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Soliton propagation of a femtosecond laser pulse
in a medium with anomalous dispersion

D L Oganesyan

Abstract. The stationary shape of a femtosecond pulse pro-
pagating through a nonlinear medium with an anomalous dis-
persion is obtained. It is shown that the femtosecond-pulse
intensity E(f at which a soliton propagation takes place is
inversely proportional to the pulse duration to the 2/3 power
(EO2 Nl/rﬁ/ 3). The analytic amplitude dependence of the
reconstruction period of the soliton intensity time profile is
obtained.
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1. Introduction

It is known that the dispersion—nonlinearity balance during
the passage of pico- and femtosecond laser pulses through
an optically nonlinear medium with an anomalous dis-
persion results in the formation of stable pulses, the so-
called optical solitons, which retain an almost invariable
shape during their propagation through distances exceeding
the pulse length /= ct, by factors 10° — 107 [1,2].

In Ref. [3], a numerical solution of the wave equation
was obtained, which is different from the nonlinear
Schrodinger equation (NSE), describing the dispersive non-
linear propagation of a femtosecond laser pulse through a
medium with a normal dispersion and a cubic nonlinearity.

In this paper, the stationary shape of a femtosecond
pulse propagating through a dispersive medium with an
anomalous dispersion and a cubic nonlinearity was obtained
by solving the nonlinear wave equation different from the
NSE.

As shown in Ref. [3], for wy7y = 200/ (Where wy is the
carrier pulse frequency and t, the pulse duration), the
equation describing the dispersive nonlinear propagation
of a femtosecond laser pulse through a cubically nonlinear
medium has, with the inclusion of the second-order linear
dispersion, the following form:

®L— A|D|*®), + BP) =0, (1)
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where 4 = TEX(()B)EOz/n(Z); 15)3) is the low-frequency limit of the

Fourier transform of the third-order nonlinear suscepti-
bility of the medium X((f)(tl, 1, 13); Ey is the maximum real
amplitude of the electric field vector; n is the linear part of
the refractive index; B = ma, /(n373);

oy = — J: ro(t)dr; ?2)

o(?) is the nonlinear medium susceptibility; @ = E/E| is the
normalised real modulus of the electric field vector in the
medium; & = zny/(cty); n = zng/(cty) — t/70; ¢ is the veloci-
ty of light in vacuum.

It is known that the competition between dispersion and
nonlinearity in the spectral range corresponding to the
anomalous dispersion of the group velocity («, < 0) results
in the conservation of the propagating pulse shape at a
certain input power [1]. One can see from Eqn (1) that the
dimensionless parameter
B |l

A3 TCZ (X(()3))3T%ES
corresponds to the ratio between the characteristic dis-
persion (t3/|a|) and nonlinear ([*(¢\” E3)*]”") lengths and
permits the estimate of their relative contribution to the
signal-shape distortion. For y = 1, the dispersion spreading
of the pulse is exactly compensated for by the nonlinear
compression.

Note that, while the intensity E§ at which the soliton
propagation of picosecond pulses occurs is inversely propor-
tional to the square of duration (EZ ~ 1 /r%) [2], this
intensity for femtosecond pulses is, according to expression
(3), inversely prog)ortional to the pulse duration to the 2/3
power (Eg ~ 1/10/3).

The stationary pulse shape can be obtained by assuming
that

Y 3)

®(&,n) = aln) cos(KE — Qn), “4)

in Eqn (1), where K, Q, a(n) are the wave number, the
frequency, and the amplitude of the stationary pulse,
respectively.
After substitution of expression (4) in (1), we obtain the
system of equations:
~Ka— Ad’Q +3BQa) — BQ'a =0, 5)
2 2
—Ad°a, + Bay —3BQ a, = 0.

After integration of the second equation of the system (5),
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taking into account that a,(n), a(n),a, () — 0 for [n| — oo
(this corresponds to the soliton propagation through the
unperturbed medium), we obtain

Oa 2 A 4 2 2
9@y _ A 4302
<6n> 5" +3Q%a (6)

By multiplying the last equation of the system (5) by ail(n)
and integrating, we obtain

Oa 2 A 4 QZ K 2
A comparison of Eqns (6) and (7) gives
K = 8BQ°. (®)
For B < 0, Eqn (6) has the solution
a(n) = agsech (ﬁ> ()]
TS

provided that the soliton duration 7, and its amplitude «,
satisfy the relation

27@7&&92.

D=U2 T 4 (10)

Therefore, taking into account (8), the expression for the
stationary shape of a femtosecond pulse has the form:

®(n, &) = aosech<£> cos(8BQ*E — Qn). (11)
S
One can see from expression (11) that the reconstruction

period of the soliton intensity profile

T 27n [ |B| 3/2
A= =_— (=
8BQ* 8Ba \ A

is inversely proportional to the cube of the soliton
amplitude.

Fig. 1 shows the dynamics of the time envelope and the
spectral density of the soliton over a length of one
reconstruction period for ay, =1,y = 1. Fig. 2 shows the
reconstruction period of the soliton time profile as a
function of the amplitude «y.

(12)

a

Figure 1. Dynamics of the time envelope (a) and the spectral density (b)
of the soliton over a length of one reconstruction period for ¢y = 1 and
y=1.
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Figure 2. Amplitude dependence of the reconstruction period of the
soliton time profile.

Therefore, the stationary shape of a femtosecond pulse
propagating through a nonlinear medium with an anom-
alous dispersion was derived from truncated Eqn (1).
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