
Abstract. New possibilities of laser êuorimetry offered by the
use of algorithms for solving inverse problems based on arti-
écial neural networks are demonstrated. A two-component
mixture of polyatomic organic compounds is analysed by
three methods of laser êuorimetry: a direct analysis of the
êuorescence band, the kinetic êuorimetry (when durations of
the laser pulse and the detector gate pulse are comparable
with the êuorescence lifetimes or exceed them), and the
saturation êuorimetry. The numerical experiments showed
that the use of artiécial neural networks in these methods
provides a high practical stability of the solution of inverse
problems and ensures a high sensitivity and a high accuracy
of determining the contribution of components to êuorescence
and of measuring molecular photophysical parameters, which
can be used for the identiécation of components.

Keywords: nonlinear êuorimetry, kinetic spectroscopy, polyatomic
organic compounds, inverse problems, artiécial neural networks.

1. Introduction

Fluorimetry is an efécient method for studying polyatomic
organic compounds (POCs) [1]. Interest in the development
of the methods for studying and assay of POCs is caused by
their key role in many problems of science and technology,
for example, in laser physics [2], as well as by their wide
abundance in the nature, for example, in natural waters [3].
The main advantage of êuorimetry of POCs is its high sen-
sitivity, while its only important disadvantage is low selec-
tivity related to a large width (several tens of nanometres)
of the structureless (or weakly structured) êuorescence
bands of POCs observed under usual conditions. This dis-
advantage is distinctly manifested in the analysis of mix-
tures of POCs whose êuorescence bands are overlapped,
especially, when the component to be determined makes a
considerably lower contribution to the total êuorescence
band than other (background) components. This problem is

now very important, for example, in the êuorescence dia-
gnostics of the oil pollution (OP) of natural waters, when a
small contribution of oil pollution to the total êuorescence
band, which is mainly determined by aquatic humic sub-
stance (AHS), should be measured [3]. It seems likely that
the problems of separating êuorescence contributions from
several POCs and identifying the latter are encountered
quite often.

In this paper, we consider three methods for determining
contributions from the integrated êuorescence bands of
components in POC mixtures and for measuring some pho-
tophysical parameters of POCs. All these methods use the
technique of artiécial neural networks (ANNs). Using `nu-
merical experiments', we analyse the possibilities of the
following methods: analysis of the êuorescence spectrum of
a mixture of êuorescing components, érst of all for separa-
ting a small contribution of one of them; kinetic êuorimetry
when the durations of the exciting pulse and the detector
gate pulse are comparable with the êuorescence lifetimes or
longer; and nonlinear êuorimetry. All the three approaches
assume laser excitation, which is either essential (third ap-
proach) or improves the quality of the initial data (érst and
second approaches). The numerical simulation was per-
formed for the values of parameters corresponding to the
real characteristics of the laser êuorimeter equipped with a
gated optical multichannel analyser used in our laboratory
and to the characteristics of real objects: organic dyes and
natural organic complexes in water. We also used the
experimental êuorescence spectra of AHS and oil.

2. Solution of inverse problems using ANNs

Mathematical algorithms and methods based on the use of
ANNs permit the efécient solution of a variety of problems
in the éeld of prediction, estimates, classiécation, and re-
cognition of patterns of different types [4]. Recently, ANNs
were also applied in laser spectroscopy [5]. The eféciency of
ANNs in the solution of problems of saturation êuorimetry
was demonstrated in papers [6 ë 8].

It is known [4] that the accuracy of the reconstruction of
parameters by the trained network is estimated using the
examination data set. To verify the network operation in the
presence of noise in the input data, we produced additional
`noisy' examination data sets by adding the noise with the
amplitude from 1 to 10% of the êuorescence intensity to
each channel of the main examination data set (at each point
of the kinetic curve or the êuorescence saturation curve).
This procedure was performed ten times for each main
examination data set, which provided the required averaging
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over the noise realisations in the calculations of statistical
quantities.

The correctness of the choice of the ANN architecture
and of its training was controlled, for example, by the value
of d calculated for the examination data set, which repre-
sents the root-mean-square error of the parameter reconst-
ruction normalised to the range of variation of the corres-
ponding variable. Note that the training of the network
using noisy data can substantially reduce the effect of the
input data noise on the algorithm performance. The training
is performed by presenting to the network the patterns to
which a random noise from the speciéed noise amplitude
range is added each time.

Two essentially different ANN-based formulations of
the inverse spectroscopy problem are possible, one of them
being based on the experiment and the other one on simu-
lations. In the érst case, the network is trained using the
experimental data set for which the solutions of the inverse
problem are known a priori. The main advantage of this
approach is an automatic consideration of all the factors
affecting the shape of the observed curve, while its main
drawback is the diféculty of providing the required repre-
sentativity of the training set.

In the second case, the network is trained using the data
obtained by numerical solving the direct problem. The main
advantage of this approach is the possibility of providing
the required representativity of the training set both over
the range of variations of parameters and in the number of
examples. The main disadvantage of this method is the
diféculty of developing the adequate analytic model for the
solution of the direct problem, which could take into ac-
count all the factors affecting the observed curve, including
the type and amplitude of noise.

In this paper, all the results were obtained using the
architecture of a éve-layer perceptron trained with the lear-
ning rate 0.01 and the moment 0.9 using the error back-pro-
pagation algorithm [4]. We found that the results are mainly
determined not by the ANN architecture or the methods of
its training but by the method of the formation of the data
set and by the fundamental properties of the ANN as an
algorithm of data processing.

3. Separation of contributions from the POC
mixture components by analysing its
êuorescence band using the ANN

A standard procedure for separating the contributions of
the components of a mixture to the total spectrum is based
on the construction of difference spectra [1]. It is obvious
that in this case, the reliable results can be obtained if the
intensities of the difference spectra exceed the noise and the
error of measurements. Variations in the parameters of the
êuorescence bands of components in the mixture (for
example, the bandwidth and the distance between the
bands) cause large errors in the measurements of contri-
butions from the components. Let us elucidate whether the
ANN technique has any advantages over the method of
difference spectra.

We will study this problem for the example of the OP ë
AHS mixture in seawater. To énd out the limiting possi-
bilities of ANNs in the determination of êuorescent
contributions by direct analysis, we performed the following
numerical experiment. We used the êuorescence spectra of
model solutions of fulvic acids (FAs) and oil emulsion in

water. These base êuorescence spectra are shown in Fig. 1
together with the Raman band of water, which can be used
as an internal reference to calibrate the êuorescence band
[9]. In this case, it is convenient to use the êuorescent
parameter F0 � N 0

flu=NRS � sflun0=�sRSnRS�, where N 0
flu is

the number of êuorescence photons (in the absence of
êuorescence saturation [6]); NRS is the number of Raman
photons; sflu and n0 are the êuorescence cross section and
the concentration of êuorophore molecules, respectively;
and sRS and nRS are the Raman cross section and the con-
centration of Raman-active water molecules, respectively.

The problem was solved assuming the absence of inter-
action between the components. The spectra of the mixture
were simulated as linear superpositions of the initial (base)
spectra of the components with variable weight coefécients.
As these coefécients, the partial values of the êuorescent
parameter F0 were used. Using this model we calculated all
the required data sets by varying the parameter F fa

0 from
0.01 to 20 (for FAs) and the parameter F op

0 from 0.01 to 20
(for OP). Using the ANN, we reconstructed the parameters
F fa

0 and F op
0 and determined their average relative devi-

ations efa and eop from real values (i.e., the errors of the re-
construction) (Fig. 2).

In the ideal case (in the absence of the input data noise),
the ANN was capable of determining the OP contribution
with the êuorescent parameter Fop

0 down to 0.02 against the
FA êuorescence background with the parameter F fa

0 up to
20.0. In this case, the error of measurement of the parameter
F op

0 did not exceed 10%. The error decreased with increa-
sing F op

0 , so that the error averaged over the range of
variation of F op

0 and F fa
0 was about 2%, both for Fop

0 and
F fa

0 . The addition of the 3% noise to the input data conside-
rably deteriorated the result. In this case, we could measure
with the 10% error F op

0 down to � 1, which nevertheless
corresponds to a rather high accuracy and sensitivity of the
algorithm. The effect of the input data noise can be strongly
decreased by training the network using the noisy spectra
(cf. curves 2 and 3 in Fig. 2).

Note that for light oil and for petroleum product emul-
sions in water, the parameter Fop

0 =0.02 corresponds, ac-
cording to our measurements, to the concentration of about
0.1 ë 0.4 mg litre ë 1 and F op

0 =1, to the concentration 5 ë

Iflu (rel. units)
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Figure 1. Fluorescence spectra of model solutions of FA ( 1 ), light oil
( 2 ), and their mixture ( 3 ) in distilled water (lexc � 337 nm).
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20 mg litre ë 1, whereas the permissible concentration of OP
in natural waters is 50 mg litre ë 1 [10]. For AHS (and FA),
the parameter F op

0 =20 corresponds to the concentration of
the order of several milligrams per litre, which is typical for
coastal seawaters.

The high sensitivity and accuracy of the method were
achieved because we used the quasi-model approach by
constructing the model spectra using a combination of the
experimental base spectral components. In this way, we
obtained a large training data set, and the data obtained
with the help of the same model were presented to the
network. In this case, the sensitivity and the accuracy of the
method were restricted by the properties of the network
only, which played the role of the instrumental limit.

4. Stability of solutions to input data errors
and variations in the model parameters

The problem of determining the contributions of spectral
components to the total êuorescence band that we are
solving here belongs to a class of inverse problems. Con-
sider the practical stability [11] of the solution of our prob-
lem to the input data noise and to variations in the model
parameters. We will follow the approach developed in Ref.
[8] for the inverse problem of nonlinear êuorimetry. As
mentioned above, the noise in the spectrum presented to the
ANN results in a drastic increase in the error of measuring
of the parameter F op

0 . By training the ANN using noisy
spectra, the error can be somewhat reduced. These effects
are the manifestations of the practical instability and they
illustrate one of the methods for eliminating this instability
(Fig. 3).

As the elements of the model whose variation can result
in the solution instability with respect to the model, we
considered the widths of the êuorescence bands of the
components of the OP ëAHS mixture and the distance
between the maxima of these bands. The shape of the
band was distorted so that its FWHM Dl changed, while the
wavelength dependence found by the group method of data
handling [12] was preserved. Fig. 4 shows the errors d(F fa

0 )
and d(F op

0 ) of the parameter reconstruction for the exami-
nation set as functions of the relative change in the width of
the êuorescence band of FA. Qualitatively and quantitati-

veley similar results have been obtained for changes in the
width of the êuorescence band of FA. Qualitatively and
quantatively similar results have been obtained for changes
in the width of the êuorescence band of OP.

One can see from Fig. 4 that the error of measurements
of F fa

0 and F op
0 increases from 0.3 to 10% as the êuores-

cence bandwidth increases by 65% for F fa
0 and by 35% for

F op
0 and when the êuorescence bandwidth decreases by

25% for F fa
0 . The stability of the solution to the variation in

another parameter of the model, the distance Dlmax between
the maxima of the êuorescence bands of OP and AHS, also
proved to be rather high: the error of measurements of
êuorescent parameters F fa

0 and F op
0 increased to 10% when

Dlmax changed by 20 ë 30 nm.

Therefore, the obtained results considerably decrease the
requirements to the accuracy of a priory information on the
shape and the mutual position of the êuorescence bands of
the mixture components.

5. Analysis of POC mixtures by the method of
kinetic êuorimetry

In the variant of êuorimetry considered below, the infor-
mation on the mixture components is obtained from the ki-
netic curve, which represents the dependence of the number
Nflu of êuorescence photons integrated over the spectrum in
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Figure 2. Dependences of the error eop of measurement of the parameter
F op

0 on F op
0 for F fa

0 � 19:7 and for the presentation of the data without
noise ( 1 ) and the data with the 3% noise ( 2, 3 ) to the network trained
without noise ( 1, 2 ) and with noise ( 3 ).
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Figure 3. Dependences of the error eop of measurement of the parameter
F op

0 � 1:7 on the input data noise amplitude A for F fa
0 � 9:7 for the

ANN trained without noise ( 1 ) and with noise ( 2 ).
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Figure 4. Dependences of the errors d(F fa
0 ) and d(Fop

0 ) of measurement
of the êuorescence parameters of FA and light oil on the ratio of the
widths of the distorted (Dl 0) and initial (Dl) êuorescence bands of FA.
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the gate pulse of a detector (the gate-pulse duration is tg)
on its delay td with respect to the laser pulse exciting êuo-
rescence. For a mixture of two êuorophores, the parameters
to be measured are the êuorescence lifetimes t1 and t2 and
the ratio of their êuorescent parameters ¶01/¶02.

The kinetic curve is represented in the form (for a
rectangular gate pulse)

Nflu�td� �
�1
0

dl
� td�tg

td

Iflu�t; l�dt; (1)

where Iflu(t; l) is the êuorescence intensity at the wavelength
l at the instant of time t. A standard procedure for measu-
ring parameters t1; t2 and ¶01/¶02 from the detected depen-
dence (1) is based on the minimisation of the residual be-
tween experimental and calculated kinetic curves by varying
the required parameters [1]. The stronger the inequalities

tp < t1;2; tg < t1;2; (2)

where tp is the laser pulse duration, the better the result of
this procedure. As tp and tg approach t1;2, the errors of
measurement of t1; t2, and ¶01/¶02 drastically increase.
Our aim was to énd out how the application of the ANN
for the solution of the inverse problem will affect the accu-
racy of measurements t1; t2 and ¶01/¶02 when the condi-
tions (2) are violated.

We performed the following numerical experiment. The
kinetic curve Nflu(td) for the mixture was represented by a
sum of kinetic curves for individual components. The êuo-
rescent parameters F0i (i � 1; 2) were deéned by the expres-
sions

F0i �
�1
0

Nflu i�t�dt=NRS; (3)

where NRS is the number of Raman photons for water or
other solvent.

By varying the times t1; t2 and the ratio ¶01/¶02, we
obtained a set of kinetic curves Nflu(td) for training the
ANN. Thus, we used the model approach (see secton 2). We
considered the case when the time t1 was varied from 1 to
13 ns, while the time t2 was varied from 8 to 20 ns (but
the condition t2 > t1 was always fulélled), and the ratio
F01=F02 was varied from 1 to 10.

In the calculation of model kinetic curves, the laser
pump pulse was described by a Gaussian with the width
tp � 10 ns, while the gate pulse was assumed a rectangular
pulse of duration tg � 10 ns. We presented the calculated
kinetic curves to the trained network and determined the
parameters t1; t2 and F01=F02. Fig. 5 shows the relative
error e of measurements of the parameters averaged over the
entire examination set as a function of the input data noise
amplitude. The analysis of these dependences and other
results obtained for this problem lead to an important and
quite unexpected conclusion.

The error of measurement of êuorescence lifetimes t1
and t2 is very small (3%ë 5% for the spectra without noise
and no more than 8% for the spectra with noise) nearly
over the entire range of variation of t1 and F01=F02. Note
once more that these results were obtained for the case when
the durations of the laser and gate pulses (10 ns) were longer
than t1 and of the order of t2, while the gate-pulse position
step was 2 ns, i.e., of the order of t1. The error of mea-
surement of the ratio F01=F02 of êuorescent contributions is

much greater than that for t1 and t2 and strongly depends
on the range where the values of t1 and F01=F02 fall.

6. Possibilities of saturation êuorimetry in the
analysis of mixtures of organic compounds

In Refs [6 ë 8], nonlinear êuorimetry (saturation êuorim-
etry) was studied as a method for measuring photophysical
parameters of POCs, such as the absorption cross section,
the excited-state lifetime of POCs, the triplet-state quantum
yield, etc., in one-component solutions. The best results in
the solution of the corresponding inverse problems were
provided by ANNs trained on model êuorescence-satu-
ration curves. The photophysical parameters determined in
this way can be used for identiécation of POCs. It would be
attractive to apply this method to POC mixtures, at least to
two-component mixtures. Obviously, this problem in its
full-scale statement is much more complicated than for one-
component objects [6]. A minimal set of parameters re-
quired for diagnostics of êuorophore complexes (mixtures)
includes the excited-state lifetimes t1 and t2 of the êuoro-
phores, their absorption cross sections s1 and s2, and the
ratio F01=F02 of their êuorescent contributions.

Such a éve-parametric inverse problem is a very comp-
licated one to be solved suféciently accurately `in a single
step', even with the help of an ANN. However, a combi-
nation of two spectroscopic methods, kinetic spectroscopy
and êuorescence saturation spectroscopy, allows the solu-
tion of this problem. As an example illustrating this appro-
ach, we present the results of the solution of a two-para-
metrical inverse problem of saturation êuorimetry, in which
the absorption cross sections s1 and s2 for a two-êuor-
ophore system (or a mixture of two organic compounds)
are determined. It is assumed that the values of t1, t2 and
F01=F02 are known and used as éxed parameters of the
model. They can be preliminary measured by the method of
kinetic êuorimetry (see section 5).

The initial data are the êuorescence saturation curves for
a mixture of êuorophores, which were calculated by the
method developed for nonlinear êuorimetry of single-êuoro-
phore system [6]. The saturation curves were calculated for
s1 and s2 varied from 10ÿ17 to 10ÿ16 cm2. The results of the
solution of this problem are presented in Table 1, where are
also given the results of the solution of another inverse prob-
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Figure 5. Dependences of the relative error e on the noise amplitude A in
the input data for the measurements of the parameters F01=F02 ( 1, 2 ), t1
( 3, 4 ), and t2 ( 5, 6 ) using the ANN trained without noise ( 1, 3, 5 ) and
with noise ( 2, 4, 6 ).
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lem of nonlinear êuorimetry of a two-êuorophore mixture
in which the lifetimes t1 and t2 were determined for éxed
values of s1, s2 and F01=F02. (The values of t1 and t2 varied
between 1 and 4 ns and between 4 and 15 ns, respectively,
while the éxed parameters were s1 � s2 � 10 ë 17 Ôm2 and
F01=F02 � 1.)

The results presented in Table 1 were obtained using
ANNs that were trained by adding the noise. One can see
from Table 1 that the use of ANNs allows one to solve two-
parametric inverse problems of saturation êuorimetry with
good accuracy, in particular, in the presence of the input
data noise with the amplitude up to 10%.

7. Conclusions

The results of analysis performed in this paper demonstrate
a great potential of the ANN technique for applications in
three typical methods of laser êuorimetry of POC mixtures.
All these problems are inverse problems of laser êuorim-
etry. The ANN technique provides a high practical stability
of the solutions of these problems. Numerical simulations
showed that the use of ANNs in a direct analysis of the
shape of the êuorescence band of a mixture allows one to
determine the êuorescent contribution that is lower than
1% of the dominant-component contribution for the noise
and the error of measurement of the spectrum exceeding
3%. In kinetic êuorimetry, this technique provides the mea-
surement of the lifetimes of êuorophores no longer than
1 ns in a two-component mixture with an error of less than
10% upon excitation by a 10-ns laser pulse and using a 10-
ns detector gate pulse with a positioning step of 2 ns.

In this paper, we have formulated for the érst time the
problem of measuring photophysical parameters of a two-
êuorophore system (mixture) by the method of saturation
êuorimetry and have obtained the érst promising results of
the solution of this inverse problem using the ANN. We
have shown that, within the framework of two-parametric
inverse problems, either the absorption cross sections of
êuorophores can be determined (even when their concen-
trations are unknown) or the excited-state lifetimes of
molecules with the errors that exceed the error of measure-
ment of the saturation curve no more than by a factor of 1.5.
Obviously, the possibilities of the êuorescent analysis of
POC mixtures increase when several approaches are used.

A high stability and a low error of the ANN solutions
are probably explained by the properties of the ANN as an
algorithm for data processing. First, the ANN solves the
problem by using not a few obvious and easily deéned
quantities, such as the positions of spectral components,
their width, etc., but a great number of features distin-
guished by the ANN itself during its training. Second,
during training, the ANN acquires the information con-
tained not in a single curve under study but in the entire

training data array, by separating signiécant and repro-
ducible information and discarding unsigniécant and noisy
variations in the input data. This is an important advantage
of the ANN technique over the methods using other algo-
rithms. For example, variation algorithms use the minimi-
sation of the residual by étting a small number of prelimina-
ry determined parameters, this procedure being performed
separately for each data pattern (curve). The use of the
model approach, if possible, and introducing the noise to the
data during training increases the effective number of the
patterns acquired by the network, which additionally facili-
tates the problem of separation of signiécant information
and improves the quality of the network operation.

The results obtained in this paper demonstrate the
features of ANN-based algorithms for solving the inverse
problems of laser êuorimetry and can be considered as a
basis for further studies in this éeld.
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Table 1. Root-mean-square errors of measuring parameters s1 and s2
and êuorescence lifetimes t1 and t2 of êuorophores for different noise
amplitudes of the êuorescence saturation curve for the mixture of
êuorophores.

Noise amplitude (%) es1 (%) es2 (%) et1 (%) et2 (%)

0 6.6 5.5 2.6 2.4

1 7.4 6.0 3.2 2.8

3 9.8 7.8 6.0 4.8

5 12.0 10.5 8.2 6.5

10 14.0 15.2 14.7 12.5
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