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Refractive distortions of partially coherent beams
in inhomogeneously absorbing (amplifying) media

V V Dudorov, V V Kolosov, O A Kolosova

Abstract. Based on the equation for the second-order cohe-
rence function, the propagation of partially coherent radiation
is studied under the combined action of diffraction and
refraction caused by the inhomogeneous distribution of the
real and imaginary parts of the perturbation of the permit-
tivity of a medium in the case of inhomogeneous absorption
(amplification). The limits of application of the method of
geometrical optics for inhomogeneously absorbing (amplify-
ing) media are studied, as well as of the methods that neglect
refraction caused by the inhomogeneous distribution of the
imaginary part of the permittivity of the medium.
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1. Introduction

The problem of studying the propagation of partially
coherent radiation in inhomogeneously absorbing (amplify-
ing) media arises in investigations of the propagation of
optical radiation in an absorbing plasma, in studies of the
formation of the output radiation of X-ray and other
superradiance lasers, in the propagation of laser radiation
in bleaching channels, etc. Analytic approaches to this
problem are based on the determination of the response
function of the medium [1-6] or on the expansion of the
solution in eigenmodes [7, 8]. Numerical methods were also
widely applied for solving this problem. One of the
approaches is based on the Monte Carlo method [9].
This approach is rather universal and does not require any
physical limitations or approximations. Its drawback is
cumbersome calculations.

Another numerical method based on the numerical
solution of the equation for the coherence function gave
both analytic and numerical solutions [10, 11]. However, the
numerical algorithm in Refs [10, 11] was used for the
solution of not an exact but approximate equation for
the second-order coherence function, this equation being
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Fourier-conjugate to the equation of radiation transfer. It
was shown in Ref. [12] that the approximate equation
neglects the bending of ray trajectories caused by the
inhomogeneity of the imaginary part of the permittivity
and, hence, this approach cannot be generalised to strongly
absorbing media.

The use of conventional methods of geometrical optics
for strongly absorbing media [13] is limited by the region of
its applicability. Analytic solutions can be obtained by these
methods only for a limited number of distributions of the
complex permittivity.

To study the propagation of partially coherent radiation
in inhomogeneously absorbing (amplifying) media, we
proposed [14] the ray method for solving the equation
for the second-order coherence function (method of dif-
fraction rays). Diffraction rays represent trajectories in
space, tangents to them at each point being coincident
with the direction of the energy flux (the Umov—Poynting
vector). This method has two substantial features compared
to other ray methods.

First, the solution is based on the use of not geometro-
optical rays but of ray trajectories, which are determined
taking into account diffraction effects. Second, by applying
this method to strongly absorbing media, it is possible to
avoid the introduction of complex ray trajectories (unlike
other ray methods [13]). The complex trajectories are
mathematical abstractions and have no physical meaning.
Moreover, they do not contain a complete information,
which is required for the construction of real ray trajecto-
ries, and do not yield the shape of the radiation intensity
distribution.

The advantage of our method is that the numerical
algorithms developed on its basis are highly efficient and
allow one to study within a single approach the dependence
of the energy and coherent characteristics of radiation on all
physical phenomena accompanying the propagation of
random waves in random linear and nonlinear media
[diffraction, refraction, inhomogeneous absorption (amplifi-
cation), and turbulent broadening of a beam)].

2. Ray method for equation solving

The equation for the second-order coherence function
Iy(z,r(,1y) = (E(z,#)E*(z,r,)) can be written in the form [8]

.or
2lk6_22 + (AL — AL,

+k*[Ae(z,r) — Ae™(z,1)]T5(z,71,12) = 0,
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where A ,; is the transverse Laplacian; k is the wave
number; z is the coordinate along the propagation direction
of radiation; r; and r, are the radius vectors in the plane
perpendicular to the propagation direction of radiation;
Ae(z,r) = ¢(z,r) +ia(z, r) is the perturbation of the complex
permittivity of a medium; and E(z,r) is the electromagnetic
field.

After the passage to sum and difference coordinates
R = (r; +r,)/2 and p = r| — r,, the equation for the coher-
ence function takes the form

or, k . p
L fanr ) (et

xT'(z,R,p) =0, )]

where Vg and V, are transverse gradients over sum and
difference coordinates, respectively.

We will use the only assumption that the Gaussian shape
of the coherence function over the difference coordinate is
preserved, which corresponds to the parabolic surface of the
mean phase front over the length equal to the coherence
radius, and represent the coherence function in the form

Iy(z,R,p) = 7(z, R, p)e =),

From equation (1), we obtain the system of ray equations

d°R 1 1
dz 1.2 ZVR kZW(V VRVp/)|p:09 (2)
p VR v V,VaV,, 3
FEei R8+k2 (V,Vg /)|,,:0 , 3)
1(z, R(z)) :kJ dz'e(z',R(z")), 4)
0

70(Ro, po)
wz. R —
)(z, R, p) dR/dR,|

cexp |~ (e, R(E) - 5 (’gvk)zr(z,R(z))} )

Where y is the modulus of the coherence function;

=9(z,R,p=0) is the average radiation intensity;
10 =7(z =0); Ry = R(z=0); and py, = p(z = 0). Equation
(2) is the equation for a diffraction ray whose direction at
each point coincides with the direction of the average
Umov —Poynting vector dR/dz = k_lV},,(15|,,:0

The method of diffraction rays and the analytic solutions
for the parabolic distribution of the complex permittivity of
the medium obtained by this method are described in more
detail in Ref. [14]. The range of applicability of this method
was studied in Ref. [15] by comparing its results with exact
solutions of the equation for the coherence function. Here,
we study numerically the propagation of partially coherent
radiation in inhomogeneous media.

3. Refraction in inhomogeneously absorbing
media

To use the methods based on the determination of the
response function of the medium, it is necessary to know
the analytic form of this function. In the problems of

propagation of partially coherent radiation in inhomoge-
neous media, the response function can be written only in
the case of the parabolic distribution of the permittivity.
The set of ray equations (2)—(5) can be numerically solved
for an arbitrary distribution of the complex permittivity.
We used the method having the second-order convergence
in the evolution variable, in which the derivatives with
respect to the transverse coordinate are calculated using
finite differences. The PC-486DX computer time for the
calculation of one variant of the problem was from 5 to
30 s for axially symmetric problems and from 1 to 20 min
for problems with an arbitrary geometry. These results
allow us to compare the solution of the problem of
propagation of partially coherent radiation in inhomoge-
neous media obtained by the method of diffraction rays
with the solution obtained in the aberration-free (near-
axial) approximation based on the replacement of the
distribution of the permittivity of the medium by a
parabola coinciding with the distribution Ae(z, R) = (e,+
igy)R? of the permittivity on the ray axis.

Fig. 1a shows the distribution of the average intensity of
a partially coherent Gaussian beam propagated through an
inhomogeneous medium with a Gaussian transverse dis-
tribution of the complex permittivity. One can see that the
difference between the solution of the problem obtained by
the method of diffraction rays and the solution obtained in
the aberration-free approximation increases with increasing
the diffraction parameter, which is equal to the ratio of the
refraction length L, = 5822 + 622)’1/ * to the diffraction length
Ly = kay/(ag >+ az%)"* (where ay and a, are the initial radii
of the beam and coherence). Fig. 1b shows the relative error
of calculation of the intensity on the beam axis in the
aberration-free approximation as a function of the evolution
variable z/L,. Note that the intensities differ not only on the
axis but also over the entire cross section, resulting in a
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Figure 1. Distributions of the average intensity of a partially coherent
Gaussian beam in a medium with Ae(z, R) = (&, +ia,)[1 — exp(—R?)]
calculated in the aberration-free approximation (curves with dots) and
by the method of diffraction beams (curves without dots) (a) and the
dependence of the relative error of calculation of the average intensity in
the aberration-free approximation on the evolution variable z/L; (b).
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substantial increase in the difference between the trans-
mitted and absorbed powers of the beam with increasing
z/L,.

This study showed that in some problems, where the
perturbation of the complex permittivity of the medium has
a complex non-parabolic form, the aberration-free approx-
imation introduces a significant error to the exact solution.

Another, less stringent approximation, which is used in
these problems, involves the solution of the equation for the
coherence function, when the bending of the rays caused by
the inhomogeneity of the absorption coefficient is neglected
assuming that the ratio of the real part of the perturbation
to the imaginary one is n =¢&,/a, > 1 [10, 11]. The same
refraction is neglected within the framework of the Went-
zel — Kramers — Brillouin method used for the determination
of the response function of a medium [16]. However, when
the condition # > 1 is not valid, the solutions obtained in
this approximation differ from exact solutions even for the
parabolic distribution of the permittivity. This raises the
question of finding the region where the neglect of refraction
in the inhomogeneous absorbing medium introduces only an
insignificant error to the solution of the problem.

For this purpose, we compared the exact analytic
solution of the problem of propagation of partially coherent
radiation having the parabolic distribution of the complex
permittivity over the beam cross section with an approx-
imate solution in which the refraction caused by
inhomogeneous absorption is neglected. The solid curves
in Fig. 2 show the ray trajectories for a Gaussian beam
propagating in the medium with the parabolic distribution
of the permittivity calculated by neglecting the ray-trajec-
tory bending caused by the inhomogeneous distribution of
the imaginary part of the permittivity. The dashed curves
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Figure 2. Comparison of ray trajectories calculated by neglecting the
ray-trajectory bending caused by inhomogeneous absorption (solid
curves) with exact solutions (dashed curves) for ! = L./Ls=1 (a);
distribution of the radiation intensity calculated by neglecting the ray-
trajectory bending caused by inhomogeneous absorption (solid curve)
and the exact solution (dashed curve) (b).

show the exact solution. It is obvious that inhomogeneous
absorption strongly affects the ray trajectories, resulting in
the additional refraction of radiation.

Fig. 2b shows the radiation intensity distribution calcu-
lated by neglecting the additional refraction caused by
inhomogeneous absorption (the solid curve) and the exact
solution of the propagation problem (the dashed curve).
One can see that even for the axial beam, where absorption
is absent, the intensity calculated by neglecting refraction
caused by inhomogeneous absorption noticeably differs
from the exact intensity. This is explained by a stronger
broadening of the beam, in particular, in the near-axial
region, which is caused by the additional bending of the ray
trajectories.

Fig. 3 shows the relative error of calculation of the
radiation intensity by neglecting the refraction caused by the
inhomogeneous distribution of the imaginary part of the
perturbation of the permittivity of the medium as a function
of the parameter ' = o, /€. This dependence was calcu-
lated for the axial beam with the ratio L./Ly = 0.01, 0.1,
and 1 and the propagation distance z = L. and 1.5L,. One
can see that the effect of refraction on the radiation intensity
distribution decreases with decreasing the diffraction param-
eter L,/Ly. Fig. 4 shows the radiation intensity of the axial
ray and the relative error of its calculation by neglecting the
bending of ray trajectories caused by inhomogeneous
absorption as functions of the evolution variable z/L,
for the parameter n ' =0.1 and 0.2. One can see that
the relative error of the intensity calculation is rather high
even for quite small parameters " .

A’/Iif/l('(RR::O(;) (%) | =
40|
------------ L/Ly=1
30k L/L;=0.1
L./Ly =001
R
20 1 A
o
10 - it
A e
7 e =
ST —"‘-\""‘/./‘l 1 1
0 0.2 0.4 0.6 08 p!

Figure 3. Relative errors of the average radiation intensity of the axial
beam calculated by neglecting refraction caused by inhomogeneous
absorption as functions of the parameter ;7’1 = 0, /¢, for the distance
z=L, (#) and 1.5L, (0) and different diffraction parameters L,/Ly.
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Figure 4. Dependences of the average radiation intensity on the axis (/)
and of the relative error of its calculation (2) on the evolution variable
z/L, for n " = 0.1 (solid curves) and 0.2 (dashed curves) for L/Ly=1.
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A similar difference between the solutions obtained by
neglecting the refraction caused by inhomogeneous absorp-
tion and taking it into account was also observed for other
distributions of the permittivity over the beam cross section.
Fig. 5a shows the ray trajectories for a Gaussian beam
propagating in a medium with a Gaussian distribution of
the permittivity. One can see that the rays gradually
approach each other with increasing distance, resulting in
the peaks in the radiation intensity distribution (Fig. 5b).
The dashed curve in Fig. 5b shows the radiation intensity
distribution calculated by neglecting the bending of ray
trajectories caused by inhomogeneous absorption.
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Figure 5. Ray trajectories (a) and distributions of the average radiation
intensity calculated, taking into account (solid curve) and neglecting
(dashed curve) the ray-trajectory bending caused by inhomogeneous
absorption (b), for a Gaussian beam propagating in a medium with a
Gaussian distribution of the permittivity Ae(z,R) = (ey +1i02)[1—
exp(—R*)] for s 7' = 0.1 and L,/Lyq = 0.1.

Fig. 6 shows the corresponding solutions for a Gaussian
beam propagating in a medium with a power distribution of
the permittivity. In the absence of refraction caused by
inhomogeneous absorption, the rays gradually bend and
enter a strongly absorbing region. This is accompanied by a
drastic decrease in the intensity distribution in the region of
strong absorption (the dashed curve in Fig. 6b). However,
when the bending of the ray trajectories caused by inho-
mogeneous absorption is taken into account, the focusing of
the rays is observed (Fig. 6a), which gives rise to the
intensity peaks (the solid curve in Fig. 6b) [17]. This can
be explained by a combined action of diffraction and
refraction on the ray trajectories. Refraction causes the
deviation of the rays from the axis to the region of strong
absorption. Absorption produces strong gradients in the
intensity distribution, which in turn enhance diffraction
bending of the rays. The bent rays enter the region of strong
refraction, and the process becomes self-consistent. We
emphasise that the refraction caused by the inhomogeneity
of the imaginary part of the permittivity of the medium
noEiceable affects the intensity distribution already for
n~ =0.1.
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Figure 6. Ray trajectories (a) and distributions of the average radiation
intensity calculated, taking into account (solid curve) and neglecting
(dashed curve) the ray-trajectory bending caused by inhomogeneous
absorption (b), for a Gaussian beam propagating in a medium with a
power distribution of the permittivity Ae(z, R) = (e3 + ioy)R™ forn = 0.

The results obtained above show that in calculations of
the propagation of radiation in inhomogeneous media
where the perturbation of the imaginary part of the
permittivity is comparable with the real part, one should
take into account the refraction caused by the inhomoge-
neity of the imaginary part.

4. Limits of applicability of the geometrical
optics approximation for inhomogeneously
absorbing media

Another approximate approach to the solution of the
problems under study is geometrical optics. Traditionally, it
is based on complex ray trajectories, amplitudes, and
caustics [13]. The system of ray equations (2)—(5) yields,
upon the passage to the limit k — oo (in the geometrical
optics approximation), the equation

f%’f _ %VR{S(Z, R(2)) +% H dz' Vga(z', R(z’))] 2},(6>

0

for a trajectory of a real ray, where Asg(z, R) = &(z, R)+
io(z, R) is the perturbation of the complex permittivity of
the medium.

Equation (6) differs from the geometrical-optics equa-
tion for homogeneously absorbing media by the presence of
the second term in its right-hand side. This term depends on
the spatial distribution of the imaginary part of the
permittivity. This distribution considerably differs from
the dependence of the first term on the real part of the
permittivity.

The first difference is related to the quadratic depend-
ence of the second term on the imaginary part of the
permittivity. This means that the behaviour of the ray
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trajectory in the geometrical-optics limit in independent of
the sign of o, i.e., for the same dependence of ¢ on spatial
coordinates, the ray trajectories behave in the same way,
both in amplifying and absorbing media. Note, however,
that this does not mean that radiation propagates identically
in these media, because in the first case the radiation is
amplified along the chosen ray trajectories, whereas in the
second case, it decays.

Another difference is related to the fact that the second
term in (6) vanishes not only in media with the homoge-
neous distribution of ¢ over the cross section but also in
media where the transverse gradient of the imaginary part of
the permittivity is constant (Vzo = const), i.e., this term
plays a role only in the media where the distribution of the
imaginary part of the permittivity has nonzero second
derivatives with respect to transverse coordinates.

The presence of the integral term in the right-hand side
of equation (6) means that this equation is not a second-
order differential equation. Therefore, the two initial con-
ditions, namely, the position of the initial point and the
value of the slope are insufficient for determining a
trajectory of a real ray. Therefore, we can conclude that
the trajectory of a ray in the medium with the inhomoge-
neous absorption coefficient depends not only on the
distribution of the complex permittivity but also on the
wave-front curvature. In this case, the rays emerging from a
point in space at the same direction, but belonging to the
wave fronts with different curvatures in the vicinity of this
point will propagate along different trajectories because the
behaviour of the rays surrounding the given ray changes.
This is a fundamental difference between the geometrical
optics of inhomogeneously absorbing media and the geo-
metrical optics of homogeneously absorbing media.

This can be illustrated by the example of the exact
analytic solution of the problem of propagation of coherent
radiation in a medium with the parabolic perturbation
profile of the complex permittivity [14]. Fig. 7 shows the
ray trajectories for the rays belonging to the beams with
different wave fronts, spherical and plane. We should take
into account that for the beams from an infinite set of pairs
of rays emerging from one point, the coincidence of the
initial slopes is possible only for one pair. The ray
trajectories for this pair are shown in Fig. 7 by solid curves.
While the rays emerged from one point in the direction
shown by the arrow first propagate along close trajectories,
the trajectories of these rays gradually become substantially

@ = const

Figure 7. Ray trajectories for sets of rays belonging to the beams with
spherical (dashed curves) and plane (solid curves) wave fronts (¢ is the
wave phase).

different with increasing distance and, hence, with the
enhancement of the effect of refraction caused by inhomoge-
neous absorption.

Let us find now the region of applicability of simple
methods of geometrical optics.

Based on the analytic solutions for the parabolic
distribution of the complex permittivity of the medium
and the numerical simulation of the medium with an
arbitrary distribution of the permittivity, we compared
the solutions obtained in the geometrical optics approx-
imation with exact solutions. We analysed the propagation
of optical radiation for three different axially symmetric
distributions of the complex permittivity of the medium:
parabolic Ae(z, R) = (¢, + io,)R?, Gaussian Ae(z, R) = (eo+
i5)[1 —exp(— R?)]), and power Ae(z,R) = (g,+i0,)R™.
Upon propagation of a Gaussian beam through a medium
with the parabolic distribution of the permittivity, the exact
solution converges to the solution constructed for rays for
the distance of the order of z = 2L, already at L, /Ly = 0.1.
This convergence of the solutions takes place both for
coherent and partially coherent radiation. Fig. 8a presents
the solutions of the problem of propagation of partially
coherent radiation for y ! = 1, z = 2L, and the diffraction
parameter L./Lq=0.1, 0.3, and 0.5. Fig. 8b shows the
relative error of calculation of the radiation intensity for the
axial ray in the geometrical optics approximation as a
function of the parameter L. /Ly for distances z=1.5L,
and 2L,. These dependences were obtained for coherent and
partially coherent radiation for the ratios of the initial
coherence radius to the initial beam radius a./aq = 1 and
lower than 0.2. Similar results were obtained for the
Gaussian (Fig. 9) and power (Fig. 10) distributions of
the permittivity of the medium.
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Figure 8. Distributions of the average intensity of a partially coherent
Gaussian beam in a medium with Ag(z, R) = (&, + io,)R? for L,/Ly =
0.1(7),0.3(2),and 0.5(3) (a) and dependences of the relative error of
calculation of the average radiation intensity of the axial ray in the
geometrical optics approximation on the diffraction parameter for
coherent (/) and partially coherent radiation for a./ay =1 (2) and
ao/ay < 02(3) (b).
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Fig. 9a shows the distributions of the radiation intensity
for a Gaussian beam propagating through a medium with a
Gaussian distribution of the permittivity at the distance
z=2L, for 7' =1 and three diffraction parameters
L./Ly =0.01,0.05, and 0.1. For L,/Lyq = 0.01, the intensity
distributions for coherent and partially coherent beams
coincided with the distribution obtained in the geometrical
optics approximation. The difference between the intensity
distributions increased with increasing diffraction parame-
ter. Note that the difference of the intensity distribution for
partially coherent radiation from the geometrical optics
distribution is smaller than that for coherent radiation.
Fig. 9b shows the dependence of the relative error of
calculation of the intensity radiation in the aberration
maximum on the diffraction parameter L /Ly for the
distance z = 2L,. Note that for the same range of variation
of the diffraction parameter at the distance z = 1.5L,, the
error of calculation of the radiation intensity in the geo-
metrical optics approximation is less than one per cent.
Fig. 10a shows the distribution of the radiation intensity for
a Gaussian beam propagating through a medium with a
power distribution of the permittivity at the distance z = 2L,
for #~' = 1. Fig. 10b presents the relative error of calcu-
lation of the intensity of coherent radiation in the first
aberration maximum in the geometrical optics approxima-
tion as a function of the diffraction parameter. Note that the
relative error of calculation of the intensity of partially
coherent radiation for the ratio a./a, < 0.2 (Fig. 10c) is an
order of magnitude lower than the relative error for
coherent radiation for the same diffraction parameter.

Therefore, the ray solution converges to the exact
solution for partially coherent radiation faster than for
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Figure 9. Distributions of the average intensity of coherent and partially
coherent Gaussian beams in a medium with Ae(z, R) = (&, + i0,)[1—
exp(sz)] for L,/Ly =0.01 (1), 0.05(2), and 0.1 (3) (a) and depen-
dences of the relative error of calculation of the average radiation
intensity at the aberration maximum in the geometrical optics appro-
ximation on the diffraction parameter (b).
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Figure 10. Distributions of the average intensity of partially coherent
(1-3) and coherent (4—-6) Gaussian beams in a medium with
Ae(z,R) = (&5 +i0,)R™ for L,/Lg=0.1 (1), 0.2 (2), 0.3 (3), 0.01
(4), 0.02 (5) and 0.03 (6) (a) in the geometrical optics approximation
(solid curves) and dependences of the relative error of calculation of the
average radiation intensity at the first aberration maximum (b) and on
the beam axis (c) on the diffraction parameter.

coherent radiation. This is especially noticeable when
radiation propagates in media with strong aberrations.

The aim of our further study is to improve the method of
diffraction rays by taking into account the fluctuations of
the permittivity of a medium.
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