
Abstract. It is shown that a weak electromagnetic pulse
interacting with a copropagating ionisation front is converted
in the general case into three electromagnetic pulses with
higher and lower frequencies, which propagate in different
directions. The coefécients of conversion to these pulses (for
intensities) were found as functions of the frequency. The
electromagnetic energy is shown to decrease during this
conversion because of the losses for the residual electron
energy.
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1. Introduction

A wealth of papers were concerned with the interaction of
electromagnetic radiation with a plasma whose spatiotem-
poral density proéle travels with a velocity close to the
speed of light (see, e.g., Refs [1 ë 12]). This interest is caused
both by the possibilities of increasing the laser radiation
frequency and, for instance, by the use of frequency change
of ultrashort laser pulses upon the interaction with
travelling plasma density proéles to analyse the laser ë
plasma interaction (see, for instance, Ref. [13]). Note that
the statements of the problem of increasing the electro-
magnetic radiation frequency in Refs [1 ë 4] and Refs [5 ë
12] are signiécantly different: in Refs [1 ë 4], the frequency
of electromagnetic waves increases upon their reêection
from the plasma boundary which travels towards the
electromagnetic radiation, whereas in Refs [5 ë 12] the
interaction of copropagating electromagnetic radiation
and plasma proéle is considered.

In this paper, the interaction of a copropagating
ionisation front and a weak electromagnetic pulse is studied.
The approximation of slowly varying amplitudes underlies
the consideration of this interaction in the overwhelming
majority of papers (in view of the nonlinear nature of the
interaction between the laser radiation and the ionisation

front, this approximation was termed quasi-harmonic in
Ref. [6]). The frequency assigned to laser radiation in the
context of this approximation proves to be the function of
position on the travelling time proéle of the laser pulse. This
frequency mainly varies in the vicinity of strongest gradients
of the plasma electron density proéle, which travels in the
same direction as the laser pulse. The frequency variations
may be quite signiécant for a relatively long interaction
between the laser pulse and a copropagating density gradi-
ent.

However, within the above local approach to the deé-
nition of laser radiation frequency, a question remains as to
what is the frequency spectrum of the laser pulse after its
escape from the interaction region (from the plasma). Fur-
thermore, calculations performed by the particle-in-cell
method showed that quasi-harmonic description of the inte-
raction between the laser radiation and the ionisation front
is inadequate [12]. Indeed, the results of the one-dimensional
calculation of Ref. [12] imply that the spectrum of a laser
pulse turns out to be split after its passage through the gas:
one part of the spectrum is blue-shifted from the initial main
spectral component of the laser pulse at entry to the gas, and
the other is red-shifted. The intensity of the red satellite may
be higher or lower than the intensity of the blue one, depen-
ding on the pulse penetration depth in the gas. The quasi-
harmonic approximation does not take into account the
simultaneous existence of these two frequency components.

We will consider the interaction of a low-intensity pulse
(weak pulse) with a copropagating ionisation front in a one-
dimensional geometry employing an approximation linear in
the éeld of the weak pulse. The origin of the ionisation front
is of no signiécance; however, here it will be assumed to
arise from the ionisation of gas by an intense laser pulse. In
this case, the ionisation-front proéle will be assumed to be
stationary and its velocity to be equal to the group velocity
of propagation of the intense laser pulse in the plasma being
produced by this pulse.

Upon the interaction of the ionisation front with a weak
pulse, the latter splits in the general case into three pulses:
(1) the pulse transmitted through the ionisation front, whose
frequencies ot for a low gas density are signiécantly higher
than the characteristic frequencies o of the initial weak
pulse; (2) the delayed pulse, whose frequencies os

r do not
exceed the characteristic frequencies of the ionising pulse
and which propagates in the same direction as the ionisation
front, though with a lower velocity; and (3) the reêected
pulse (with frequencies ob

r ), which propagates in the
opposite direction relative to the front propagation.
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It follows from the relationships between the spectral
intensity densities of these three pulses [It(ot), I

s
r (o

s
r),

I b
r (ob

r )] and the spectral intensity density I(o) of the initial
pulse, in particular, that the weak-pulse conversion coefé-
cients (for the spectral intensity densities) to the frequency
components of the transmitted (ot), delayed (os

r), and
reêected (ob

r ) pulses depend substantially on the shape of
the ionisation front. Namely, when the front is smooth and
long enough, the maximum coefécient (as a function of the
frequency ot) of conversion to the transmitted pulse is
signiécantly higher than unity, whereas the coefécient of
conversion to the delayed pulse does not exceed unity and
decreases with decreasing frequency (see below, for instance,
Fig. 3).

Therefore, when some frequency component o passes
through the ionisation front, there occurs an increase not
only in its frequency (from o to ot), but also in its spectral
intensity density It ot� � in comparison with I(o).Despite this
increase, the total energy of its daughter pulses in this case
proves to be lower than the initial pulse energy. This de-
crease is caused by the energy losses of the initial pulse due
to the residual energy.

2. Basic equations

Consider a layer of a neutral gas whose density nat is
uniform along the x and y axes but nonuniform along the z
axis. We assume that the density nat(z) is constant over a
length Lg and decreases to zero on either side of the
nonuniform layer on scales signiécantly exceeding the
characteristic wavelengths of the electromagnetic waves in
this problem. The intense ionising electromagnetic pulse is
incident from the region z � ÿ1. The weak pulse is also
incident from the region z � ÿ1 and has an initial (outside
of the gas) spectral intensity density I(o).

We also assume that, érst, the ionising pulse in the
region z � ÿ1 is ahead of the weak pulse, so that the latter
reaches the ionisation front in the region of already initially
uniform gas and, second, the most intense part of the weak
pulse has enough time to interact with the ionisation front
over the length Lg. The second assumption implies, in
particular, that the length Lg should be long enough:
Lg > LpV=(Vph ÿ V ), where Lp is the characteristic length
of the weak pulse; Vph is its phase velocity; V is the velocity
of the ionisation front. Assuming that the ionisation front is
stationary, we obtain that the electron density proéle ne is a
function of only the coordinate z � zÿ Vt co-moving with
the ionisation front.

The electric éeld of the weak pulse E(z; t) (t � t),
polarised along the x axis (E � exE), obeys the wave
equation in the coordinates z and t of the laboratory frame
of reference (jx is the projection of free-electron current
density on the x axis):

1

c 2
q2E
qt 2
ÿ q2E

qz2
� 4p

c 2
qjx
qt
� 0 .

In the co-moving coordinates z � zÿ Vt and t � t, the
wave equation has the form

1

c 2
q2E
qt2
ÿ 2V

c

q2E
q z q t

ÿ 1ÿ V 2

c 2

 !
q2E

qz2
� k 2

p z� �E � 0; (1)

where k 2
p z� � � o2

p z� �=c 2 � 4pe2ne z� �=(mc 2);m and e are the
electron mass and charge; and c is the velocity of light.
Eqn (1) follows from the equation for the current density j
of the free electrons produced due to ionisation of the
material by the intense laser pulse, which oscillate under the
action of the weak-pulse electric éeld E:

q j
qt
� e2ne

m
E. (2)

Eqn (1) for the Fourier transform EO of the éeld E
[EO(z) �

��1
ÿ1 E(z; t) exp (iOt) dt] takes the form

q2EO

qz 2
ÿ 2iVO
c 2 ÿ V 2

qEO

q z
� O 2

c 2 ÿ V 2
EO �

o2
p�z�

c 2 ÿ V 2
EO.

By using this equation, we derive the equation for the
function ~EO�z� � EO�z� exp�iOVz=�c 2 ÿ V 2��:

q2 ~EO

qz 2
� c 2O 2

�c 2 ÿ V 2�2
�
1ÿ

�
1ÿ V 2

c 2

�
o2

p�z�
O 2

�
~EO � 0. (3)

Eqn (3) should be supplemented with boundary conditions.
They follow from the spatiotemporal evolution of the
electron density ne, which is constant outside of the
ionisation front:

ne�z� � nemax; z! ÿ1;
0; z! �1:

�
According to our formulation of the problem, the weak

pulse is incident on the ionisation front from the region of
the ionised gas (z! ÿ1), and therefore

~EO�z� �
~E0O exp�iK�O�z� � ~ErO exp�ÿiK�O�z�; z! ÿ1;
~EtO exp�icOz=�c 2 ÿ V 2��; z! �1;

8<: (4)

where

K�O� � O 2

c 2

�
1ÿ V 2

c 2

�ÿ2
ÿ k2pmax

�
1ÿ V 2

c 2

�ÿ1" #1=2
;

k2pmax � o2
pmax=c

2 � 4pe2nemax=�mc 2�; ~E0O is the incident-
wave amplitude; ~ErO is the amplitude of the wave reêected
from the ionisation front; ~EtO is the amplitude of the wave
transmitted through the ionisation front. Note that O is the
frequency and ~E0O, ~ErO Ë ~EtO are the amplitudes of the
waves in the co-moving frame of reference. To go over to
the laboratory frame of reference where the ionisation front
travels with the velocity V, we will write the éeld in the
region of fully ionised plasma as

EL�z; t� � 1

2p

��1
0

EL
0oe
ÿioftÿ�e�o��1=2z=cgdo�

��1
0

EL
ror

eÿiort�ikrz�or�zdor � c:c:; z! ÿ1;��1
0

EL
tot

eÿiot�tÿz=c�dot � c:c; z! �1

8>><>>: (5)
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where e(o) � 1ÿ o2
pmax=o

2 is the permittivity of the elec-
tron plasma component and krz(or) is the projection of the
wave vector of the reêected wave on the z axis, with k2rz�or�
� o2

r e�or�=c 2. By comparing the expressions for E in the
laboratory and co-moving frames of reference [expressions
(4) and (5), respectively], we obtain the relations between
the frequencies of incident (o), `reêected' (or), and trans-
mitted (ot) waves in these frames of reference, and also the
expression for the projection of the wave vector of the
`reêected wave':

O � o
�
1ÿ V

c
�e�o��1=2

�
; (6)

ot � o
�
1ÿ V

c
�e�o��1=2

��
1ÿ V

c

�ÿ1
: (7)

or � o
�
1ÿ 2

V

c
�e�o��1=2 � V 2

c 2

��
1ÿ V 2

c 2

�ÿ1
;

(8)

krz �
o
c

2
V

c
ÿ
�
1� V 2

c 2

�
�e�o��1=2

( )�
1ÿ V 2

c 2

�ÿ1
:

It follows from the condition that a given pulse is incident
on the ionisation front from the left (i.e. from the region
z � ÿ1), which corresponds to K5 01, that the produc-
tion of reêected and transmitted waves should be consi-
dered when the inequality

c�e�o��1=2 > V (9)

is fulélled. Since c�e(o)�1=2 � Vg(o) is the group velocity of
the wave with the frequency o, it is clear that relation (9)
expresses the natural condition for the interaction of this
wave with the ionisation front: its group velocity should be
higher than the propagation velocity of the ionisation front.

The group velocity of the most intense frequency compo-
nent o0 of the ionising pulse will be selected as the velocity
propagation V of the ionisation front:

V � c�e(o0)�1=2

� c
ÿ
1ÿ o2

pmax=o
2
0

�1=2 � c
ÿ
1ÿ nemax=nc

�1=2
;

(10)

where nc � 4pe2=(mo2
0) is the critical electron density for

the o0 frequency. The condition (9) and the equality (10)
determine the frequencies of the waves that interact with
the ionisation front:

o > o0 . (11)

It follows from relation (7) that the frequencies of waves
transmitted through the ionisation front satisfy the inequal-
ity

ot > otmin � o0

�
1� V

c

�
� o0

n
1� c�e(o0)�1=2

o
: (12)

The dependence ot(o) is shown in Fig. 1.
The group velocity of reêected waves is deéned by the

relation Vgr � c 2krz=or, which is standard for plasmas and
can be obtained from expression (8) by direct differentiation
with respect to o:

Vgr �
dor

dkrz
� dor

do

�
dkrz
do

�ÿ1
.

The projection of the wave vector of reêected wave (8)
proves to be a sign-variable quantity. Indeed, for o � o0 it
follows from expressions (8) and (10) that krz �
o0�e(o0)�1=2=c > 0. For o! �1, we have krz � ÿ(o=c)
�(cÿ V)=(c� V)< 0. When the inequality (11) is fulélled,
krz changes sign when

o � omin � o0

o0

opmax

�
2ÿ o2

pmax

o2
0

�
; (13)

and at the point o � omin it turns out that

ormin � opmax. (14)

Therefore, the high-frequency components (o > omin)
are reêected from the ionisation front in such a way that
they propagate in the laboratory frame of reference in the
direction opposite to that of the ionising pulse. In this case,
the spectrum of reêected components lies above the plasma
frequency: or > opmax (see Fig. 1). The frequency compo-
nents that lie in the interval (o0, omin) are reêected from the
ionisation front without changing the direction of prop-
agation in the laboratory frame of reference; the reêected-
wave frequencies lie in the interval (opmax, o0). In this case,
the group velocity is Vgr � c�e(or)�1=2 < V � c�e(o0)�1=2, and,
therefore, the frequency components lying in the (o0, omin)
interval slow down upon reêection from the ionisation
front.

Equation (3) in combination with the boundary con-
ditions (4) allows us to determine the relation between the
amplitudes of incident, reêected, and transmitted waves in
the co-moving frame of reference. To determine the relation
between these quantities in the laboratory frame of refer-
ence, we should deéne more precisely the expression for the
reêected component. According to the above discussion, the
waves reêected in the co-moving frame of reference are sub-
divided in the laboratory frame into reêected, and delayed
waves. The former propagate in the direction opposite to the
z axis direction [the amplitude E Lb

ror
, the branch ob

r of the

or=o0;

ot=o0;

or

6

4

2

0

opmax=o0

1 3 5 7 o=o0

omin=o0

ot

Figure 1. Dependences ot(o) and or(o) for nemax=nc = 0.25, which
correspond to opmax=o0 � 0:5 and omin=o0 � 3:5.
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frequency (8) lies in the interval (opmax,+1) and corre-
sponds to o > omin (see Fig. 1)]. The latter [the amplitude
E Ls
ror

, the branch os
r of the frequency (8) lies in the interval

(opmax, o0) and corresponds to o0 < o < omin (see Fig. 1)]
propagates in the z axis direction:��1
0

EL
ror

eÿiort�ikr z�or�zdor �
��1
opmax

ELb
ror

eÿiorft��e�or��1=2z=cgdor

�
� o0

opmax

ELs
ror

eÿiorftÿ�e�or��1=2z=cgdor. (15)

To take advantage of the results of solution of Eqn (3) in
combination with the boundary conditions (4) in the
laboratory frame of reference, we employ the following
relations:

~E0O � EL
0o�dO=do�ÿ1;

~EtO � EL
tot
�dot=do��dO=do�ÿ1;

(16)

~ErO �
ELs
ror
�do s

r =do��dO=do�ÿ1; o2
pmaxo

ÿ1
0 4O4opmax;

ELb
ror
�dob

r =do��dO=do�ÿ1; O5opmax:

8<: (17)

3. Energy conservation law

From the Maxwell equations for the electric (E � exE ) and
magnetic (H � eyH ) éelds of the weak pulse, we can readily
obtain, in view of Eqn (2), the relation

q
qz

��1
ÿ1

c

4p
EHdt � ÿ

��1
ÿ1

qne
qt

mV 2
E �z; t�
2

dt; (18)

where

VE�z; t� �
e

m

� t

ÿ1
E�z; t 0�dt 0

is the nonrelativistic velocity of an electron in the electric
éeld of the weak laser pulse. The right-hand side of
expression (18) is the residual energy density (compare, for
instance, with the corresponding formula of the `Basic
equations' section in Ref. [14]) acquired by electrons from
the weak pulse at the instant of ionisation. This energy
transfer is caused by the nonadiabaticity of ionisation.

By integrating (18) with respect to z between the limits
ÿ1 and �1; we obtain the expression��1

0

I�o�do �
��1
otmin

It�ot�dot �
��1
opmax

I br �ob
r �dob

r

�
� o0

opmax

I sr �os
r�dos

r �
��1
ÿ1

��1
ÿ1

qne
qt

mV 2
E �z; t�
2

dtdz; (19)

which gives the energy conservation law for a weak pulse.
Note that It(ot); I

s
r (o

s
r ); I

b
r (o

b
r ) and I(o) represent the

spectral intensity densities outside of the gas layer. To take
advantage of relation (16), (17), and (19), the éelds EL

0o,
ELs
ror
;ELb

ror
in the plasma (the éeld EL

tot
is located outside the

plasma), which appear in expressions (16) and (17), should
be related to the incident and reêected éelds outside of the
gas layer. When the boundaries of the gas layer are smooth

enough, it is possible to derive these relations in the
geometrical optics approximation, which gives

I�o� � c

8p

�
e�o��1=2���EL

0o

���2; I s
r �o s

r � �
c

8p

�
e�os

r�
�1=2���ELs

ror

���2;
I b
r �ob

r � �
c

8p

�
e�ob

r �
�1=2���ELb

ror

���2: (20)

In combination with relations (16) and (17), formulas (20)
allow one to determine the weak-pulse conversion at the
ionisation front, provided the problem (3), (4) is solved.

4. Ionisation front for different polarisations of
the intense pulse

4.1 Circularly polarised pulse

We now discuss the ionisation front model. Fig. 2 shows
the density proéle for the electrons produced due to tunnel
ionisation of hydrogen by circularly polarised Gaussian
laser pulse with a wavelength of l0 � 0:8 mm, the maximum
intensity Imax � 8:5� 1016 W cmÿ2, and the FWHM of
52 fs. The calculation was performed taking into account
the tunnel ionisation of atoms by the laser-pulse éeld (see,
for instance, Ref. [14]). To simplify the analytical treatment
the electron density proéle is approximated in the following
way:

ne�z� � nemax; z < 0;
ne max=cosh

2�z=a�; z5 0

�
: (21)

The result of approximation is given in Fig. 2.

The solution of Eqn (3) with the electron density proéle
(21) and the boundary conditions (4) has the form (for
z5 0)

ne=nemax

2

0.8

1

0.6

0.4

0.2

0
ÿ1 0 1 2 3 z=a

Figure 2. Density proéle for the electrons produced upon the tunnel
ionisation of hydrogen by circularly (1) and linearly polarised (2)
Gaussian laser pulses with a wavelength l0 � 0:8 mm, a peak intensity
Imax � 8:5� 1016 W cmÿ2, and a FWHM of 52 fs, and approximation of
this proéle by the dependence (21) (dashed curve) for a � 0:9 mm in the
case of circularly polarised pulse. The point z � 0 corresponds to a laser
pulse intensity of � 3:2� 1014 W cmÿ2.
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~EO�z� � ~EtO�4u�1ÿ u��ÿiaOc�2�c 2ÿV 2��ÿ1F�a; b; g; u�; (22)

where u � �1� exp (2z=a)�ÿ1; F�a; b; g; u) is the hypergeo-
metric function [15]; a�O� � 0:5ÿ ip�O�a� (0:25ÿ a2G)1=2;
b(O) � 0:5ÿ ip�O�a ÿ (0:25 ÿ a2G)1=2; g�O� � 1ÿ ip�O�a;
p(O) � (O=c)(1ÿ V 2=c 2)ÿ1;G � k2pmax�1ÿV 2=c 2�ÿ1 � o2

0=c
2.

By sewing together the solution (22) with the boundary
condition (4) for z4 0, we obtain

~EtO �
2���
p
p 2ÿiaOc=�c

2ÿV 2�

�Gÿ1��a� b� 1�=2�G��a� 1�=2�G��b� 1�=2�
1� 2i

K�O�a
G��a� 1�=2�G��b� 1�=2�

G�a=2�G�b=2�

~E0O; (23)

~ErO �
1ÿ 2i

K�O�a
G��a� 1�=2�G��b� 1�=2�

G�a=2�G�b=2�
1� 2i

K�O�a
G��a� 1�=2�G��b� 1�=2�

G�a=2�G�b=2�

~E0O; (24)

where G is the Euler gamma function. Note that for a! 0,
which corresponds to a single-step electron density proéle,
relations (23) and (24) take the form

~EtO �
2K�O�

K�O� � p�O�
~E0O; ~ErO �

K�O� ÿ p�O�
K�O� � p�O�

~E0O: (25)

Fig. 3 shows the dependences of conversion coefécients
of an incident-pulse frequency component o to the delayed
pulse [Rs(o

s
r) � I s

r �os
r(o)�=I(o)] and to the pulse [T (ot) �

It�ot(o)�=I(o)] transmitted through the ionisation front
obtained from expressions (23) ë (25) for o2

pmax=o
2
0 � 0:1,

l0 = 0.8 mm, and a � 0:9 mm. Hereafter, we will consider
the case of a relatively tenuous gas for which nemax=nc 9 0:1.
Then, the conversion coefécient Rb(o

b
r ) � I b

r �ob
r (o)�=I�o)

to the backward reêected pulse proves to be low everywhere,
except a small vicinity of the point o � omin. The spectral
components of the weak pulse near o � omin are reêected
from the travelling ionisation front with frequencies close to
the frequency opmax. The maximum conversion coefécient
to the backward reêected component is achieved when the
ionisation front represents a step. In the vicinity of ob

r �
opmax, we have

Rb�ob
r � �

V

c

�
1� V 2

c 2

��
1� V

c

�ÿ4�
2opmax

ob
r ÿ opmax

�1=2
:

The conversion coefécient Rs(o
s
r) to the delayed pulse

behaves similarly in the vicinity of os
r � opmax, as one can

see from Fig. 3 for low os
r (opmax � 0.316o0).

One can also see from Fig. 3 that the dependence of
conversion coefécients to the delayed pulse and to pulse
transmitted through the ionisation front on the correspond-
ing frequencies os

r and ot substantially depends on the shape
of ionisation front. The highest conversion coefécient (to the
transmitted pulse) is achieved with increasing frequency at a
more smooth ionisation front. To understand the reason for
this difference, we consider other possible shapes of the
ionisation front.

4.2 Linearly polarised pulse

When the ionising laser pulse is linearly polarised, the
electron density proéle has the form of steps of length
pV=o0 (see Fig. 2 and also, for instance, Ref. [16]). We

approximate this proéle, which is generally multi-step, by
the expression:

ne�z� � nemaxy�ÿz�

�
XN
l�1

nely�lpV=o0 ÿ z� y�zÿ �lÿ 1�pV=o0�; (26)

where nel (lower than nemax) are the electron densities at the
steps that decrease with l, and y(u) is the Heaviside step
function. For N � 1 (a two-step proéle), the solutions of
(3), (4) for ~EtO and ~ErO have the form

~EtO �

2K�O)K1�O� exp�ÿipp�O�V=o0�
K1(O)�K�O)� p�O�� cosjÿ i�K 2

1 (O)� p�O�K�O�� sinj
~E0O,

(27)

~ErO �
(28)

K1(O��K�O� ÿ p�O�� cosj� i�K 2
1 (O� ÿ p�O�K�O�� sinj

K1(O��K�O� � p�O�� cosjÿ i�K 2
1 (O)� p�O�K�O�� sinj

~E0O;

where

K1(O) �
O2

c 2

�
1ÿ V 2

c 2

�ÿ2
ÿ k2p1

�
1ÿ V 2

c 2

�ÿ1" #1=2
;

k2p1 � 4pe2ne1=�mc 2�; j � pK1(O)V=o0.

T

a

b

2

1

0
2.0 2.4 2.6 ot=o0

Rs

0.8

0.6

0.4

0.2

0
0.4 0.6 0.8 os

r=o0

Figure 3. Dependences of the conversion coefécients T(ot) (a) and
Rs(o

s
r ) (b) obtained from expressions (23) and (24) for the density proéle

(21) (solid curves) and from expressions (25) for a single step (dashed
curves) for o2

pmax=o
2
0 � 0:1; l0 = 0.8 mm, and a � 0:9 mm (otmin � ot�o

� o0� � 1:95o0;T(otmin) � 2:86).
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Fig. 4 shows the dependences of the coefécients of
conversion of an incident-pulse frequency component o
to the delayed pulse [Rs(o

s
r)] and to the pulse transmitted

through the ionisation front [T (ot)], which were obtained
from expressions (27) and (28) for o2

pmax=o
2
0 � 0:1, l0 �

0.8 mm, and ne1 � nemax/2. One can see that the behaviour of
conversion coefécients in the presence of an `intermediate'
step with the density ne1 is signiécantly different from their
behaviour in the case of a sharp, single-step proéle of the
electron density. In the delayed-pulse spectrum Rs there
appear peaks related to the rereêection of electromagnetic
waves between the two steps.

The duration of interaction between the weak pulse and
the ionisation front becomes longer upon such repeated
reêection, as if there occurs a capture of electromagnetic
radiation. In this case, the electromagnetic waves slowed
down at the érst step (with the density ne1) are reêected
forward (in the direction of front propagation) by the rear
step (with the density nemax). This rereêection results in the
decrease in the conversion coefécient to the delayed pulse
and in the increase in the conversion coefécient T (ot) to the
pulse with an increased frequency (see Fig. 4). This trend in
variations in the conversion coefécients is also retained with
increasing the number of steps (Fig. 5). Note that the
increase in the number of steps accompanied by a simulta-
neous decrease in their height brings the density proéle
closer to the smooth proéle at which the conversion to the
delayed pulse is suppressed compared to the conversion to
the transmitted pulse (see Fig. 3).

5. Energy conservation law for spectral intensity
densities

The conversion coefécient to the pulse with higher
frequencies (to the transmitted pulse) turns out to be
higher than unity (see Figs 3 ë 5). This result should be
speciéed from the viewpoint of the energy conservation law.
To show that the total energy of electromagnetic radiation
is lower than the total energy of the weak pulse, we rewrite
expression (19) in the differential form:

I�o�do � It�ot�dot � I b
r �ob

r �dob
r � I sr �os

r�dos
r � dR�o�;

where dR(o) is the term related to the residual electron
energy. From this, we obtain

1ÿ Tt�ot�
dot

do
ÿ R b

r �ob
r �
do b

r

do

ÿ R s
r �os

r�
dos

r

do
� D(o) � dR�o�

do
: (29)

This relation represents the energy conservation law for
the conversion coefécients. Fig. 6 shows the dependence
D(o) (29) in the case of a éve-step electron density proéle
(26) and the same parameters as in Fig. 5. The positive
values of D prove the existence of energy losses of the
electromagnetic pulse upon its interaction with the travelling
ionisation front.
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Figure 4. Dependences of the conversion coefécients T(ot) (Â) and
Rs(o

s
r) (b) obtained from expressions (27) and (28) for a two-step proéle

(26) (solid curves) and from expressions (25) for a single step (dashed
curves) for o2

pmax=o
2
0 � 0:1, l0 = 0.8 mm, and ne1 = nemax/2.
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Figure 5. Dependences of the conversion coefécients T(ot) (Â) and
Rs(o

s
r) (b) obtained from expressions (27) and (28) for a éve-step proéle

(26) (solid curves) and from expressions (25) for a single step (dashed
curves) for o2

pmax=o
2
0 � 0:1, l0 = 0.8 mm, and nel � (5ÿ l )nemax=5

(l � 1; . . . ; 5):
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6. Conclusions

Therefore, a weak electromagnetic pulse interacting with a
copropagating ionisation front travelling with the velocity
V � c�e(o0)�1=2 generally splits into three pulses: (1) a pulse
transmitted through the front, the frequencies of each of its
components being increased; (2) a delayed pulse, which
propagates through the ionised gas in the same direction as
the ionisation front, lags behind it, and has frequencies
lower than o0; and (3) the reêected pulse, which propagates
in the direction opposite to the propagation direction of the
ionisation front.

In the region of the extended ionisation front, the
electromagnetic radiation is captured resulting in the
suppression of the coefécient of intensity conversion to
the delayed pulse (of a lower frequency) compared to the
conversion coefécient to the pulse (of a higher frequency)
transmitted through the front (see, for instance, Fig. 3). A
part of the electromagnetic energy is converted to the
residual electron energy, which is described by the energy
conservation law (29) formulated for the intensities.

According to the above discussion, the propagation
conditions for the delayed (with a frequency lower than
o0) and transmitted (with a frequency higher than o0)
pulses are signiécantly different: the low-frequency pulse
propagates through an ionised gas, while the high-frequency
pulse through a neutral one. As a result, to determine the
spectrum of laser radiation transmitted through the gas
being ionised, the three-dimensional dynamics of electro-
magnetic pulse propagation should be considered, because
the low-frequency pulse is to a greater extent subjected to
the ionisation refraction. The latter circumstance may be
responsible for observation in the experiments [12] of only
the blue shift of the spectrum of laser radiation transmitted
through the gas being ionised, whereas in the one-dimen-
sional calculations [12] a red satellite was also observed.
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