
Abstract. It is shown that the delay time of a weak signal
propagating in an amplifying medium on the wings of the
spectral ampliécation line may be shorter than the time of
propagation of the signal with the velocity of light in vacuum.
It is found that in this case, the time dependence of the signal
is exactly `reconstructed' at the point of detection, and the de-
tection of the signal continues even if it is abruptly terminated
at the point of transmission. It is also shown that using the
complex time of group delay of the signal, it is possible to
improve the accuracy of the results in the érst order of dis-
persion theory within this approximation.

Keywords: velocity of light, velocity of signal, complex group velo-
city.

It is well known (see, for example, Secs. 83, 84 in Ref. [1],
Sec. 2.6 in Ref. [2], Sec. 16.5 in Ref. [3], Ch. 8 in Ref. [4],
and Sec. 8 in Ref. [5]) that a wave packet with a smoothly
varying envelope (i.e., with a suféciently narrow frequency
spectrum) propagates in a dispersion medium without ab-
sorption with the so-called group velocity

vgr �
�
dk

do

�ÿ1
, (1)

where o is the wave frequency and k(o) is its wave number.
In the transparency region of a medium in thermody-

namic equilibrium, the group velocity of an electromagnetic
wave is always smaller than the velocity of light and
coincides with the propagation velocity of the wave energy
[1] and the velocity of the complex envelope of the narrow-
band signal as a whole in the érst order of the classical
theory of dispersion (in both space and time coordinates).

In the case of thermodynamically nonequilibrium media
or absorbing media, it is usually assumed (see, for example,
Refs [1, 3, 5]) that it is impossible to introduce the concept
of group velocity. This point of view is supported by the fact
that the group velocity deéned by the conventional relation
(1) in nonconservative media is no longer equal to the rate
of the wave-energy transfer; in addition, this velocity turns

out to be a complex quantity and often higher than the
velocity of light, which casts a doubt on the authenticity of
the results predicted by expression (1).

This work aims at analysing the peculiarities in the
propagation of a signal (wave packet) just in the case when
the group velocity of light deéned by expression (1) is
complex valued and exceeds the velocity of light.

Note érst of all that neither of the above circumstances
can be regarded as an evidence of inapplicability of the
concept of group velocity as the velocity of the complex
envelope of the signal. Indeed, the propagation of the
maximum of the wave packet faster than light in a non-
linearly amplifying medium has been investigated both
theoretically and experimentally in a series of publications
(see Refs [6, 7] and the literature therein). The propagation
of a wave packet in a nonlinear medium with the gain
saturation at a velocity faster than light was observed due to
a predominant ampliécation of the leading edge of the
signal as compared to its trailing edge.

The propagation of the maximum of a wave packet with
supraluminal velocity obviously does not contradict to the
postulate of the special theory of relativity concerning the
limiting nature of the velocity of light in vacuum for the
signal propagation because this postulate refers by no means
to the propagation velocity of an arbitrary `determinate'
wave whose time dependence can be reconstructed com-
pletely from any its fragment, but only to the propagation
velocity of the signal capable of carrying information i.e., to
the propagation velocity of discontinuities in the signal or its
envelope (or the corresponding derivatives of any order)1.
The propagation velocity of these discontinuities is deter-
mined by the refractive index of the medium for an inénitely
large frequency of the wave (see, for example, Ref. [1]) and
is equal to the velocity of light in vacuum. Strictly speaking,
this means that the information transfer with the help of
electromagnetic waves in any medium occurs precisely with
the velocity of light in vacuum and has nothing to do with
the group velocity of the wave (irrespective of whether the
group velocity is higher or lower than the velocity of light in
vacuum).

Note that the application of the complex group velocity
(and the complex delay time) of signals whose envelope is an
analytic function2 (which can be continued analytically to
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2Generally speaking, the term `group velocity' can be applied only to
such signals because discontinuities always propagate at the velocity of
light in vacuum (see, for example, Ref. [3]) rather than with the group
velocity.



the complex plane) is quite natural and does not lead to any
(even apparent) contradictions to known facts. The use of
the complex group velocity for describing the propagation
of pulses in an amplifying medium is discussed in Refs [8, 9]
A similar approach in the 3D problem was applied, for
example, in Ref. [10].

To illustrate the above considerations, we consider the
propagation of a signal E(z; t) with the carrier frequency o1

and the complex envelope A(z; t) [1 ë 5] in a homogeneous
isotropic medium along the z-axis. Let the signal frequency
o1 be close to the frequency o0 of one of spectral lines of the
medium. Assuming that the signal is narrow-band (the
spectral width of the signal is smaller than the carrier
frequency o1), we can write the following obvious relations:

E�z; t� � A�z; t� exp�ÿio1t� � A��z; t� exp�io1t�,
(2)

A�z;DO� � E�z;o�,

where

o � o1 � DO, o1 � o0 � O0;

E�z; t� �
� �1
ÿ1

E�z;o� exp�ÿiot�do,

E�z;o� � �2p�ÿ1
� �1
ÿ1

E�z; t� exp�iot�dt

are the high-frequency signal and its spectrum;

A�z; t� �
� �1
ÿ1

A�z;DO� exp�ÿiDOt�dDO,

A�z;DO� � �2p�ÿ1
� �1
ÿ1

A�z; t� exp�iDOt�dt

are the low-frequency complex envelope of the signal and
its spectrum; O0 is the shift of the carrier frequency of the
signal relative to the centre of the spectral line.

For deéniteness, we will consider the propagation of
light in a medium with the refractive index n(o) � n0�
Dn(o), where n0 is the background (nonresonant) refractive
index of the medium, which weakly depends on the
frequency of light near o0 and Dn(o) is a complex correction
to n0 due to the spectral ampliécation line with the central
frequency o0. In this case, for the complex transfer function
of a layer of substance of thickness z, we have

F�z;o� � exp�ikn�o�z�, (3)

where k � o=c.
By introducing the amplitude gain at the centre of the

spectral line of frequency o0

a0 � ik0Dn�o0�, k0 �
o0

c
(4)

and the complex form factor of the line normalised to unity
at the centre of the spectral line of frequency o0

g�O� � ikaÿ10 Dn�o0 � O� (5)

(O � oÿ o0 is the detuning of the wave frequency from the
central frequency of the spectral line), we can easily write
the transfer function of the layer in the form

F�z;o� � exp�ikn0z� exp�xg�O��, (6)

where x � a0z is the optical thickness of the layer. We do
not consider here the reêection of the signal from the layer
boundaries, assuming that the layer is suféciently thick so
that boundary effects can be neglected. We can also assume
that inversion is inhomogeneous in space; i.e., the gain a0(z)
gradually changes along the z-axis. In this case, the
reêection is exponentially small (see, for example, Sec. 52
in Ref. [11] and Sec. 12.3 in Ref. [4]) and it is sufécient to
replace x � a0z by x � � z0 a0(z)dz in our analysis without
changing the remaining formulas.

In the cross section z, we have the following relation for
the complex envelope of the signal:

A�z; t� �
� �1
ÿ1

A �0��DO�F�z;o� exp�ÿiDOt�dDO, (7)

where A �0�(t) � A(0; t) is the complex envelope of the signal
at the initial point z � 0. Assuming that the signal spectrum
is concentrated in the vicinity of the carrier frequency o1
and restricting the analysis to the linear terms in Taylor
series expansion of the expression in the second exponential
in relation (6) (i.e., restricting the analysis to the érst order
in the classical theory of dispersion [5]), we can easily
obtain the following expression instead of (7):

A�z; t� � exp�ik1z� xg�O0��A �0��tÿ t�z��, (8)

where k1 � k0n(o1) and the complex delay time t is deéned
as

t�z� � t0 � tr � iti, t0 �
z

vph
, vph �

c

n0
,

(9)

tr � x
qIm g�O0�

qO0

, ti � ÿx
qRe g�O0�

qO0

.

This result differs from the conventionally used version
of the érst order dispersion theory [5] only in that the
imaginary component of the delay time of the wave packet is
now taken into account. The signal delay (as expected in the
linear theory) is independent both of the signal intensity and
the time dependence of the signal amplitude, but depends
considerably on the shift of the carrier frequency of the
signal relative to the centre of the spectral line (in contrast to
the nonlinear situation considered in Refs [6, 7]).

In the case of an arbitrary signal with a smooth enve-
lope, the inclusion of the imaginary component of the delay
time leads to distortion of the time dependence of the signal
intensity even in the érst order of the dispersion theory. An
interesting situation emerges in this case: the complex
envelope of the signal is not distorted in the sense that it
remains the same analytic function (with an additional
complex shift), but the time dependence of the signal in-
tensity may change considerably because the complex conju-
gation operation and, hence, the operation of determining
the modulus of the complex function are not analytic.

Note that using the concept of complex group velocity
(1), we can write formula (9) in the form

On the propagation velocity of a wave packet in an amplifying medium 775



t�z� � z

vgr
,

1

vgr
� qk�o�

qo
� 1

vRe
gr
� i

v Im
gr

,

1

vRe
gr
� Re

1

vgr
� 1

vph
� a0

qIm g�O0�
qO0

, (10)

1

v Im
gr
� Im

1

vgr
� ÿa0

qRe g�O0�
qO0

.

In this work, we shall call the quantity vgr the complex
group velocity. Although this velocity is not the group
velocity in the conventional sense [1 ë 5], it (i) coincides with
the ordinary group velocity in a conservative medium , and
(ii) is the propagation velocity of the complex envelope of
the time dependence of the signal in any medium. In this
connection, it is natural to regard the complex group
velocity as a generalisation of the concept of group velocity
[1 ë 5] to the case of absorbing or amplifying media. It is
natural to refer to quantities vRe

gr and v Im
gr as the real and

imaginary group velocities of the signal3. The imaginary
group velocity (as well as the imaginary component of the
signal delay time, with which it is connected directly)
characterises not the displacement of the signal in the
conventional sense of the word, but the change in the shape
of its complex envelope in the érst order of the classical
theory of dispersion. The real group velocity (and the real
component of the signal delay time, with which it is
connected directly) characterises the velocity of the signal in
space. The `centre of symmetry' of the signal (if it exists)
propagates in space precisely with this velocity.

In this work, we are interested not in the distortion of
the temporal form of the signal in the érst order of
dispersion theory, but in the velocity of its propagation.
For this reason, we shall conéne our subsequent analysis to
the speciéc case of a Gaussian wave packet4

A �0��t� � exp

�
ÿ t 2

T 2

�
with the duration T and the Lorentzian proéle of the
spectral line [12]

g�O� �
�
1ÿ i

2O
DO1=2

�ÿ1
(11)

with the width DO1=2 and the coherence time tc � 2=DO1=2.
It should be emphasised that the permittivity of the medium
satisées the Kramers ëKronig relation and, hence the
supraluminal velocity of information transfer (as well as
the advance response of the medium to the action) are
impossible in principle. Nevertheless, the propagation
velocity of the wave packet envelope becomes higher
than the velocity of light (see below).

For the time dependence of the éeld intensity
I(z; t) � jA(z; t)j2 for various longitudinal coordinates z,
we obtain the following relations from Eqn (8):

I�z; t� � I0�z�IG�z� exp
�
ÿ 2�tÿ Dt�2

T 2

�
,

I0�z� � exp

�
2x

1� x 2
0

�
,

IG�z� � exp

�
8

�
tc
T

�2
x 2x20

ÿ
1� x20

�ÿ4�
, (12)

Dt �Re t�z�� t0 � tr�
z

vRe
gr
� z

vph
� xtc

ÿ
1ÿ x20

�ÿ
1� x20

�ÿ2
,

x0 � tcO0,

where I0(z) is the ordinary factor of the exponential increase
in the intensity of a monochromatic wave with frequency
o1 � o0 � O0 in an amplifying medium; IG(z) is an
additional (relative to the monochromatic wave) factor
describing an increase in the intensity of the Gaussian
packet (this factor emerges as a result of inclusion of the
imaginary component of the delay time of the Gaussian
signal); Dt is the real delay time of the packet; x0 is the
normalised detuning of the carrier frequency of the packet
from the line centre.

One can see that for x20 > 1 (i.e., on the wings of the
spectral line for jO0j > DO1=2), the wave packet propagates
in an amplifying medium at a supraluminal velocity (i.e., the
signal delay time is shorter than the time of its propagation
over distance z with the phase velocity of light5, Dt < z=vph
and the real group velocity is higher than the phase velocity,
i.e., vRe

gr > vph.
To verify the obtained analytic results, we carried out

numerical calculations for the propagation of a wave packet
with the initial duration T � 10tc and with a normalised
shift of the carrier frequency relative to the spectral line
centre x0 � 5. The results of these calculations for x � 0,
300, and 600 are presented in Fig. 1. One can easily see that
the conclusion concerning the supraluminal velocity of
propagation of the packet is conérmed. One can also see
that the inclusion of the imaginary component of the delay
time considerably improves the accuracy of analytic results.
Naturally, the accuracy of the érst order dispersion theory
deteriorates as the distance propagated by the wave packet
increases.

We must énd out whether the obtained results are
applicable to real signals (conéned in time). For this
purpose, we analysed numerically the propagation of a
Gaussian wave packet with a `truncated' leading front for
the same values of parameters T and x:

A �0� � exp

�
ÿ t 2

T 2

�
y�tÿ T1�, (13)

where T1 is the time of the signal onset at point z � 0; y(t)
is the Heaviside function.

3It should be emphasised that vRe
gr 6� Re vgr and v Im

gr 6� Im vgr.
4It will be shown below that the inclusion of the imaginary component
of the delay time for a Gaussian packet does not lead to a distortion
of the time dependence of the intensity during its propagation. This is
a distinguishing feature of the Gaussian packet (Gaussian beam in the
corresponding 3D problem [8]).

5In this case, we assume that the `background' refractive index n0 is
also preserved for an inénitely large frequency (strictly speaking, this is
not correct; see Ref. [1]). In this connection, the role of the velocity of
light in vacuum in our model is played by the phase velocity of light in
a medium with zero dispersion and with the refractive index n0
vph � c=n0. For a rareéed medium (gas), we have vph ' c.
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It was found that the truncation of the leading front of
the signal for T1 � ÿ25T does not change the curves in
Fig. 1 (within the error of graph plotting). However, the
truncation of the leading front of the signal for a (modulo)
smaller value of parameter T1 leads to a distortion of the
signal. The same égure shows, by way of an example, the
results of calculation of the time dependence of the signal
intensity for x � 300 and T1 � ÿ16T (rapidly oscillating
curve). One can see that the shape of the signal considerably
changed compared to the cases with T1 � ÿ25T or T1 �
ÿ1 (`untrancated' signal). The reason behind the oscil-
lations becomes clear if we take into account the fact that we
are dealing with the interference of two components of the
signal with approximately equal energies, but with different
frequencies (with the beat period �2p=jo0 ÿ o1j).

Indeed, the signal gain depends on frequency; therefore,
for a large parameter x (or suféciently small truncation
parameter jT1j), the spectrum of the signal transmitted
through the layer of the medium is concentrated not
near the carrier frequency o1, but at the central frequency
o0 of the spectral ampliécation line. As a result, the érst
order of dispersion theory is inapplicable. Otherwise, the
spectrum of the signal would be concentrated near its carrier
frequency and the application of the érst order of dispersion
theory makes it possible to obtain quantitative results. The
transition from the quantitative applicability to complete
inapplicability of the érst order dispersion theory occurs
very quickly: in the case when x � 300 for T1 � ÿ17T, the
results of calculations coincides within the graphical accu-
racy with the results for an untruncated packet (T1 � ÿ1),
while for T1 � ÿ15T, it is impossible to depict the results of
calculations for a truncated and untruncated packets on the
same scale in the same égure.

One can also see from Fig. 1 that the excess of the
propagation velocity of the signal envelope over the velocity
of light is not necessarily small; for example, for x � 600, the
advance of the signal relative to light is approximately twice
the characteristic duration of the signal. The agreement of
the numerical data with the results of application of the érst
order dispersion theory is quite satisfactory. This is quite

natural if we take into account the suféciently narrow
angular spectrum of the signal in this case.

The results of similar calculations for a shorter signal
with the initial duration T � 5tc and a normalised shift of
the carrier frequency relative to the spectrum of the central
line x0 � 2 for x � 0, 10, and 20 are presented in Figs 2 ë 4.
Fig. 2 shows the results of calculations for the propagation
of a untruncated wave packet. A comparison of Figs 1 and 2
shows that as the signal duration decreases, the range of
application of the érst order of the classical dispersion
theory (with and without taking into account the imaginary
component of the delay time) becomes smaller (which is
quite natural). At the same time, the optical thickness x of
the layer after passage through which the advance of the
signal relative to light becomes comparable with its duration
also decreases considerably.

Fig. 3 shows the results of calculations for the same
wave packet with a truncated leading front for various
values of the truncation parameter x � T1=T and a éxed
optical thickness of the layer x � 10 and 20. One can see
that the truncation of the leading front of the signal (even at
considerable distances from the main peak) may cause
considerable distortion in the time dependence of the signal
intensity. This distortion is manifested primarily in the
emergence of `beats' with the characteristic period
2p=jo0 ÿ o1j and then (see Fig. 3b) in a considerable
increase in the amplitude of the detected signal whose
time dependence in determined by the parameters of the
spectral line and the initial jump in the signal amplitude at
the moment of its actuation rather than by the initial form
of the signal.

Thus, the supraluminal group velocity of a signal can be
realised only for signals with a suféciently `prolonged'
leading front: the signal peak can indeed propagate at a
velocity higher than the velocity of light in vacuum without
a signiécant distortion of the time dependence of the signal
intensity, but only until it starts `lean' against the actual
onset of the signal, i.e., against the initial jump which
propagates at the velocity of light in vacuum (velocity vph in
our model). When the signal attempts to `pass its actual
onset' (actually, long before the passing), it is strongly
distorted. A similar situation was noted in Refs [6, 7] for a
high-power signal.

The situation with the truncated trailing edge of a signal
seems to be more interesting. In this case, it is the limiting
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Figure 1. Time dependences of the intensity of the signal with parameters
T � 10tc and x0 � 5 for different optical thicknesses x of the layer
calculated numerically (solid curves) and by formula (12) with (dashed
curves) and without (dotted curves) taking into account the factor IG(z)
for T1 varying from ÿ1 to ÿ25T (all the curves except the rapidly
oscillating one) as well as for x � 300 and T1 � ÿ16T (rapidly oscillating
curve).
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Figure 2. Time dependences of the intensity of a signal with parameters
T � 5tc and x0 � 2 for various optical thicknesses x of the layer,
obtained under the same conditions as in Fig. 1.
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nature of the velocity of light that leads to the `anticipation'
of the signal. Indeed, in the case of a supraluminal velocity
of propagation of the signal envelope, the information on its
abrupt termination propagates less rapidly than the signal
(at the velocity of light); consequently, it is possible to
receive the rear part of the signal at the point of reception
even if it has not been transmitted at the transmission point.

Fig. 4a presents the results of the corresponding calcu-
lations for the propagation of a signal of duration T � 5tc
with a normalised shift x0 � 2 of the carrier frequency for
x � 0, 10, and 20. The calculations were made for the signal
whose transmission was terminated abruptly at the instant
t � 0 (i.e., only the érst half of the Gaussian signal was
transmitted, after which the amplitude of the signal being
transmitted abruptly dropped to zero). A comparison of
Figs. 4a and Fig. 2 (showing the results of calculations for a
untruncated signal with the same values of parameters)
readily shows that a part of the second half of the Gaussian
curve is successfully received away from the transmission
point even if it was absent at the point of transmission.

The reception of the nonexisting signal continues until
the information on the signal termination reaches (with
velocity vph) the point of reception6. Then the signal
amplitude sharply increases since the signal spectrum

expands considerably (as compared to the `expected' spec-
trum) as a result of truncation of the trailing edge of the
signal, and a considerable part of this signal falls at the
centre of the spectral ampliécation line. This can be seen
clearly in Fig. 4b depicting the time dependence of the
intensity of a signal truncated at t � 0 for the layer thickness
x � 10 and differing from Fig. 4a only in the scale. It can
easily be noted that in the case of an abrupt termination of
the signal transmission, the expansion of the signal spectrum
leads to the propagation of the main part of the signal with a
group velocity smaller than the velocity of light in vacuum
and has approximately Gaussian shape. Nevertheless, the
less intense `leading' part of the signal is not lost against its
background just because it propagates at a supraluminal
velocity and is separated in time from the main part of the
signal.

Note also that for a suféciently high gain a0 of the
signal, not only the propagation of the signal envelope faster
than light (i.e., the propagation of the signal in the medium
at a velocity higher than the velocity of light, Dt < z=vph,
vRe
gr > vph) is possible, but also the emergence of a negative
signal delay, when it becomes negative even when the phase
delay of the signal is taken into account (Dt < 0, vRe

gr < 0).
In this case, away from the transmission point, the peak of
the signal appears earlier than at the transmission point; i.e.,
the signal is received not `earlier than expected', but `earlier
than transmitted'.

Naturally, this circumstance should not be regarded as a
violation of the causality principle (in the same way as the
supraluminal group velocity of propagation of a packet

x � ÿ3

ÿ3:5

a

b

20

0

5

10

15

I�z; t�=I0�z�

0

5

10

15

I�z; t�=I0�z�

x � ÿ2

ÿ2:5
ÿ3
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Figure 3. Distortion of the time dependence of the signal intensity due to
the truncation of the leading front of the signal for the optical thickness
of the layer x � 10 (a) and 20 (b).

6For this reason, Fig. 4a shows, by way of analytic results, the results
of calculations on the basis of formula (12) (derived for a untruncated
signal). Indeed, the jump of a truncated signal propagates at a velocity
vph and, hence, is just `standing' (on the chosen scale), being behind
the signal itself (which makes it possible to `predict' the signal at the
reception point).
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Figure 4. Time dependences of the intensity of a signal with parameters
T � 5tc and x0 � 2, whose transmission is terminated abruptly at the
instant t � 0 for various optical thicknesses x of the layer (a) and for
x � 10 (b).
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cannot be regarded as a violation of the limiting nature of
the velocity of light). In this case, we are speaking of the
prediction of the missing part of a signal from its received
part, which occurs naturally (without human interference).
This circumstance is well illustrated by the above data on
the propagation of a signal with a truncated trailing edge;
i.e., its `reconstruction' at the point of reception is possible
just due to the fact that the information on the rear part of
the signal is contained in the leading part which has already
been received in contrast to the information concerning the
abrupt termination of signal transmission which can affect
the signal being received only after a delay time t0 � z=vph.

In other words, the propagation of a signal at a
supraluminal velocity can be regarded as the transfer of
information about the signal at the velocity of light vph (in
this case, the signal delay time is positive and independent of
the gain factor) followed by the prediction7 of the time
dependence of the complex amplitude of the signal (the
delay time in this case is negative and depends on the signal
ampliécation). The result of such a delay followed by a
prediction can be positive (for a weak ampliécation) or
negative (for a strong ampliécation) and these two versions
do not differ in principle.

In conclusion, we consider the possibilities of exper-
imental observation of the above phenomena. Clearly, the
situation in which the group velocity of the signal in a
medium noticeably exceeds its phase velocity is of main
interest. Using relations (10) and (11), we obtain the
following expression for vRe

gr , the real group velocity8

vRe
gr � vph�1ÿ a2f �x0��ÿ1, vph�

c

n0
,

(14)

a2 � a0vphtc, f �x0� � �x20 ÿ 1��x20 � 1�ÿ2.
The function f (x0) is bounded for x0 � 1 and achieves its
maximum value equal to 1/8 for x0 �

���
3
p

. Consequently,
the effect is essentially described by the dimensionless
parameter a2: for a2 5 1, the group velocity virtually
coincides with the phase velocity, while for a2 � 1 or
a2 4 1, the group velocity differs noticeably from the phase
velocity (is smaller or larger depending on the detuning
x0)9. For a2 > 8, the group velocity may become negative
(in a certain interval of detuning x0)10.

For most of the widely used laser systems, the parameter
a2 is small, but some exceptions are also observed:

(1) low-pressure CO2 laser (for l � 10:6 mm, 2a0 �
4 dB mÿ1, and DvD � 50 MHz, we have a2 � 0:88; for
x0 �

���
3
p

, we have vRe
gr =vph � 1:12)11;

(2) He ëNe laser generating at a wavelength 3.39 mm (for

l � 3:39 mm, 2a0 � 20 dB mÿ1, and DvD � 280 MHz, we
have a2 � 0:79; for x0 �

���
3
p

, we have vRe
gr =vph � 1:11);

(3) YAG laser (for l � 1:06 mm, 2a0 � 20 cmÿ1,
DvD � 6 cmÿ1, and n0 � 1:82, we have a2 � 0:58; for
x0 �

���
3
p

, we have vRe
gr =vph � 1:08).

These estimates show that the problem of `reconstruc-
tion' can in principle also be solved using the standard
systems, while for solving the `prediction' problem, the line
must be narrowed or the gain factor must be increased
approximately by an order of magnitude as compared to the
standard systems. In addition, the above effect will be
manifested in practice if the advance Dt of the signal
over light is at least comparable with the signal duration
T. The duration of the signal is limited from below by the
condition T4 tc (if this condition is violated, the érst order
dispersion theory is inapplicable and we cannot speak of the
velocity of propagation of the signal as a whole). Comparing
this condition with relations (12), we can easily deduce that
the signal advance over light can be comparable with its
duration only in the case of a large optical thickness of the
layer of the substance (x4 1).

This circumstance gives rise to a new diféculty: the gain
for a signal for a large optical thickness is exponentially
large12 and the analysis carried out by us here (disregarding
the saturation of nonlinearity) is inapplicable. By the way,
the gain can be easily reduced to an admissible value by
introducing a (concentrated or distributed) absorption
which is not selective (or weakly selective) relative to
frequency.

Another diféculty lies in the fact that the supraluminal
group velocity in an amplifying medium is realised at the
periphery of the spectral gain line, where the gain is much
smaller than at the line centre. This leads to an exponential
decrease (upon an increase in the optical thickness of the
layer) of the signal-to-noise ratio (if the signal means a
`regular' signal with a carrier frequency at the periphery of
the spectral line and the noise means the `noise' signal with
the frequency close to the centre of the spectral line).

In our opinion, this diféculty is apparent to a consid-
erable extent. Indeed, the regular and noise (in the sense
indicated above) signals propagate with different group
velocities, the regular signal leading the noise. As a result,
the regular and noise signals are separated in time and the
noise distortion of the regular signal is unlikely. In actual
practice, the noise signal in a single-pass laser ë ampliéer
simply removes the population inversion in the active
medium remaining after the passage of a regular signal13.

Moreover, the above peculiarity in the behaviour of a
regular signal with an supraluminal group velocity makes it
possible to overcome the previous diféculty also to a
considerable extent. Indeed, for the applicability of the
linear theory to the propagation of a regular signal at a
supraluminal velocity, it is sufécient to prevent the satu-
ration of ampliécation only for the regular signal whose
gain is noticeably smaller than the gain at the centre of the
spectral line. The saturation of ampliécation relative to the

7We are speaking just of the prediction which may also contain errors
like the reception of the signal which has not been transmitted.
8In order to avoid confusion, we emphasise once again that we apply
the term `group velocity' to the velocity of motion of the temporal
envelope of a signal. This velocity (in a nonconservative medium) is
not the velocity of energy transfer and not even the propagation
velocity of the spatial distribution of the éeld intensity (which differs
from the time dependence of the signal intensity due to the exponential
variation of the éeld in space). In a conservative system, however, all
the three types of group velocity coincide (see, for example, Ref. [1]).
9This is sufécient, for example, for solving the problem of
`reconstruction' of the untransmitted part of the signal.
10This is sufécient for the `advance' reception of the signal being
transmitted.
11In the present work, a0 is the amplitude gain, while 2a0 is the
intensity gain.

12This also follows from our calculations. For example, for x0 � 2
(Figs. 2 ë 4a), the optical thickness x � 10 of the layer corresponds to
the ampliécation of the signal intensity of about 17 dB (at the carrier
frequency) and the enhancement of noise of about 87 dB (at the line
centre).
13As a result, there emerges a pattern similar to that depicted in Fig. 4:
the intensity of a regular signal may be much smaller than that of
noise, but this does not hamper its observation.
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noise signal following the regular one only improves the
characteristics of the system (since it suppresses the noise).
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