
Abstract. The solution of the parabolic equation for radiation
diffracted from a periodic hexagonal structure is analysed
theoretically. It is shown that diffraction does not prevent
high-precision measurements of wave-front distortions using a
three-beam lateral shearing interferometer. The proposed
measuring technique is based on the recording of interference-
pattern distortions at arbitrary distances from a beam
replicator. The results of numerical calculations supporting
this technique are presented. The optical quality of an etalon
plate is measured in an aperture of diameter 12 cm with a
high degree of precision. By considering the example of a
large-aperture KDP crystal, it is shown that the application
of this method makes it possible to synthesise from individual
measurements the wave front in an aperture considerably
larger than the test beam aperture.

Keywords: wave-front distortions, beam replicator, three-wave
shearing interferometer, phase reconstruction.

1. Introduction

High-precision measurements of the quality of optical
elements are essential for many applications associated with
the creation of diffraction-limited laser beams. Along with
interference methods, the Shack ëHartmann methods [1, 2]
which are more convenient for practical applications are
used for this purpose. When periodic structures are em-
ployed, measurements can be made using the Talbot effect
[3, 4] or the method of three-wave lateral shearing interfero-
meter [5, 6], which was developed quite recently. In the
latter case, an analysis of the transport equation for radi-
ation intensity [7, 8] made it possible to propose an algo-
rithm of wave-front reconstruction, which is based on the
Fourier transform and makes it possible to determine si-
multaneously the wave front derivatives in chosen direc-
tions over the entire cross section of the beam.

Note that while deriving formulas for these derivatives,
displacements were considered for which diffraction could
be neglected. To improve the sensitivity of the method upon

an increase in the displacement of the plane of image
recording, it was also proposed to élter radiation in the
Fourier plane to eliminate the effect of diffraction. This idea
was developed further in paper [9], where a phase plate of
hexagonal conéguration was used as a wave-front repli-
cator. The possibility of compensating optical distortions
introduced by the optical system of measurements itself
during the recording of intensity distribution with and with-
out the optical object under study in the same plane away
from the replicator was also noted in Ref. [5]. This property
is important for measuring the quality of optical elements.

In this work, we consider the possibility of using a three-
wave lateral shearing interferometer for high-precision
measurements of the optical element quality on the basis
of a theoretical analysis of the solution of the parabolic
equation for radiation diffracted from a periodic hexagonal
structure.

2. Derivation of the formula for calculating
transverse gradients of the wave front
in chosen directions

Consider the parabolic equation describing the propagation
of a monochromatic beam along the z axis:

2ik
qA�r; z�

qz
� DA�r; z� � 0, (1)

where A(r; z) is the complex amplitude of the éeld, r is the
radius vector in a plane perpendicular to the direction of
propagation, and k is the modulus of the wave vector.
Following Ref. [5], we write the expression for the éeld
amplitude in the plane of a hexagonal wave-front replicator
(z � 0) in the form

A�r; 0� �
X3
j�1

A�r� exp �ikjr� iW�r��, (2)

where kj is the wave vector determining the direction of
propagation of the replicated reference beam with the wave
front W(r). We will solve Eqn (1) with the boundary
condition (2). Applying the two-dimensional Fourier trans-
form to both sides of Eqn (1) and solving the obtained
differential equation, we obtain the following expression for
the Fourier components of the éeld amplitude at a distance
z from the replicator:

F̂
�
A�r; z�� � F̂

�
A�r; 0�� exp�ÿ i

2k
j frj2z

�
, (3)

where fr is the radius vector in the Fourier plane. Applying
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the inverse Fourier transform to Eqn (3), we obtain the
solution for the éeld in the case of a displacement along the
z axis in the form of a convolution of the initial éeld
distribution with the function a(r; z):

A�r; z� � A�r; 0� � a�r; z�, (4)

where

a�r; z� � F̂ÿ1
h
exp

�
ÿ i

2k
j frj2z

�i
.

Substituting expression (2) for the initial éeld distribu-
tion into Eqn (4) and taking into account the linearity of the
convolution operation, we obtain the following expression
for the éeld amplitude:

A�r; z��
X3
j�1

exp�ikjr�
��

A�rÿ r 0� exp �ÿ ikjr
0 � iW�rÿ r 0��

� a�r 0; z�dr 0
�
. (5)

The radiation intensity is determined by the product of
complex conjugate éelds (5) and has the form

I0�r; z� �
X3

j�1;m�1
exp

�
i�kj ÿ km�r

�
Gjm�r; z�, (6)

where

Gjm�r; z� � g�r; kj; z�g��r; km; z�;

g�r; kj; z� �
�
A�rÿ r 0� exp �ÿ ikjr

0 � iW�rÿ r 0��a�r 0; z�dr 0.
We represent the function Gjm(r; z) in the form

Gjm�r; z� � gjm�r; z� exp
�
icjm�r; z�

�
, (7)

where gjm(r; z) � jGjm(r; z)j. Because Gmj(r; z) � G �jm(r; z), we
have gmj(r; z) � gjm(r; z) and cmj(r; z) � ÿcjm(r; z). Taking
into account Eq. (7), we can write the radiation intensity in
the form

I0�r; z� �
X3

j�1;m�1
gjm�r; z� exp

�
i
��kj ÿ km�r� cjm�r; z�

�	
. (8)

Actually, Eqn (8) reêects the fact that the radiation
intensity distribution in the z plane is a superposition of
interference patterns obtained from the radiation replicas
propagating in the direction of wave vectors kj, km and
cjm(r; z) is the difference in the wave fronts of the
corresponding radiation replicas.

We assume that formulas (6) and (8) determine the
distribution of radiation intensity in the absence of the
object being tested and that phase distortions introduced by
it are described by the function j(r). In this case, the
amplitude of distortions of the intensity distribution pattern
is proportional to the displacement z from the replicator
plane and is determined by transverse gradients of the
intensity distribution and of phase distortions. Indeed,
the difference between the interference patterns in the plane
of observation is

dI0�r; z� � HI0�r; z�dr,

and, since dr � Hj(r)z, we have

dI0�r; z� � HI0�r; z�Hj�r�z. (9)

It should be noted that the Talbot interferometry is based
precisely on this formula and on the fact of a periodic
reproduction of the intensity distribution of radiation that
has passed through the periodic structure at distances
multiple to the Talbot length LT. For a one-dimensional
grating, we have LT0 � 2d 2=l (where d is the grating period
and l is the radiation wavelength) [4], while for a two-
dimensional hexagonal grating used by us here, we have
LT � (3=4)LT0 [10].

Thus, in the presence of the object being tested, the
intensity distribution has the form

I1�r; z� � I0�r; z� � dI0�r; z�,

or, taking into account formulas (6) and (9),

I1�r; z� � I0�r; z� � zHj�r�
X3

j�1;m�1
exp

�
i�kj ÿ km�r

�

� �i�kj ÿ km�Gjm�r; z� � HGjm�r; z�
�
. (10)

It follows from formula (10) that in the Fourier plane, the
intensity has seven components (one central and six side
components). If we select one of the side components with
the help of a éltering function Tjm (e.g., equal to unity
inside the circle whose radius is equal to half the separation
between harmonics and equals zero on the remaining plane)
and carry out the inverse Fourier transform, we can
determine the gradient qj(r)=qujm of phase distortions
introduced by the object in the direction of the vector

ujm �
1

jkj ÿ kmj
�kj ÿ km�.

For this purpose, we carry out the following trans-
formation:

F̂ÿ1
�
TjmF̂�I1�r; z��

� � F̂ÿ1
�
TjmF̂�I0�r; z��

�
Fjm�r; z�, (11)

where

Fjm�r; z� � 1�
�
Hgjm�r; z�
gjm�r; z�

� i
��kj ÿ km� � Hcjm�r; z�

��
Hj�r�z.

(12)

While deriving formula (11), we have used the equality

F̂ÿ1
�
TjmF̂�I0�r; z��

� � exp�i�kj ÿ km�r�Gjm�r; z�.

The imaginary component of expression (12) contains the
quantity (kj ÿ km)Hj(r) proportional to the gradient
qj(r)=qujm of phase distortions in the direction of the
vector ujm, as well as the product of the gradients
Hcjm(r; z)Hj(r).

The condition for the applicability of this method in the
case of a reference beam with the wave front W(r) is the
relation jHW(r)j < 1

2 jkj ÿ kmj; i.e., the divergence of the
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reference beam must be smaller than the beam divergence
determined by the period of the 2D grating. It was noted
above that the function cjm(r; z) is the difference in the wave
fronts of the radiation replicas propagating in directions kj
and km. These wave fronts are displaced relative to each
other by �jkj ÿ kmjz=k in the transverse plane (as a rule, the
value of this displacement is much smaller than the test
beam aperture). Consequently, jHcjm(r; z)j5 jHW(r)j and,
hence, we can disregard the second term in the brackets in
expression (12).

Thus, the expression for the derivative of phase dis-
tortions in the direction of vector ujm, which are introduced
by the object under study, can be written in the form

qj�r�
qujm

� 1

jkj ÿ kmjz
Im
�
Fjm�r; z�

�
, (13)

where the function

Fjm�r; z� �
F̂ÿ1

�
TjmF̂�I1�r; z��

�
F̂ÿ1

�
TjmF̂�I0�r; z��

� (14)

is determined from the éltered Fourier spectra of radiation
intensity in the displaced plane in the absence and in the
presence of the object. It can easily be proved that the
intensity I1(r; z) in expression (14) can be replaced by the
quantity dI0(r; z), i.e., the difference between the interfer-
ence patterns in the plane of observation.

For an axially symmetric distribution of the reference
beam intensity, expression (13) is absolutely exact. Indeed,
consider in greater detail the function

Gjm�r; z� �
� �

B�r; r 0; z�B ��r; r 00; z�

� exp�ÿ ikjr
0 � ikmr

00�dr 0dr 00,

where B(r; r 0; z) � A(rÿ r 0) exp� iW(rÿ r 0)�a(r 0; z). For an
axially symmetric beam, we have B(r; r 0; z) � B(ÿ r;ÿr 0; z)
and the function Gjm(r; z) is purely real because the
integrand becomes complex conjugate upon the replace-
ment of r 0, r 00 by ÿr 0, ÿr 00. In this case, cjm(r; z) � 0 and
expressions (11) and (12) lead to (13) and (14).

Note also that the above derivations of the formulas are
valid for any other periodic structure, e.g., for a quadratic
structure typical of a four-wave shearing interferometer.

Having determined the directional derivatives of the
wave front, we determine the derivatives in the rectangular
system of coordinates, after which their Fourier transform is
used for calculating the Fourier transform of the wave front.
Applying the inverse Fourier transform, we obtain the
reconstructed wave front. The details of this analysis can
be found in Ref. [11].

We can also propose a method for measuring the
radiation wave front from the difference in the interference
patterns using the same expressions (13) and (14). First, two
images are recorded in the plane of the replicator and in the
displaced plane. Then, the interference pattern for the
propagation of radiation with a plane wave front between
the replicator plane and the displaced plane is calculated and
the wave front for which the calculated interference pattern
is used as a reference is reconstructed.

Thus, the method proposed here is a modiécation of the
Talbot interferometry because the information on wave-
front distortions can be obtained not from the deformation
of the intensity distribution over the Talbot length, but from
the deformation of the interference pattern in the plane of
observation at an arbitrary distance from the wave-front
replicator. This is possible because the information on the
wave front is contained in the Fourier spectra of radiation
intensity, which can be determined theoretically for any
displacement.

a b c d

e f g h

Figure 1. Radiation-intensity distributions measured in the replicator plane (a) and calculated at distance of 3 (b), 6 (c), and 12 cm (d) from the
replicator as well as the differences in interference patterns calculated by introducing phase distortions with the amplitude 0.2l at distances of 1 (e), 3
(f), 6 (g), and 12 cm (h) from the replicator for the reference beam divergence equal to two diffraction limits.
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In actual practice, a limitation associated with an
insufécient resolution of the setup or the computational
mesh appears in experiments or in calculations. If the calcu-
lated or measured intensity-distribution pattern is not clear
(the computational mesh spacing is not small enough or the
resolution of the CCD camera is inadequate), the Fourier
transform will be noisy and the wave-front reconstruction
will be inaccurate. Nevertheless, high-precision measure-
ments of wave-front distortions introduced by the object
under study are possible for a wide range of distances not
exceeding the Talbot length. As an illustration, consider the
results of model calculations on the reconstruction of phase
distortions of the object, which were made for various
displacements from the replicator. The calculations were
carried out on a net with 512� 512 meshes. We used the
experimentally measured intensity distribution as the initial
image of the replicator in the reference plane. The phase of
reference beam and phase distortions of the object (with the
amplitude 0:2l) were set analytically. The beam intensities in
displaced planes were calculated by the spectral method
using Fourier transforms [12]. These distributions were
superimposed by a 5% random noise and the algorithm
of reconstruction of phase distortions was then employed.

Figs. 1b ë d show the calculated interference patterns for
various distances from the replicator. The differences in the
interference patterns for certain distances from the repli-
cator (the distance 12 cm in this case is virtually equal to the
Talbot length) are presented in Figs. 1e ë h. These patterns
display model phase distortions and a noticeable change in
the contrast within the Talbot length. Fig. 2 shows the
results of wave-front reconstruction demonstrating a decrea-
se in the root-mean-square error in the reconstruction of
phase distortions for more contrast beam intensity distri-
butions.

3. Test bench and results of measurements

The optical diagram of the test bench is shown in Fig. 3.
The radiation from a He ëNe laser ( 1 ) is collimated by
microscope ( 2 ) and lens ( 4 ) into a beam with an aperture
1 12 cm and a divergence not exceeding two diffraction
limits. The optical element under study was installed on a

translation table permitting its positioning in a plane
orthogonal to the direction of beam propagation. The
image of the output end of the optical element ( 5 ) under
study is transferred on the wave-front replicator (9) with the
help of mirrors ( 6 ) and a sevenfold reduction telescope ( 7 ).
The replicator was a hexagonal diaphragm grating with a
period of 850 mm and a working aperture up to 22 mm.

In turn, the image of the replicator located in the focal
plane of telescope ( 10 ) is transferred with an approximately
fourfold reduction on the CCD camera, which can be
displaced with a high degree of precision along the direction
of beam propagation. Note that in order to eliminate
vibrations and to be able to reproduce reliably the results
of measurements, the optical setup was installed on special
optical tables (whose total weight was � 7:5 t) in a hall with
a massive foundation. The entire optical setup was encased
in paper pipes to reduce the effect of air convection during
measurements. The He ëNe laser and the power supply of
the CCD camera were switched on for heating at least
30 min prior to the measurements.

Images were recorded using a Spiricon LBA PC-400
system with the COHU-6400 CCD camera coupled with a
Pentium-200 PC and allowing an averaging over a deénite
number of frames N4 256 upon observation of cw radi-
ation. This makes it possible to reduce the random noise by
a factor of

����
N
p

(e.g., in the case of a heat source like an
incandescent lamp). However, in our case with a laser source
and with averaging over 256 frames, the noise was reduced
only by a factor of 2 or 3. The results of individual measure-
ments were stored in a 512� 480 elements matrix éle, which
was enlarged to 512� 512 elements by using an appropriate
program so that a fast Fourier transform could be used. The
wave front was reconstructed using a Pentium III PC
(450 MHz) with the help of the above-described algorithm.
The possible tilt of the wave front was eliminated at the end
of the algorithm using the method of least squares.

Experimental measurements were made upon the lon-
gitudinal displacement of the CCD camera over a distance
of 56 mm (about half the Talbot length), on which the
distribution pattern changes signiécantly (cf. the distribu-
tion patterns presented in Figs 1a and 1c). The precision of
measurements was determined using the following simple
method: the image was measured several times in a displaced
plane without the object. The wave front was then recon-
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Figure 2. Speciéed wave-front distortion (a) and its theoretical recon-
structions corresponding to the difference interference patterns presented
in Fig. 1 for distances 1 (b), 3 (c), 9 (d), and 12 cm (e) from the replicator
and standard deviations from the wave front equal to 0.0072l (b), 0.027l
(c), 0.005l (d), 0.0024l (e), and 0.0076l (f ).
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Figure 3. Optical scheme of the bench for optical element quality
measurements: ( 1 ) He ëNe laser; ( 2 ) microscope; ( 3 ) éltering diaph-
ragm of diameter 200 mm; ( 4 ) lens; ( 5 ) optical element under study,
mounted on a translation table; ( 6 ) deêecting mirrors; ( 7 ) telescope; ( 8 )
tubes from an OSK-2 optical bench without eyepieces with an objective
having the focal length 1.6 m; ( 9 ) hexagonal beam replicator; ( 10 )
fourfold-reduction telescope with a focal length of the objective of 1 m;
( 11 ) optical élter; ( 12 ) CCD camera from an LBAëPC 400 complex.
Dashed lines show the tubes covering the optical scheme of the test
bench.
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structed under the assumption that any frame is a reference
frame. In the absence of noise, the result is obvious: an
absolutely plane wave front must be reconstructed at the
output (in actual practice, it differs from the plane front).
However, the standard deviation s calculated from the beam
aperture does not exceed 0.03l.

As an illustration, Fig. 4a shows a typical distribution
pattern obtained during experimental determination of
possible errors. Fig. 4b shows the results of reconstruction
of phase distortions introduced by the etalon plate into the
beam. The difference between the maximum and minimum
distortions of the wave front amounts to 0.18l and is in
good agreement with the results of measurements using a
Zygo Mark II interferometer (approximately 0.2l).

The application of this method makes it possible to
synthesise the wave front in an aperture considerably larger
than the test beam aperture from the results of individual
measurements (nine in our case). Let us demonstrate this for
the measurements of the optical quality of a KDP crystal
with an aperture of 24� 24 cm. In the absence of the
crystal, the reference image of the replicator was recorded
in a displaced plane. Then the crystal was mounted on the
translation table and the images of the replicator were
recorded successively according to the diagram presented in
Fig. 5a. Bold lines depict circles of diameter 12 cm, intended
for positioning of the test beam, while thin lines are the
circles in which the wave front was reconstructed without
eliminating its tilt.

Then, individual wave fronts are superimposed using a
special program according to the scheme presented in
Fig. 5b. Because the wave fronts are determined to within
a constant, the differences in wave fronts are calculated at
nodal points (see Fig. 5b) and the constants for wave fronts
minimising the discontinuities at the boundaries are deter-
mined from the phase continuity condition. After this, the
procedure for eliminating the tilt of the synthesised wave
front as a whole is employed. The results of such a
reconstruction in an aperture of size 20� 20 cm are
presented in Fig. 6. In two cases (Figs 6b and 6d), the
crystal was rotated through 908 to demonstrate the features
of phase distortions inherent in the object. In order to
facilitate the comparison, the wave front presented in
Fig. 6d was programmed to turn through 908. The coinci-
dence of the wave fronts was satisfactory with a standard
deviation below 0.05l.

4. Conclusions

Thus, high-precision measurements of wave-front distor-
tions can be made using a three-wave lateral shearing
interferometer. Diffraction in this case does not prevent
precise measurements and there is no need for harmonic
éltration in the Fourier plane. The analysis of the solution

of the parabolic equation for radiation diffracted from a
hexagonal periodic structure led to the expression for
calculating the wave front gradients in chosen directions,
which is similar to that proposed in Ref. [5] and is valid for
displacements over arbitrary distances. In fact, a three-wave
interferometer for the Talbot interferometry for arbitrary
distances from the wave front replicator is used in the
proposed method. This is possible since the information on
wave-front distortions can be extracted from the Fourier
spectra of radiation intensity, which can be determined
theoretically for an arbitrary displacement, as conérmed by
numerical calculations.
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Figure 4. (a) Typical distribution pattern obtained during the experi-
mental determination of the precision of measurements (the standard
deviation from a plane wave front does not exceed 0.03l) and (b) the
results of measurements and reconstruction of optical distortions intro-
duced by the etalon plane in the beam (the difference between the
maximum and minimum deviations is 0.18l).
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Figure 5. (a) Image of the screen for positioning of the test radiation
beam and (b) the diagram of superposition of wave fronts in the
synthesised aperture with nodal points (*). The numbers indicate the
sequence of measurements and superposition of wave fronts upon the
reconstruction of the synthesised wave front.
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Figure 6. Results of the reconstruction of a synthesised wave front of a
KDP crystal in a 20� 20 cm aperture in contour (a, b) and three-
dimensional (c, d) views with a direct position of the crystal (a, c) and for
its rotations through 908 in a plane orthogonal to the direction of test
beam (b, d) (the peak-to-valley difference is 1.04l).
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The possibility of precise measurements of the optical
quality of etalon optical plates in an aperture of diameter
12 cm is demonstrated. The radiation intensity distribution
was recorded at a distance approximately equal to half the
Talbot length from the replicator. The experimental root-
mean-square error did not exceed 0.03l. The measurements
of the optical quality of a large-aperture KDP crystal with
an aperture of 24� 24 cm revealed that the application of
the given method makes it possible to synthesise the wave
front in an aperture of size 20� 20 cm, which is much larger
than the aperture of the test beam, from the results of indivi-
dual measurements.
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