ÿBj exp�ÿikjz�zÿ zjÿ1��g exp�i�kjxxÿ ot��,

ETM
jz �x; z; t� � ÿ

kjx
kej
fAj exp�ikjz�zÿ zjÿ1��

�Bj exp�ÿikjz�zÿ zjÿ1��g exp�i�kjxxÿ ot��.

For semi-inénite media e0 and ef, expressions (7) and (8)
remain valid if we suppose that zÿ1 � 0 and instead of
index f , use m� 1. In addition, as the initial incoming wave
goes from medium e0, we have Bf � 0. After that, without
loss of generality we can put A0 � 1. Then, the reêection
and transmission coefécients R and T are written as R � B0
and T � Af.

Let us introduce the Fresnel reêection and transmission
coefécients for a single inhomogeneous plane wave at the
interface between arbitrary layers ej and ej�1. Let us consider
érst the TE wave. The electric éeld of this wave in layers ej
and ej�1 takes the form

ETE
jy �x; z; t� � faj exp�ikjz�zÿ zjÿ1��

� bj exp�ÿikjz�zÿ zjÿ1��g exp�i�kjxxÿ ot��,
(9)

ETE
j�1; y�x; z; t� � faj�1 exp�ikj�1;z�zÿ zj�� exp�i�kjxxÿ ot��.

The magnetic éeld of the wave in layers ej and ej�1 can be
expressed from (9) using the Maxwell equations. Then, the
expressions for the Fresnel reêection and transmission
coefécients immediately follow from the boundary condi-
tions:

rTEj; j�1 �
E ÿj �zj ÿ 0�
E �j �zj ÿ 0� �

bj exp�ÿikjzdj�
aj exp�ikjzdj�

� kjz ÿ kj�1; z
kjz � kj�1; z

, (10)

tTEj; j�1 �
E �j�1�zj � 0�
E �j �zj ÿ 0� �

aj�1

aj exp�ikjzdj�
� 2kjz

kjz � kj�1; z
. (11)

For the TM wave the expressions (9) are valid for the
magnetic éelds ej and ej�1 in layers Hjy and Hj�1;y if we
change E for H. The electric éelds can be obtained from
these expressions using the Maxwell equations. Then, the
Fresnel coefécients for the TM wave take the form

rTMj; j�1 �
H ÿ

j �zj ÿ 0�
H �

j �zj ÿ 0� �
bj exp�ÿikjzdj�
aj exp�ikjzdj�

� ej�1kjz ÿ ejkj�1; z
ej�1kjz � ejkj�1; z

, (12)

tTMj; j�1 �
H �

j�1�zj � 0�
H �

j �zj ÿ 0� �
aj�1

aj exp�ikjzdj�
� 2ej�1kjz

ej�1kjz � ejkj�1; z
. (13)

After that, all the theory we have developed is equally
applied to both polarisations if, for the Fresnel coefécients,
we use the corresponding formula either from (10), (12) or
from (11), (13).

For example, the so-called Stokes relations have the
same form for both TE and TM waves

rj; j�1 � ÿrj�1; j; r 2j; j�1 � tj; j�1tj�1; j � 1. (14)

Now, let us derive the reêection coefécients R for TE
and TM waves incident on the stack (1) using the multiple
reêection method. The case of an arbitrary polarisation of
an incident wave can be then considered with the aid of its
decomposition into TE and TM modes.

3. Exact calculation of the reêection coefécient
for one layer

The application of the multiple reêection method to a single
layer is well-known in the literature. It is usually given as
the theory of the Fabry ë Perot interferometer. Let us brieêy
describe the method for this case.

We can represent the wave reêected from a stack of
layers (the semi-inénite media e0 and ef, and the layer e1) as
a superposition of waves: a) the wave reêecting from the
interface e0=e1; b) the wave transmitting through the inter-
face e0=e1, then passing through the layer, reêecting from the
interface e1=ef, passing through the layer again, and leaving
the layer through the interface e0=e1; c) the wave penetrating
in the layer, reêecting from the interface e1=ef twice and
reêecting from the interface e0=e1 ones, passing the layer
forward and back twice, and leaving the layer through the
interface e0=e1, etc (see Fig. 2). Summing the contribution of
all these partial waves to the total reêection coefécient R1,
we obtain

R1 � r01 � t01 exp�ik1zd1�r1f exp�ik1zd1�t10 � t01 exp�ik1zd1�
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� r1f exp�ik1zd1�r10 exp�ik1zd1�r1f exp�ik1zd1�t10 � . . . .

Beginning with the second term, we have an inénite
geometric series. Summing it up and taking into account
(14), we obtain

R1 � r01 �
t01t10r1f exp�2ik1zd1�
1� r01r1f exp�2ik1zd1�

� r01 � r1f exp�2ik1zd1�
1� r01r1f exp�2ik1zd1�

, (15)

where the Fresnel reêection and transmission coefécients
for TE and TM waves are given by formulas (10) ë (13).

Unfortunately, already for two layers the picture of
partial reêected and transmitted waves is getting so com-
plicated (Fig. 3), that there is no direct and exact method to
sum all partial waves contributing to the total reêection
coefécient R2.

4. Recursive calculation of the reêection
coefécient for a multilayered structure

Let r1 be the total reêection coefécient from the interface
e1=e2 between the érst layer and the remaining stack of

mÿ 1 layers plus the medium ef. As a result, repeating the
calculation of the previous section for one layer, we obtain

Rm � r01 �
t01t10r1 exp�2ik1zd1�
1� r01r1 exp�2ik1zd1�

. (16)

Then, representing the wave reêected from the interface
e1=e2 as a sum of partial waves reêected from the interface
e2=e3, we obtain

r1 � r12 �
t12t21r2 exp�2ik2zd2�
1� r12r2 exp�2ik2zd2�

, (17)

where r2 is the total reêection coefécient from the interface
e2=e3 between the second layer and the remaining stack of
mÿ 2 layers plus the medium ef. For an arbitrary interface
ej=ej�1, we obtain

rj � rj; j�1 �
tj; j�1tj�1; j rj�1 exp�2ikj�1; zdj�
1� rj; j�1 rj�1 exp�2ikj�1; zdj�

, (18)

where rj�1 is the total reêection coefécient from the
interface ej�1=ej�2 between the j � 1 layer and the remaining
stack of mÿ j ÿ 1 layers plus the medium ef. For the last
interface, i.e. for the interface em=ef, j � m and rm � rmf,
where rmf is the Fresnel reêection coefécient at the interface
between the last layer and the medium ef.

Thus, the problem of the reêection of the TE or TM
wave from a stack of an arbitrary number of plane layers
can be solved using recursively the formula (18) m times and
taking into account rm � rmf. The procedure gives us the
exact analytical results. Taking into account Stokes rela-
tions, we obtain, for example, the reêection coefécient for
two layers (m � 2) in the form

R2 �
r01 � r12 exp�2ik1zd1� � r2f exp�2ik1zd1� exp�2ik2zd2�

1� r01r12 exp�2ik1zd1� � r12r2f exp�2ik2zd2�
!

! � r01r12r2f exp�2ik2zd2�
� r01r2f exp�2ik1zd1� exp�2ik2zd2�

. (19)

For a stack consisting of more layers the énal results are
exact but too cumbersome. For example, already for three
layers (m � 3) the reêection coefécient R3 takes the form

R3 �
r01 � r12 exp�2ik1zd1� � r23 exp�2i�k1zd1 � k2zd2��

1� r01r12 exp�2ik1zd1� � r12r23 exp�2ik2zd2�
!

! � r3f exp�2i�k1zd1 � k2zd2 � k3zd3�� � r01r12r23 exp�2ik2zd2�
� r23r3f exp�2ik3zd3� � r12r3f exp�2i�k2zd2 � k3zd3��

!

! �r01r23r3f exp�2ik3zd3� � r01r12r3f exp�2i�k2zd2 � k3zd3��
� r01r23 exp�2i�k1zd1 � k2zd2�� � r01r3f exp�2i�k1zd1

!

! � r12r23r3f exp�2i�k1zd1 � k3zd3��
� k2zd2 � k3zd3�� � r01r12r23r3f exp�2i�k1zd1 � k3zd3��

. (20)

As a result, it is reasonable to use the algorithm (18)
directly in a numerical form for given parameters (dielectric
permittivities and thicknesses) of layers. However, as we
will see in the next section, the multiple reêection method
still allows us to obtain analytical results, which are appro-

y0 0 z1 z

y1

yf

y1

r01
t01

t01r1f

t01t1f

r01r1ft10

t01r1fr10

t01r1fr10r1f
t01r1fr10t1f

t01r1fr10r1ft10
t01r1fr10r1fr10

t01r1fr10r1fr10t10

t01r1fr10r1fr10r1f

t01r1fr10r1fr10t1f

e0 e1 ef

Figure 2. Application of a multiple reêection method to one layer.

y0
y1

y2

yf

y1

0 z1 z2 z

r01 t01

t01r12 t01t12

t01r12t10 t01r12r10 t01t12r2f t01t12t1f

t01r12r10r12
�t01t12r2ft21

e0 e1 e2 ef

Figure 3. Application of a multiple reêection method to two layers.
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ximate but in good agreement with the exact ones for
realistic optic materials, in physically intelligible and rela-
tively simple form.

5. Approximate calculation
of the reêection coefécient

The core physical idea of the suggested scheme is that the
waves having the least number of reêections inside the stack
contribute more to the total reêection coefécient. This
follows from the fact that the Fresnel coefécients at any
interface satisfy the condition jrj; j�1j < 1. It is obvious that
any partial wave has odd number of reêections inside the
stack. Therefore, in the érst approximation we should take
into account only terms which are proportional to rj; j�1,
where j � 0, 1, 2, . . . ,m, and m� 1 � f. In the second
approximation we should also take into account terms
which are proportional to rj; j�1rp; p�1rq; q�1 etc. As a result,
only partial waves having a single reêection in the stack
contribute to the érst approximation, partial waves having
one and three reêections in the stack contribute to the
second approximation etc.

Let us illustrate the aforementioned method by concrete
examples. Consider again the case of a single layer in the
stack m � 1. The reêection coefécient in the érst approx-
imation takes into account the contribution of the wave
reêected from the interface e0=e1 and the contribution of the
wave penetrating the interface e0=e1, passing through the
layer, reêecting from the interface e1=ef, passing through the
layer again and leaving through the interface e0=e1. Then,

R1 � r01 � t01 exp�ik1zd1�r1f exp�ik1zd1�t10

� r01 �
ÿ
1ÿ r 201

�
r1f exp�2ik1zd1� � r01 � r1f exp�2ik1zd1�,

where we neglect the term ÿr 201r1f exp (2ik1zd1), which is the
contribution to the second approximation. As a result the
reêection coefécient from one layer in the érst approx-
imation of the multiple reêection theory is

R
�1�
1 � r01 � r1f exp�2ik1zd1�. (21)

In the second approximation there is also a contribution
from the wave passing the layer twice and leaving it after
two reêections at the interface e1=ef and one reêection at the
interface e1=e0. Taking into account this wave, we have

R1 � r01 � t01 exp�ik1zd1�r1f exp�ik1zd1�t10 � t01 exp�ik1zd1�

� r1f exp�ik1zd1�r10 exp�ik1zd1�r1f exp�ik1zd1�t10

� r01 �
ÿ
1ÿ r 201

�
r1f exp�2ik1zd1� �

ÿ
1ÿ r 201

�
r10r

2
1f

� exp�4ik1zd1� � r01 � r1f exp�2ik1zd1�

ÿr 201r1f exp�2ik1zd1� ÿ r01r
2
1f exp�4ik1zd1�,

where we neglect the term r 301r
2
1f exp (4ik1zd1), which is the

contribution to the third approximation. Therefore, the
reêection coefécient from one layer in the second approx-
imation of the multiple reêection theory is

R
�2�
1 � r01 � r1f exp�2ik1zd1� ÿ r 201r1f exp�2ik1zd1�

ÿ�r1f exp�2ik1zd1��2r01. (22)

The comparison of the results for the reêection coefécient
from one layer in the érst and second approximation with
the exact formula (15) is shown in Fig. 4.

As an example, we consider the dependence of the
reêection coefécient on the wavelength of incident light
in the optical range for the case of normal incidence in the
absence of absorption. In this case, the Fresnel reêection
and transmission coefécients (10) ë (13) are real and iden-
tical for both TE and TM waves:

rj; j�1 �
nj ÿ nj�1
nj � nj�1

; tj; j�1 �
2nj

nj � nj�1
; nj � e 1=2j . (23)

The following selection of refractive indexes n0 ' 1 (air),
n1 ' 2:4 (chalcogenide glass [16]), and nf ' 3:6 (GaAs)
realises a rather extreme situation among realistic cases
from the point of view of the suggested method (the typical
range of the refractive indexes of optic materials is
1 < nj < 4). The reason for this is the relatively big dif-
ference in the refractive indexes of these materials that
results to the respectively high r01 and r1f (jr01j ' 0:41,
jr1fj ' 0:2), according to formulas (23). If, for example
n1 � 1:3 (êuorinated ethylene propylene) and nf � 1:5
(silicon oxide), then jr01j ' 0:13, jr1fj ' 0:07, and the higher
order terms contribute much less to the total reêection
coefécient R1.

Consider now the case of two layers (m � 2). The
reêection coefécient in the érst approximation takes into
account the contribution of partial waves which have a
single internal reêection, i.e. (a) the contribution of the wave
reêected from interface e0=e1, its contribution is r01; (b) the
contribution of the wave penetrating interface e0=e1, passing
through layer e1, reêecting from interface e1=e2, passing
through layer e1 again, and leaving the stack through
interface e1=e0; its contribution to the total reêection coefé-

0.58 0.60 0.62 0.64 0.66
R
eê
ec
ti
o
n
co
ef
é
ci
en
t

Wavelength
�
mm

n1 � 2:4

d1 � 2:5 mm
n0 � 1:0

nf � 3:6

0.05

0.01

0.15

0.20

0.25

0.30

0.35

Figure 4. Dependence of the reêection coefécient on the wavelength of
an incident wave for a stack consisting of a single layer; solid line ë érst
approximation, dashed line ë second approximation, grey line ë exact
result.
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cient is t01 exp (ik1zd1)r12 exp (ik1zd1)t10, and its contribution
to the reêection coefécient in the érst approximation is
r12 exp (2ik1zd1); (c) the contribution of the wave penetrating
interface e0=e1, passing through layer e1 and interface e1=e2,
passing through layer e2, reêecting from interface e2=ef,
passing layer e2, interface e2=e1, layer e1, and énally leaving
the stack through interface e1=e0; its contribution to the
total reêection coefécient is t01 exp (ik1zd1)t12 exp (ik2zd2)�
r2f exp (ik2zd2)t21 exp (ik1zd1)t10, and its contribution to the
reêection coefécient in the érst approximation is r2f�
exp (2ik1zd1) exp (2ik2zd2). As a result,

R
�1�
2 � r01 � r12 exp�2ik1zd1�

� r2f exp�2ik1zd1� exp�2ik2zd2� . (24)

Notice that the wave (b) contributes also term ÿr 201r12�
exp (2ik1zd1) to the second approximation, and the wave c)
contributes term ÿr 201r2f exp (2ik1zd1) exp (2ik2zd2)ÿ r 212r2f�
exp (2ik1zd1) exp (2ik2zd2) to the second approximation and
term r 201r

2
12r2f exp (2ik1zd1) exp (2ik2zd2) to the third approx-

imation, respectively. In the second approximation we
should also take into account the contributions from the
partial waves which have three internal reêections inside the
stack of two layers (there are éve such waves). As a result,

R
�2�
2 � r01 � r12 exp�2ik1zd1� � r2f exp�2ik1zd1� exp�2ik2zd2�

ÿ r 201r12 exp�2ik1zd1� ÿ r 201r2f exp�2ik1zd1� exp�2ik2zd2�

ÿ r 212r2f exp�2ik1zd1� exp�2ik2zd2� ÿ �r12 exp�2ik1zd1�

� r2f exp�2ik1zd1� exp�2ik2zd2��2r01 ÿ �r2f exp�2ik2zd2��2

� r12 exp�2ik1zd1�. (25)

The comparison of the results for the reêection coefé-
cient from the stack of two layers in the érst and second
approximation with the exact formula (19) is shown in
Fig. 5 for the case of normal incidence of an optic wave.
Again, we used the typical values of the refractive indexes of
optic materials: n0 ' 1:0 (air), n1 ' 2:4 (chalcogenide glass),
n2 ' 1:5 (silicon oxide) and nf ' 3:6 (GaAs). Such a
selection of materials is again testing an unfavourable
situation with the point of view of the suggested method,
as the difference in refractive indexes of these materials are
high enough. However, as we can see in Fig. 5, the second
approximation is already in good agreement with the exact
result (19).

In the case of an arbitrary number of layers m, summing
up all corresponding partial waves we obtain in the érst
approximation of the suggested multiple reêection method

R �1�m �
Xm
j�0

�
rj; j�1

Yj
t�0

exp�2iktzdt�
�
, (26)

and in the second approximation

R �2�m �
Xm
j�0

�
rj; j�1

Yj
t�0

exp�2iktzdt�
�
ÿ
Xm
j�1

��Xjÿ1

p�0

r 2
p; p�1

�

� rj; j�1
Yj
t�0

exp�2iktzdt�
�
ÿ
Xmÿ1
j�0

�� Xm
p�j�1

rp; p�1

�
Yp
t�1

exp�2iktzdt�
�2

rj; j�1

Yj
t�0

exp�2iktzdt�
�
. (27)

We remind the reader that in the above formulas d0 � 0.
For the case of normal incidence of an electromagnetic wave
from vacuum on a stack of m � 5 layers with arbitrary
selected refractive indexes in the range 1:5 < nj < 3, Fig. 6
illustrates the comparison between the exact reêection
coefécient that was obtained from the numerical recursive
use of algorithm (18) and the approximate reêection
coefécients that were obtained from the analytical formulas
(26) and (27). The widths of layers are within few microns.

0.58 0.60 0.62 0.64 0.66
Wavelength

�
mm

R
eê
ec
ti
o
n
co
ef
é
ci
en
t

n1 � 2:4

d1 � 2:5 mm
n2 � 1:5

d2 � 2:0 mm
n0 � 1:0

nf � 3:6

0

0.2

0.4

0.6

0.8

Figure 5. Dependence of the reêection coefécient on the wavelength of
an incident wave for a stack consisting of two layers; solid line ë érst
approximation, dashed line - second approximation, grey line ë exact
result.
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Figure 6. Dependence of the reêection coefécient on the wavelength of
an incident wave for a stack consisting of éve layers; solid line - érst
approximation, dashed line ë second approximation, grey line ë exact
result.
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The above examples show good agreement between the
exact results and the second approximation of the multiple
reêection method for the case of normal incidence of an
optic wave on a layered system. Very often there is satis-
factory agreement even with the érst approximation. How-
ever, if an incoming wave impinges on a layered system with
a big difference in the refractive indexes between neighbour-
ing layers, the érst and second approximations fail in
the region of wavelengths where the reêection coefécient
reaches a maximum, and higher order approximations are
needed. The exact criteria requiring the use of higher order
approximations will be given in our future publication,
including the case of oblique incidence as well.

Note that homogeneous absorption in a stack only
improves agreement between the approximate analytical
and exact numerical results because the appearance of
complex parts in wave vectors kj decreases higher order
terms additionally. If absorption in a stack sharply varies
from layer to layer, however, the modiécation of the sug-
gested multiple reêection method is needed. This will be also
considered in our future publication.
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