
Abstract. The stationary shape of a femtosecond pulse pro-
pagating through a nonlinear medium with an anomalous dis-
persion is obtained. It is shown that the femtosecond-pulse
intensity E 2

0 at which a soliton propagation takes place is
inversely proportional to the pulse duration to the 2/3 power
(E 2

0 �1=s2=30 ). The analytic amplitude dependence of the
reconstruction period of the soliton intensity time proéle is
obtained.
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1. Introduction

It is known that the dispersion ë nonlinearity balance during
the passage of pico- and femtosecond laser pulses through
an optically nonlinear medium with an anomalous dis-
persion results in the formation of stable pulses, the so-
called optical solitons, which retain an almost invariable
shape during their propagation through distances exceeding
the pulse length l � ct0 by factors 106 ÿ 107 [1, 2].

In Ref. [3], a numerical solution of the wave equation
was obtained, which is different from the nonlinear
Schr�odinger equation (NSE), describing the dispersive non-
linear propagation of a femtosecond laser pulse through a
medium with a normal dispersion and a cubic nonlinearity.

In this paper, the stationary shape of a femtosecond
pulse propagating through a dispersive medium with an
anomalous dispersion and a cubic nonlinearity was obtained
by solving the nonlinear wave equation different from the
NSE.

As shown in Ref. [3], for o0t0 5 200=p (where o0 is the
carrier pulse frequency and t0 the pulse duration), the
equation describing the dispersive nonlinear propagation
of a femtosecond laser pulse through a cubically nonlinear
medium has, with the inclusion of the second-order linear
dispersion, the following form:

F 0x ÿ AjFj2F 0Z � BF 000Z � 0; (1)

where A � pw�3�0 E 2
0 =n

2
0; w�3�0 is the low-frequency limit of the

Fourier transform of the third-order nonlinear suscepti-
bility of the medium w�3�0 (t1; t2; t3�; E0 is the maximum real
amplitude of the electric éeld vector; n0 is the linear part of
the refractive index; B � pa2=(n

2
0t

2
0);

a2 � ÿ
�1
0

t2a�t�dt; (2)

a(t) is the nonlinear medium susceptibility; F � E=E0 is the
normalised real modulus of the electric éeld vector in the
medium; x � zn0=(ct0); Z � zn0=(ct0)ÿ t=t0; c is the veloci-
ty of light in vacuum.

It is known that the competition between dispersion and
nonlinearity in the spectral range corresponding to the
anomalous dispersion of the group velocity (a2 < 0) results
in the conservation of the propagating pulse shape at a
certain input power [1]. One can see from Eqn (1) that the
dimensionless parameter

g � jBj
A 3
� ja2j

p2�w�3�0 �3t20E 6
0

(3)

corresponds to the ratio between the characteristic dis-
persion (t20=ja2j) and nonlinear (�p2(w�3�0 E 2

0 �3�ÿ1) lengths and
permits the estimate of their relative contribution to the
signal-shape distortion. For g � 1, the dispersion spreading
of the pulse is exactly compensated for by the nonlinear
compression.

Note that, while the intensity E 2
0 at which the soliton

propagation of picosecond pulses occurs is inversely propor-
tional to the square of duration (E 2

0 � 1=t20) [2], this
intensity for femtosecond pulses is, according to expression
(3), inversely proportional to the pulse duration to the 2/3
power (E 2

0 � 1=t
2=3
0 ).

The stationary pulse shape can be obtained by assuming
that

F�x; Z� � a�Z� cos�Kxÿ OZ�; (4)

in Eqn (1), where K;O; a(Z) are the wave number, the
frequency, and the amplitude of the stationary pulse,
respectively.

After substitution of expression (4) in (1), we obtain the
system of equations:

ÿKaÿ Aa3O� 3BOa 00Z ÿ BO3a � 0,
(5)

ÿAa2a 0Z � Ba 000Z ÿ 3BO2a 0Z � 0:

After integration of the second equation of the system (5),
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taking into account that aZ(Z); a
0
Z(Z); a

00
Z(Z)! 0 for jZj ! 1

(this corresponds to the soliton propagation through the
unperturbed medium), we obtain�

qa
qZ

�2

� A

6B
a4 � 3O2a2: (6)

By multiplying the last equation of the system (5) by a 0Z(Z)
and integrating, we obtain�

qa
qZ

�2
� A

6B
a4 �

�
O2

3
� K

3BO

�
a2: (7)

A comparison of Eqns (6) and (7) gives

K � 8BO3: (8)

For B < 0, Eqn (6) has the solution

a�Z� � a0sech

�
Z
ts

�
(9)

provided that the soliton duration ts and its amplitude a0
satisfy the relation

a20 �
6jBj
At2s
� 9jBj

A
O2: (10)

Therefore, taking into account (8), the expression for the
stationary shape of a femtosecond pulse has the form:

F�Z; x� � a0sech

�
Z
ts

�
cos�8BO3xÿ OZ�: (11)

One can see from expression (11) that the reconstruction
period of the soliton intensity proéle

L � p

8BO3
� 27p

8Ba30

� jBj
A

�3=2

(12)

is inversely proportional to the cube of the soliton
amplitude.

Fig. 1 shows the dynamics of the time envelope and the
spectral density of the soliton over a length of one
reconstruction period for a0 � 1; g � 1. Fig. 2 shows the
reconstruction period of the soliton time proéle as a
function of the amplitude a0.

Therefore, the stationary shape of a femtosecond pulse
propagating through a nonlinear medium with an anom-
alous dispersion was derived from truncated Eqn (1).
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Figure 1. Dynamics of the time envelope (a) and the spectral density (b)
of the soliton over a length of one reconstruction period for a0 � 1 and
g � 1.
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Figure 2. Amplitude dependence of the reconstruction period of the
soliton time proéle.
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