
Abstract. The propagation of Hermitian beams in a medium
with a distributed quadratic inhomogeneity is studied and is
shown that any solution can be represented as a function of
some particular solution. This is accomplished by establishing
a one-to-one correspondence between optical éelds in a
homogeneous medium and in a medium with an arbitrary
quadratic inhomogeneity. The stability of optical resonators
is studied and the condition for their stability is found.
Several solutions are found using the method developed.

Keywords: family of beams, quasi-optic equation, characteristic
planes, Hermitian beam.

1. Introduction

The study of a two-dimensional quasi-optic equation using
the theory of Lie groups showed that for some dependences
of the refractive index on coordinates there exist parti-cular
solutions that are analogous to a plane wave, a point
source, or Hermitian beams in a homogeneous medium [1].
The characteristic feature of these particular solutions is the
invariability of the radius of curvature of the wave front
upon proportional variation in the perturbation of the
refractive index. An exception from this rule is the case of a
quadratic inhomogeneity of the refractive index, for which
there exists a continuum of solutions that do not have the
above properties.

To use the results of paper [1] in full measure, one should
be able to obtain a general quasi-optic solution from the
known particular solution. The aim of this paper is to solve
this problem in the case of quadratic inhomogeneity, i.e., in
the case of a linear optical system. The method of matrix
optics [2 ë 4] cannot be applied for this purpose because it
derives a general solution without using a particular solu-
tion. In this paper, an alternative approach is applied, which
is based on the fact that a general solution of any linear
equation can be represented as a Fourier series for the com-
plete system of functions that are particular solutions of this

equation [5]. In the case of quadratic inhomogeneity, this
series can be summed to obtain a general solution of the
quasi-optic equation in the form convenient for calculations.

The method proposed in this paper allows one to énd
new theoretical solutions in the explicit form, which cannot
be obtained using the Fresnel integrals and matrix optics.
Unlike the matrix method, which directly yields a general
solution of the quasi-optic equation, the method of expan-
sion in the Fourier series is based on the construction of the
solution for speciéc boundary conditions. The solution is
obtained using a particular solution of the quasi-optic
equation. In this paper, the concepts of a family of
beam and of its characteristic planes are introduced. The
position of characteristic planes determines the type of a
given optical system and clearly solves the problem of the
resonator stability.

2. Formulation of the problem

Because in the case of quadratic inhomogeneity, one can
seek the solution for the electromagnetic-éeld distribution
by the method of separation of variables [6], it is sufécient
to consider the case of two variables. In the paraxial
approximation, the radiation propagation is described by
the quasi-optic equation [7]

U 00
xx � 2ikn0U

0
z � 2k2n0DnU � 0; E � eUeÿi otÿkn0z� �, (1)

where E is the electric éeld strength; e is the unit
polarisation vector; k is the wave number; o is the circular
frequency; n0 is the unperturbed refractive index; Dn �
0:5 n 00xx z� �x2 is the refractive-index perturbation, |Dnj5
n0; n�x; z� � n0 � Dn. The z-axis coincides with the prop-
agation direction of radiation.

In this case, the solutions of equation (1) are Hermitian
beams [6]
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where w is the beam radius; w0 is the beam waist radius; j
is the phase incursion; ~r is the complex radius of the wave-
front curvature [6]:
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r is the radius of the wave-front curvature;
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are Hermitian polynomials. By substituting solution (2) into
quasi-optic equation (1), we obtain the equations

~r 0z �
n 00xx
n0

~r 2 ÿ 1 � 0; j 0z �
1

kn0w 2
: (4)

Note that by the change of variable ~r � p 0z p
ÿ1, the érst

equation of system (4) is reduced to a second-order linear
equation n0p

00
zz� n 00xx p, which formally completely coincides

with known ray equations [8]. Expressions (4) are differ-
ential analogues of the algebraic equations of matrix optics.

Let us introduce deénitions that we will use below. The
solution that satisées (4) under certain boundary conditions
will be called a particular solution of equation (4). A general
solution satisées system (4) under any boundary conditions
and contains only two integration constants. Each particular
solution of (4) corresponds to a class of Hermitian beams (2)
satisfying quasi-optic equation (1) under the same boundary
conditions as the initial particular solution. We will call this
class of Hermitian beams a particular solution of the quasi-
optic equation. Below, we will show that the knowledge of
the particular solution of equation (4) allows us to énd the
general solution of this equation using a énite number of
transformations, which is equivalent to the construction of a
class of Hermitian beams (2) satisfying quasi-optic equation
(1) under any boundary conditions. This method is espe-
cially convenient in the case when some separated beams
exist for the given dependence n 00xx (z), which propagate in an
inhomogeneous medium in the simplest way.

3. Expansion of a Hermitian beam
in the Fourier series

Because the complete orthogonal system (2) of solutions of
the quasi-optic equation corresponds to any particular
solution of equations (4), the general solution of equation
(1) can be represented as the Fourier series in this system of
functions [5]:

um �
X
n

am
n U

n; (5)

where Un, um are éeld distributions for particular and
general solutions, respectively; am

n are Fourier coefécients,
respectively. Below, we will use the following notation:
Un; ~P; W; W0; R; F are the éeld distribution; the complex
radius of wave-front curvature; the beam radius; the beam-
waist radius; the radius of wave-front curvature; and the
phase incursion for a particular solution, which is assumed
known; um; ~r; w; w0; r; j are the same quantities for the
general solution.

In principle, the series (5) gives a formal solution of the
problem for any boundary conditions, only Fourier coefé-
cients should be found. However, the solution of the prob-
lem by this method is inconvenient because many integrals
should be calculated for determining Fourier coefécients
and summing complex quantities in (5). Moreover, if we
seek the eigenfunctions of the optical resonator, then expres-
sion (1) will be reduced to a set of linear equations with
an inénite number of unknowns whose eigenvectors will
be modes of the resonator. However, this problem can be

solved without integration and subsequent summing of the
Fourier series.

To do this, consider the transformation of expression (5)
for a homogeneous medium (this transformation is physi-
cally equivalent to the transfer of the optical éeld from an
inhomogeneous medium to a homogeneous medium):

um
h �

P
n
am
n Un

h ; (6)

where the subscript h corresponds to the homogeneous
medium. Below, as above, we use the following notation:
Un

h ; ~Ph; Wh; Wh0; Rh; Fh are the éeld distribution, the
complex radius of wave-front curvature, the beam radius;
the beam-waist radius; the radius of wave-front curvature;
and the phase incursion for the auxiliary beam; um

h ; ~rh;
wh; wh0; rh; jh are the same quantities for the reference
beam. Thus, the auxiliary beam is the transform of the par-
ticular solution Un, while the auxiliary beam is the trans-
form of the general solution um of the quasi-optic equation.
Therefore, to énd the general solution of the quasi-optic
equation, it is sufécient to énd the transformation that
transforms the particular solution to the auxiliary beam.

The propagation of a Hermitian beam in a homogeneous
medium is described by the expressions
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" #
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(7)
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:

It is assumed in (7) that the reference beam waist is located
in the plane z � z0. For the auxiliary beam, the relations are
valid, which are similar to (7), the parameters Wh0 and zh0
being arbitrary. We will assume for convenience that zh0 �
0 and Wh0 �W0. Let us represent series (5) and (6) in the
form
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The function f m
h (x; z) is known. Let us introduce new

coordinates x(x; z) and z(z) so that the equality f m
h (x(x; z);

z(z)) � f m(x; z) is fulélled. Comparison of expressions (8)
and (9) shows that the relation

x
Wh z� � �

x

W z� � ; Fh z� � � F z� �;

z z� � � kn0W
2
0 tanF�z�:

should be fulélled.
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For the general solution of system (4), we obtain the
expression

1

r z� � �
1

R z� � �
W 2

h z� �
W 2 z� �

1

rh zÿ z0� � ÿ
1

Rh z� �
� �

;

(10)

w z� � � wh zÿ z0� �
Wh z� � W z� �; j z� � � jh zÿ z0� �:

where z0 � z(z0). The propagation of the complex radius of
curvature is described by the érst equation of system (10),
so that we do not present the corresponding expression
here. To close solution (10), one should know the reference-
beam radius wh0 and the position z0 of the beam waist,
which play the role of the integration constants in system
(4). They can be found from the boundary conditions for
the required beam.

The equation for the beam radius w in the second
equation of system (10) can be represented in a more clear
form. For this purpose, we choose the phase of the parti-
cular solution U n so that z(0) � 0, which can be achieved by
shifting the origin of reference of the initial phase of the
particular solution. Then, the relation W 2

h (z) �W 2
0 �1�

� tan 2 F(z)� is valid for the auxiliary beam. After some
transformations, the énal expressions for w takes the form

w 2 z� � � w 2
h0W

2 z� �
W 2

0

�
1�W 4

0

w 4
h0
�tanF�z�

ÿ tanF z0� �� 2
�
cos 2 F�z�: (11)

Expression (11) shows that the radius of the general
solution oscillates about the radius of the particular
solution. The oscillations are in general not periodic but
depend on the phase of the particular solution F(z).

4. Determination of parameters
of the reference beam

The boundary conditions for parameters of the beams can
be imposed by two methods, either by specifying the éeld
distribution on some surface or imposing two boundary
conditions on the radius of wave-front curvature. The
boundary conditions of the érst type are characteristic of
the propagation of radiation in space, while those of the
second type are typical for radiation in optical resonators.
Consider the methods for providing these boundary
conditions in turn.

(1) Let us assume that the characteristic radius of the
amplitude distribution (beam radius) w� � w (z�) and the
radius of wave-front curvature r� � r (z�) are speciéed on
some plane z � z�. Then, we énd from (10) the radius of
wave-front curvature and the radius of the reference beam at
the point z=z� ÿ z0, whÇre z� � z(z�) :

1

r�h
� 1

rh z� ÿ z0� � �
1

Rh z�� � �
W 2 z�� �
W 2

h z�� �
1

r�
ÿ 1

R z�� �
� �

;

(12)

w�h � wh z� ÿ z0� � � w�

W z�� �Wh z�� �:

Because the right-hand parts of expressions (12) are known,
we can énd the parameters of the reference beam from
expressions (7):

wh0 �
�

r �h w
�
h� � 2

r �2h � kn0w �2h� � 2
�1=2

;

(13)

z0 � z � ÿ r �h kn0w
�2
h

ÿ � 2
r �2h � kn0w �2h � 2

� .

It follows from (13) that the reference beam with real
parameters can be found for any boundary conditions.

(2) Consider the boundary conditions of the second type.
Let us assume that spherical mirrors with radii of curvature
r1 and r2 are located at points z1< z2, respectively. The radii
of focusing and scattering mirrors are considered positive
and negative, respectively. Then, two conditions r (z1) � ÿr1
and r (z2) � r2 are imposed on the radius of wave-front
curvature. From the érst equation of system (10), we énd
two radii of reference-beam curvature rh1 � rh(z1ÿ z0) and
rh2 � rh(z2 ÿ z0), which are described by the expressions

1

r h1;2
� 1

Rh z1;2
ÿ ��W 2 z1;2

ÿ �
W 2

h z1;2
ÿ � � 1

r1;2
ÿ 1

R z1;2
ÿ ��: (14)

The solution of equations (7) in this case has the form

z0 �
z1 z1 ÿ rh1� � ÿ z2 z2 ÿ rh2� �

2z1 ÿ 2z2 � rh2 ÿ rh1
;

(15)

w 2
h0 �

�
rh1 z1 ÿ z0� � ÿ z1 ÿ z0� � 2 �1=2

kn0
:

It is obvious that the second equation of system (15) does
not always have real roots, i.e., the reference Hermitian
beam with a real radius of the amplitude distribution exists
not for all boundary conditions. Therefore, not any optical
resonator is stable, the stability condition having the form

rh1 z1 ÿ z0� �5 z1 ÿ z0� � 2: (16)

A similar inequality can be written for rh2 and z2. The
condition (16) means that the modulus of the radius of
wave-front curvature of the reference beam at some point is
not smaller than the distance from the reference-beam waist
to this point (the equality is achieved for a point source).
This condition is always fulélled for Hermitian beams in a
homogeneous medium, whose propagation is described by
expressions (7). Therefore, expression (16) in the parametric
form completely solves the problem of stability of a
resonator with an arbitrary quadratic inhomogeneity.

5. Families of beams and characteristic planes

We will call a family of beams the set of Hermitian beams
that not necessarily belong to the same class but have the
same radius of wave-front curvature on some plane. We
will call such planes the characteristic planes. Let us assume
that the particular solution U n and the required beam um

on the plane z � 0 (the plane position is inessential) have
the same radius of wave-front curvature R0 � r0. Assume
also that the radius of the amplitude distribution for the
required beam is w0 at the point z � 0. As above, we
assume that z(0) � 0. Then, as follows from (13), the
reference-beam waist will be located at the point z0=0 and
w0 � wh0, and the propagation of the beam family is
described by the expressions
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w 2 � w 2
0 W

2 z� �
W 2

0

cos 2 F z� � �W 4
0

w 4
0

sin 2 F z� �
" #

;

(17)

1

r
� 1

R
� tanF z� �
kn0W

2 z� �
W 4

0 ÿ w 4
0

W 4
0 tan 2 F z� � � w 4

0

:

It follows from (17) that, except the plane z0 =0 , other
characteristic planes can also exist. By using the second
equation of system (17), we obtain that r (zj) � R (zj) � rj at
points F(zj) � pj=2, where j is an integer. The position of
characteristic planes coincides with the extrema of the
radius w of the amplitude distribution for the required
beam relative to the radius W of the beam for the particular
solution: dw=dW � 0 at points z � zj. Additional character-
istic planes can appear only when the radius of the required
beam oscillates relative to the particular solution. If the
oscillations are absent, only one characteristic plane z0 � 0
exists. Fig. 1 illustrates the concept of characteristic planes
of the beam family.

Let us study qualitatively the resonator stability. Let the
left mirror with the radius r0 be located at the point z0 � 0
and the right mirror with the radius rL be located at the
point z � L. It is obvious that the mode of such a resonator
can be only a beam belonging to two beam families, the érst
family being determined by the left mirror of the resonator,
and the second by the right mirror. For some values of r0
and rL, such a beam cannot exist and the resonator is
unstable.

We can énd from (17) the positions zj of characteristic
planes for each radius r0. It follows from expression (4) for
the beam-phase incursion that the phase is a monotonic
function of the coordinate z, and the relation signF(z) �
sign z is valid because F(0)=0. This means that a set of
characteristic planes fzjg is ordered as zj < zj�1. Therefore,
the radius of the right mirror of a stable resonator satisées
the inequalities (RL � R(L);WL �W(L))

ÿtanF�z�
cotF�z�

�
<kn0W

2
L

1

rL
ÿ 1

RL

� �
<

cotF�z�; z 2 �z2j; z2j�1�;
ÿtanF�z�; z 2 �z2jÿ1; z2j�:

�
(18)

It follows from (18) that the instability regions of the
resonator are grouped near characteristic planes. For
example, in the case of a homogeneous medium, the
only characteristic plane z0 � 0 exists and there are only
two instability regions.

Consider now a change in the resonator stability caused
by a continuous (quasi-stationary) variation in the refractive
index, which can be produced by the heating of the medium.
First, until the appearance of additional characteristic
planes, the stability diagram resembles that for the resonator
in the case of a homogeneous medium. Then, as the degree
of inhomogeneity increases, several new characteristic
planes can appear, which approach the point z0 with
increasing n 00xx

�� ��. The resonator becomes unstable when
the successive characteristic plane z0 is found in the vicinity
of the plane z � L. Fig. 2 shows the dependence of the
stability diagram on the phase F(L). The purely imaginary
phase F(L) is plotted to the left from zero in the region of
negative values. The unstable regions are hatched. The
stability (or instability) of the resonator can be determined
from Fig. 2 from the dependence of F(L) on the refractive
index.

6. Examples of the solution construction

(1) The simplest particular solution can be constructed for a
homogeneous distributed lens with n 00xx � const. Because in
this case the variable z does not enter explicitly the quasi-
optic equation, equation (1) is invariant with respect to
displacements along the z-axis (z! z� e). Therefore, there
exists the solution of equation (1), which is invariant with
respect to this one-parametric transformation [10]. Such a
solution for the refractive index n 00xx � ÿa < 0 is a plane
beam with parameters

W 2
1 �

1

k�an0�1=2
; R1 � 1; F1 � z

�
a
n0

�1=2

: (19)

We will call this inhomogeneity of the refractive index the
a-lens. Consider the propagation of a beam satisfying the
boundary conditions r 0� � � 1; w 0� � � w0. For the radius
of the amplitude distribution (11), we obtain the known
relation [6, 8, 11]

w 2 � w 2
0

�
cos 2

�
z

�
a
n0

�1=2 �
�W 4

1
w 4
0

sin 2

�
z

�
a
n0

�1=2 ��
: (20)

For the distributed a-lens, the radius w of any beam
oscillates about W1:

The solution (19) can be formally generalised to the
region of positive n 00xx � b > 0, i.e., for the b-lens. After
substitution of the refractive index n 00xx � b > 0 to system

Characteristic planes

zÿ3 zÿ2 zÿ1 z0 z1 z2 z3

w

z

Figure 1. Characteristic planes (zj) of an optical system and dependences
w(z) for three beams belonging to the same family.

1

rL
ÿ 1

RL

ImF�L� 0 p=2 p 3p=2 F�L�

Figure 2. Stability diagram of an optical resonator (unstable regions are
hatched).
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(4), we obtain

W 2
1 � �

i

k�bn0�1=2
; R1 � 1; F1 � �iz

�
b
n0

�1=2

: (21)

Although the solution (21) does not satisfy the conditions
of boundedness at inénity, it can be used to construct the
general solution for the b-lens. As above, consider the
propagation of a beam with boundary condition r 0� � �
1; w 0� � � w0. By substituting (21) into (11) and using the
relation tan (iq) � i tanh q, where q is a real number, we
obtain

w 2 � w 2
0

�
cosh 2

�
z

�
b
n0

�1=2 �

� W 4
1

�� ��
w 4
0

sinh 2

�
z

�
b
n0

�1=2 ��
: (22)

Therefore, any beam for b-lens diverges exponentially [6, 8,
11].

(2) As shown in Ref. [1], for the quadratic inhomoge-
neity of the form

Dn � l 4

z 2 � l 2� � 2
n 00xx 0; 0� �

2
x 2 (23)

the particular solution

W 2
l �W 2

l0 1� z 2

l 2

� �
;Rl �

z 2 � l 2

z
;Fl � �1ÿ d�1=2 arctan z

l
;

(24)

W 2
l0 �

l

kn0�1ÿ d�1=2
; d � l 2n 00xx 0; 0� �

n0
< 1

exists. We will call the inhomogeneous distributed lens (23)
the l-lens. The l-lens power achieves the maximum at the
point z � 0 and decreases with increasing z. The parameter l
determines the width of the inhomogeneity distribution
over the coordinate z. The l-lens power decreases by a
factor of four at the distance z � l.

To extend the solution (24) to the region d > 1, we use
the procedure from the previous section. Let us deéne the
beam-waist radius and the phase as

W 2
l0 �

l

kn0j1ÿ dj1=2
; Fl � j1ÿ dj1=2 arctan z

l
: (25)

The énal result of calculations has the form

w 2 � w 2
h0 1� z 2

l 2

 !n
1� W 4

l0=w
4
h0

�ÿ
(26)

�

(
�tanFl z� � ÿ tanFl z0� �� 2

o
cos2 Fl z� �; d < 1;

�tanhFl z0� � ÿ tanhFl z0� �� 2
o
cosh2 Fl z� �; d > 1:

The position z0 of the beam waist and the radius wh0 of the
intensity distribution for the reference beam are determined
from expressions (13) or (15), depending on the type of
boundary conditions. It is obvious that any beam for the l-

lens diverges linearly at inénity, as a Hermitian beam in a
homogeneous medium. The exclusion from this rule is the
case l!1, when the beam radius for the a-lens oscillates
relative to the radius W1 of a plane-parallel beam, while
for the b-lens any beam diverges exponentially. Such a
behaviour is explained by the fact that for l <1 the l-lens
power decreases to zero upon removing from the point
z � 0. For this reason, at large distances from the point
z � 0 the beams are not virtually affected by the inho-
mogeneities of the refractive index and become similar to
Hermitian beams in a homogeneous medium. For l!1 ,
the l-lens power is constant, and, therefore, the beams are
affected by the inhomogeneity at any distances from the
coordinate origin. When l! 0, the l-lens is equivalent to a
concentrated thin lens. Therefore, the l-lens is the general-
isation of a distributed homogeneous lens and a thin lens.
Fig. 3 illustrates the behaviour of a Gaussian beam (m � 0)
for the l-lens at r (0) � 1 in focusing (d < 0) and scattering
(d > 1) media.

Consider the case d=1 (Fl � 0). After the passage to the
limit d! 1 in (26), we obtain

w 2� w 2
h0 1� z 2

l 2

 !

� 1� l 2

kn0w 2
h0� �2

arctan
z

l
ÿ arctan

z0
l

� �2" #
: (27)

One can see from (27) that in this case, neither periodic
oscillations of the beam radius about the particular solution
for the l-lens occur nor exponential approach of the radius
to this solution is observed. For l!1, expression (27)
describes the propagation of the reference beam. The same
result is obtained by substituting d � 0 into equation (26).
Therefore, the reference beam can be really considered the
transform of the required beam in the homogeneous medi-
um, while the required beam can be considered the result of
deformation of the reference beam in the inhomogeneous
medium. The position z � z0 of the reference-beam waist is
a mathematical centre of the required beam because upon a
continuous decrease of the inhomogeneity of the medium to
zero, the beam waist is found at this point.

a

b

x (rel. units)

x (rel. units)

ÿ1:0

ÿ0:5

0

0.5

0

ÿ0:5

ÿ1:0 ÿ 0:5 0 0.5 z (rel. units)

Figure 3. Equal-intensity lines of a Gaussian beam (m � 0) for the l-lens
for d < 0 (a) and d > 1 (b).
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7. Conclusions

Thus, any solution of the quasi-optic equation can be repre-
sented as a function of some particular solution. The search
for the solution for given boundary conditions is reduced to
the construction of the reference beam in a homogeneous
medium, which is locally equivalent to the required beam.
Because the parameters of the reference beam are written in
terms of the boundary conditions as fraction ë irrational ex-
pressions, we can conclude that if some particular solution
of the quasi-optic equation is expressed in terms of elemen-
tary functions, this is also valid for the general solution.

The representation of the solution as a function of some
particular solution leads to the concept of the family of
beams and its characteristic planes. The characteristic planes
correspond to the extrema of radii of the amplitude distri-
bution of the beams for the given family. The position and
the number of characteristic planes qualitatively describe the
behaviour of Hermitian beams in a linear optical system.
The resonator modes can be obtained by énding a beam
that belongs to two families, the érst of them being deter-
mined by the left resonator mirror, and the second one by
the right mirror. If such a beam is absent, the resonator is
unstable. The stability condition is also equivalent to the
condition of the existence of the reference beam for the
given mode. The instability regions of the optical resonator
are grouped near characteristic planes, whose position is
determined by one of the resonator mirrors.

As an application, the solutions were obtained for a
homogeneous distributed lens and for the l-lens, which
generalises a distributed homogeneous lens and a concen-
trated thin lens. The study of the solution for the l-lens
showed that, depending on the parameter d, three types of
the beam behaviour are possible. For d < 0, the beam radius
oscillates relative to the particular solution (24); for
0 < d < 1, the beam behaves similarly to Hermitian beams
in a homogeneous medium; and for d > 1, the beam ex-
pands exponentially relative to the particular solution (24).
In two latter cases, the only characteristic plane exists,
whereas for d < 0, the number of characteristic planes is
equal to the integer of the expression 2(1ÿ d)1=2.
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