
Abstract. A model for stabilisation of a laser frequency is
considered which takes into account the spectral splitting of
the mode and the dependence of its Q factor on coupling with
the laser. It is shown that the stabilisation regime is optimal
when the coupling coefécient with a whispering-gallery mode
is greater than the critical coefécient at which the mode is
split. The presence of the amplitudeëphase correlation in the
active region of the laser determines the maximum value of
the stabilisation parameter caused by the dynamic restriction
of the feedback level. The single-mode lasing disappears in
the case of a strong feedback. It is shown that the appropriate
choice of the feedback-phase level suppresses the dynamic
instability, which provides in principle a strong feedback with
a high-Q external resonator.

Keywords: frequency stabilisation, high-Q microresonator, diode
laser, whispering-gallery mode, stability of single-mode lasing.

1. Introduction

An external optical feedback enriches the dynamics of diode
lasers [1 ë 6] and provides the control of the wavelength,
polarisation, and the mode composition of radiation. In
particular, the feedback allows narrowing the laser line-
width by many orders of magnitude. For this purpose, two
variants of the optical feedback are typically used [7, 8]: a
strong feedback in the case of a small number of transits
and a weak feedback in the case of a high-Q system.

The most attractive variant of a strong feedback between
a laser and a high-Q interferometer is commonly considered
impossible because of the dynamic instability. In the second
variant of optical feedback, three types of the reference lines
formed by an external device can be used: a resonance line
of the interferometer, whose width is independent of the
lasing regime [9 ë 13], an atomic-resonance line with the
width depending on the laser-éeld intensity in an atomic cell
[14 ë 18], and the resonance line of a whispering-gallery
mode of a quartz microsphere, whose width depends on the
feedback strength (the cavity load) [19, 20].

In this paper, we consider the third case, when the laser
frequency is `locked' to a whispering-gallery mode of a
microsphere. The main attention is paid to the effect of the
strength of coupling of the whispering-gallery mode with a
matching element on its Q factor, spectral proéle, and the
stabilisation factor of the laser frequency.

Note that the high Q of an external resonator can be
achieved either by increasing its length or by using high-
quality mirrors. Both these methods have drawbacks. In the
érst case, a miniature laser diode becomes a large device,
whereas the fabrication of a miniature resonator with high-
quality mirrors is a complicated technological problem. In
this connection, it is interesting to use the whispering-gallery
modes of dielectric microspheres of diameter of no more
than 1 mm with the Q factor of the order of 109 for nar-
rowing the diode laser line and stabilising its frequency
[19, 20].

2. Stabilisation scheme and mathematical model

Fig. 1 shows the principal scheme of a laser stabilised by a
whispering-gallery mode of a dielectric (quartz) sphere.
Laser ( 1 ) coupled by an input device (2 ) with a dielectric
microsphere ( 3 ) excites a whispering-gallery wave F� and is
itself locked by a whispering-gallery mode Fÿ propagating
in the opposite direction. The waves F� and Fÿ are coupled
via Rayleigh scattering from the density inhomogeneities in
quartz [20, 21].

The basic equations of the laser being stabilised des-
cribed for slowly varying éeld amplitudes have the form

dE

dt
� 1

2t
�1� iD�Eÿ 1

2t
�1� ia�g�n�E �
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Figure 1. Stabilisation scheme: ( 1 ) laser; ( 2 ) matching prism; ( 3 ) exter-
nal resonator (dielectric sphere).
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where E is the complex amplitude of the éeld inside the
laser; o is the frequency generated by the laser ë external
resonator system; F� is the complex amplitude of the
whispering-gallery wave; Fÿ is the complex amplitude of the
backward whispering-gallery wave; t is the decay time of
the éeld in the laser; t1 is the time of signal propagation
from the laser to the microsphere: t0 is the decay time of the
whispering-gallery mode; ts is the relaxation time of the
inverse population in the laser; (1� ia)g(n) is the complex
gain of the laser active medium: D � (oc ÿ o)t and
d � (o0 ÿ o)t0 are normalised detunings; oc is the natural
frequency of the laser cavity at g � 0; o0 is the whispering-
gallery mode frequency; K1 and K2 are the coupling
coefécients of the éelds in the laser and microresonator;
and k is the coefécient of coupling between the whispering-
gallery modes due to scattering.

The system of equations (1) for F� � 0 is a standard
system for studying the dynamics of a semiconductor laser
[22]. For F� 6� 0, the model describes the dynamic coupling
of the laser to an external resonator. Models of this type
have been widely investigated (see [1 ë 6] and references
therein). The model presented here differs from those
studied earlier in that a stabilising element is a two-mode
system and the coupling level with a microsphere affects the
Q factor of the latter.

Let us introduce the real amplitudes and phases

E � A exp�i�jÿ ot1��; Fÿ � B exp�ic�; F� � C exp�ix� (2)

and rewrite equations (1) in the real form
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Then, the stationary regimes of the system will be deter-
mined by the equations

1

t
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By introducing the notation k � kt0, P � K1t, Q � K2t,
y � t0=t, we énd from equations (4c ë f)

sin�xÿ c� � ÿ 1

�1� d 2�1=2
; cos�xÿ c� � d

�1� d 2�1=2
, (5)
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� sin�jÿ cÿ 2ot1��. (9)
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Expression (7) describes the resonance properties of
wave B [hereafter, the waves are denoted as in (2)]. It
follows from (7) that for the coupling parameter k > 1, the
resonance curve of the wave has two maxima and one
minimum. The position of the maxima are determined by
the relation

d � ��k 2 ÿ 1�1=2, (10)

and the minimum is located at the point d � 0. The
parameter k � 1 is critical: all the three extrema combine to
give one maximum. When the coupling parameter k further
decreases, the resonance curve remains a single-humped
curve (Fig. 2). These circumstances are well known from
the theory of two-contour coupled resonance systems,
which are widely used in classical radio engineering.

The resonance curve of the wave C is described by
expression (8). It also has two maxima and the minimum,
whose positions are determined by the relations

d � ��k�k 2 � 4�1=2 ÿ 1�1=2; d � 0. (11)

For k � (
���
5
p ÿ 2)1=2 � 0:486, all the three extrema combine

to give one maximum. As the parameter k further
decreases, the resonance curve remains a single-humped
one. Therefore, the critical values of the parameter k are
different for the direct (F�) and backward (Fÿ) waves.

Fig. 2 shows the resonance curves for waves B and C,
which are normalised to the amplitude of the exciting wave
A for k � 0:9. For this value of k, the resonance curve of the
wave B is approximately by a factor of 1.8 narrower than
the resonance curve of the wave C, the curve B being single-
humped, whereas the curve C is two-humped. This circum-
stance is usually ignored in the literature on two-contour
systems. Below, we will restrict ourselves by the case when
the backward wave B is used for capturing (stabilisation) of
the laser.

The Q factor of the loaded microresonator cannot
exceed some maximum value Qmax, which is determined
by intrinsic losses [23]. The Q factor of the loaded cavity is
determined by the relation

1

Q
� 1

Qmax
� 1

Qc

, (12)

where Qc is `the load Q factor', which increases inénitely
with decreasing coupling with the input element. The Q-
factor components introduced above are characterised by
the photon lifetimes t00 and tc in an unloaded microre-
sonator and in a loaded resonator without intrinsic losses,
respectively, according to

Q � ot0; Qmax � ot00; Qc � otc. (13)

The dimensionless parameter k � kt0 introduced above
(we will call it the reduced Q factor) characterises the ratio
of the rates of Rayleigh scattering between the modes to the
total losses in the microresonator. Similarly, we introduce
the parameter k0 � kt00 (the intrinsic reduced Q factor)
(k � Q=QR � ot0=ok

ÿ1, where QR � okÿ1). Microresona-
tors made of a pure quartz studied in papers [20, 21] have
the parameter k0 equal to 1.07 and 1.1, respectively. The
coupling parameter k for the waves was 2 ë 3 MHz.

The shadowed region IV in Fig. 3 (k > k0) corresponds
to the nonexisting values of the reduced Q factor , while the
region I corresponds to the supercritical values of the Q
factor. In the region III, the condition k < 1 is always
fulélled and the critical coupling cannot be achieved. In
other words, no splitting of the spectrum can be observed in
a low-Q resonator or in the case of weak Rayleigh
scattering. The region II corresponds to the subcritical
values of the microresonator Q factor.

The dependence of the Q factor of a microsphere with
the intrinsic Q factor k0 on the distance from the micro-
sphere to the input prism corresponds to the load
characteristic (12). The dashed-dotted vertical straight
line in Fig. 3 shows the load characteristic of the micro-
resonator with k0 � 1:75.

The degree of the microresonator load in real experi-
ments is controlled by the distance d between the
microresonator and a matching total internal reêection
prism. It is known that the energy density of the mode
éeld outside a sphere decreases with the distance from its
surface as exp�ÿ4pd(n 2

q ÿ 1)1=2=l�, where nq is the refractive
index of quartz. Therefore, it is reasonable to assume that

Qc � Qcmin exp

�
4pd�n 2

q ÿ 1�1=2
l

�
, (14)
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Figure 2. Resonance curves for forward (C ) and backward (B ) whispe-
ring-gallery waves normalised to the exciting-wave amplitude A.
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Figure 3. Diagram of reduced Q factors: (I) supercritical region; (II)
subcritical region; (III) region where the critical regime is absent; (IV)
region of nonexisting values of the reduced Q factor. The vertical dashed-
dotted straight line is the load characteristic of the microresonator with
k0 � 1.75; the dashed curve is the dependence of optimal values of k on
k0.
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where a constant Qcmin is the minimum load Q factor of
touching sphere and prism. This expression for a loaded Q
factor was obtained in paper [23].

3. Stabilisation parameter

Expression (9) determines the frequency of stationary lasing
of a laser with a stabilising cavity, while the relation
Dÿ a � 0 gives the lasing frequency in the absence of coup-
ling to an external resonator: oL � oc ÿ a=t. The optical
feedback results in the deviation of the lasing frequency o
of the system from that in the free-running mode. When the
optical-feedback phase is properly chosen, the lasing freq-
uency is locked by the external resonator frequency. The
degree of frequency locking is determined by the stabilisa-
tion parameter

S�d; k� � doc

do
� 1ÿ t0

t
dD
dd

. (15)

If the free-running lasing frequency oc changes by the
value e < DO, i.e., it remains within the stabilisation region
DO (Fig. 4), then the frequency o of the stabilised laser will
deviate only by e=S.

When the lasing frequency varies within the microre-
sonator resonance o0 � p=2t0, the phase of the backward
wave changes by the value of the order of unity. The phase
shift 2ot1 entering expression (9) gives the addition of the
order of t1=t0. When the resonator Q factor exceeds 108 and
the distance between the sphere and laser is less than 10 cm,
this addition does not exceed 1%, so that we will consider
this phase a constant.

Expression (9) becomes cumbersome after the substitu-
tion of the values of trigonometric functions. Consider the
case 2ot1 � ÿ arctan (1=a)� pn, n � 0, 1, 2, . . . . The choice
of this phase delay provides the optimum inêuence of the in-
phase and quadrature components of the feedback signal
(see Section 4). In this case, the stabilisation curve d(DL) is
antisymmetric, while the stabilisation parameter is a sym-
metric function of the detuning, with an extremum at d � 0.
Using the results obtained in Appendix and also (12) and
(13), we obtain

DL � ÿ2b�a 2 � 1�1=2 kd
�d 2 ÿ 1ÿ k 2�2 � 4d 2

�
1ÿ k

k0

�
, (16)

where DL � (oc ÿ a=tÿ o)t0; b is a parameter of geo-
metrical matching [see (A7)]. In this case, the stabilisation
parameter is

S�d; k� � 1� 2b�a 2 � 1�1=2yk
�
1ÿ k

k0

�

� �d
2 ÿ 1ÿ k 2�2 ÿ �4�d 2 ÿ 1ÿ k 2� � 1�d 2��d 2 ÿ 1ÿ k 2�2 � 4d 2

�2 . (17)

Fig. 4 shows the dependences o(oc) and S(oc) described
by expressions (16) and (17) for k0 � 1:5. The parameters b
and a in this case and below are 0.1 and 4, respectively.

The stabilisation parameter for the zero detuning

S�d � 0; k� � 1� 2b�a 2 � 1�1=2
�
1ÿ k

k0

�
ky

�1� k 2�2 (18Â)

reaches the maximum at the point that is the only real
solution of the cubic equation k 3 ÿ 2k0k

2 ÿ 3k� 2k0 � 0
in the interval k � �0; k0�. The curve maxS in Fig. 3
presents the dependence of the optimal values of k on k0.

Fig. 5 presents the parametric family of the dependences
of the stabilisation parameter S(d � 0, k) on the distance d
between the sphere and the resonator for different k0. The
load Q factor was described by expression (14). The
asterisks mark the points at which the stabilisation param-
eter reaches the maximum for the zero delay Smax (d � 0, k0)
in the given resonator. The circles mark the points at which
the critical coupling is achieved, and the stabilisation
parameter is

Scr�d � 0; k � 1� � 1� b�a 2 � 1�1=2
2kt

�
1ÿ 1

k0

�
< Smax�d � 0�. (18b)
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7 rad sÿ1) S� 104

ÿ1:0 ÿ0:5 0 0.5 1.0 ÿ1:0 ÿ0:5 0 0.5 1.0

oc ÿ o0(10
11 rad sÿ1) oc ÿ o0(10

11 rad sÿ1)

DO DO

k0 � 1:5 k0 � 1:5

k � 0:66

k � 0:66

1.2

1.0

1.0

1.2

ÿ2:5
ÿ2:0
ÿ1:5
ÿ1:0
ÿ0:5

0

0.5

1.0

1.5

2.0

2.5

ÿ2

ÿ1

0

1

2

3

4

Figure 4. Stabilisation curve o(oc) and the stabilisation parameter S(oc)
for the microresonator with k0 � 1:5 for different loading conditions:
optimal over the stabilisation parameter (k � 0:66), critical (k � 1:0),
and supercritical (k � 1:2); y � 4� 105, b � 0:1, a � 4, tan (2ot1) �
ÿ1=a; DO is the stabilisation region.
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Figure 5. Dependences of the stabilisation parameter S at the zero
detuning on the distance d between the matching prism and microreso-
nator for different Q factors of the microresonator.
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It can be shown that the stabilisation parameter reaches
the maximum in the subcritical region for microresonators
with any intrinsic reduced Q factor l0 (Figs. 3 and 5). For
distances exceeding the critical distance (k > 1), the depend-
ence of the stabilisation parameter S(d, k) on the detuning
becomes two-humped, in accordance with the spectral
splitting of the backward wave B (Fig. 4). In this case,
expression (18a) no longer describes the maximum value of
S. Nevertheless, the value of S in the maxima of spectral
components (10) does not exceed Smax(d � 0, k0) and rapidly
decreases with increasing distance.

Such a dependence of the stabilisation parameter on the
distance can be simply explained. When the distance be-
tween the prism and sphere is small, the Q factor of the
sphere is also small, whereas at large distances, it is close to
maximum; however, the coupling with the laser becomes
weaker. Therefore, there exists an optimal distance at which
the value of S is maximum. Note (see Fig. 5) that this opti-
mal distance does not virtually change over a comparatively
broad range of intrinsic Q factors and has a weak maximum.

Stabilisation not only results in the laser-frequency lock-
ing to the resonator frequency o0 but also reduces the
frequency êuctuations in a stabilised laser compared to
those in a free-running mode, resulting in the narrowing of
the laser line. The square of the stabilisation parameter
characterises the narrowing of the feedback-laser line com-
pared to the line in the absence of stabilisation (for the case
of white frequency noise). For b � 0:1 and the external
resonator Q factor of � 108 ÿ 109, the stabilisation param-
eter can be as high as � 104 ÿ 105. However, the stability of
the stabilisation regime restricts the possible value of this
parameter.

4. Stability of the locking regime

Stability of the locking regime of the laser by a single-mode
high-Q resonator was analysed in papers [11, 12]. The sta-
tionary lasing proved to be stable if

S

t0
< Or , (19)

where Or is the frequency of the relaxation pulsations of the
laser [24].

This condition is fulélled when the laser frequency is
equal to the resonance frequency of a reference interfer-
ometer (in our case, to the frequency of a whispering-gallery
mode of the sphere) and the phase shift 2ot1 provides the
optimal suppression of frequency êuctuations. Upon nar-
rowing of the laser line in the subcritical regime of interest,
the resonance remains single-humped and the condition (19)
determines the maximum coupling level. However, in the
experiment [25] with a spherical microresonator, whose dis-
tance from the laser was reduced to � 1 cm, it was found
that the admissible coupling level can be greater than it
follows from (19). This results in a noticeable change in the
lasing threshold and in the appearance of the additional
selectivity of a composite resonator. We will show below
that the mechanism of instability caused by the amplitudeë
phase coupling in an amplifying medium [11, 12] can be
`switched off '.

We will restrict ourselves to the case of zero detuning,
when the laser frequency coincides with the resonance
frequency of a whispering-gallery mode. First, following
[11, 12], we explain qualitatively the limitation of the coup-

ling level (19). The éeld in the laser is a sum of the intrinsic
éeld E and the éeld Fÿ, which returns to the laser from the
external resonator. Upon tuning to the resonance max-
imum, the phase of the éeld Fÿ is shifted relative to the
phase of the intrinsic éeld by 2ot1 ÿ p=2. Fluctuations of
the laser frequency cause only êuctuations of the phase of
the éeld Fÿ relative to the phase of the intrinsic éeld E,
whereas the amplitude êuctuations of the éeld Fÿ in the érst
approximation are absent. Under the condition 2ot1 � 2pn,
the éeld Fÿ is in quadrature to the intrinsic éeld. Phase
êuctuations of the éled Fÿ in the érst approximation are
transformed to the amplitude êuctuations of the total éeld.
However, because of the amplitudeëphase coupling, these
êuctuations are transformed to phase êuctuations with the
conversion coefécient a. Thus, due to the feedback, noise
êuctuations of the laser frequency cause êuctuations of its
phase and, hence, frequency. When the transmission reso-
nance was used, the feedback sign was negative, i.e., secon-
dary êuctuations suppressed initial êuctuations. Note that
such a suppression of the frequency noise is accompanied by
the increase in the amplitude noise.

The mechanism of êuctuation suppression described
above is analogous to the operation of the AFC system.
The active region of the laser plays the role of a controlling
element, which transforms êuctuations of the éeld ampli-
tude to the êuctuations of the éeld phase. This controlling
element has its own resonance at the frequency of relaxation
oscillations, and when the gain (the coupling level) increases,
the system is self-excited at the relaxation-oscillation freq-
uency. The condition (19) reêects this `relaxation a-insta-
bility'.

If the phase shift between the microresonator and the
laser satisées the condition 2ot1 � 2pn� p=2, then the éeld
Fÿ is on average in-phase with the éeld E. Phase êuctua-
tions of the éeld Fÿ caused by the frequency noise of the
laser produce, in the érst approximation, only phase êuctu-
ations of the total éeld. In the case of in-phase conéguration
of the éelds, a secondary change in the phase reduces its érst
change, and the frequency noise is suppressed. It is impor-
tant that the amplitudeëphase trans-formation is not in-
volved in this process, the factor a does not give any con-
tribution, and the restriction (19) is not valid.

The model described above gives for 2ot1 � 2pn

S � 2b
�
1ÿ k

k0

�
aky

�1� k 2�2 < Ort0. (20)

If 2ot1 � 2pn� p=2, then

S � 2b
�
1ÿ k

k0

�
ky

�1� k 2�2 < Ort0. (21)

Note that for the speciéed coupling level b, the max-
imum value of S is obtained in the case of the optimum
combination of contributions from the in-phase and quad-
rature components 2ot1 � ÿ arctan (1=a) considered above,
when the amplitude ë phase coupling and the condition (19)
are manifested most strongly.

Thus, the feedback phase determines the stability of the
stabilisation regime (the feedback sign) and the mechanism
of its violation. When the condition 2ot1 � ÿ arctan (1=a) is
fulélled, the maximum feedback level and the optimised
stabilisation parameter S are limited. On the other hand, an
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appropriate choice of the feedback phase can exclude the
amplitudeëphase correlation, thereby removing the require-
ment (19). This opens up the possibility of combining a high
Q factor of the resonator and a strong feedback, i.e., to
obtain even greater values of S and the maximum noise
suppression provided by the optical method.

The use of common confocal interferometers results in a
great distance between them and the laser. The unavoidable
drift of this distance changes the feedback phase and
destroys the stabilisation regime. For this reason, the dis-
tance is additionally stabilised. The working point upon
such stabilisation does not correspond to the in-phase
condition, and the condition (19) remains valid.

A small distance between the laser and the micro-
resonator in paper [25] allowed the use of passive stabil-
isation of the phase incursion 2ot1. The system was `self-
determined' in the choice of the feedback phase. In this case,
we managed to obtain stable lasing when the feedback level
was much higher than the condition (19) admits. We can
show within the framework of the model described above
that in the case of nonzero detuning of the system frequency
within the resonance of the whispering-gallery mode, the
feedback phase can be also chosen so that the mechanism of
relaxation a-instability will be signiécantly weakened in
some vicinity of the phase.

5. Conclusions

Thus, the model presented in this paper describes the
splitting of the whispering-gallery mode spectrum. In
microspheres made of a high-quality silica, the splitting
of the forward wave in the resonator occurs at the
resonator Q factor exceeding (0.4ì0.6)�109; for the
backward wave, the splitting occurs when the Q factor
exceeds (0.8 ë 1.2)�109. We estimated the parameter of
stabilisation of the semiconductor-laser frequency by a
highly coherent radiation of the backward wave of the
whispering-gallery mode. The maximum stabilisation para-
meter � 104 is achieved for the subcritical resonator load,
i.e., for the Q factor lower than the splitting threshold in the
backward wave. The maximum value of the stabilisation
parameter in the case of the traditional choice of the phase
is restricted by the relaxation a-instability. However, for the
speciéed lasing frequency of the system near the resonance
of the whispering-gallery mode, there exists the range of
values of the optical feedback phase in which this mecha-
nism of instability is strongly weakened. Therefore, it is
possible for the érst time to combine a high Q factor of an
external interferometer and a strong coupling with it.

The model considered above ignores the shift of the
microresonator resonance caused by variations in temper-
ature, pressure, and a change in the gap between the micro-
sphere and the prism (the proximity of a prism with another
refractive index changes the effective refractive index in the
matching region). We will consider these questions and the
stability in the case of a strong feedback in our next studies.
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Appendix

We will determine the real coupling coefécient K1 in the
stationary case, when (a) resonance losses in the diode-laser
resonator are compensated by the gain, i.e., g � 0, and (b) a
wave with the amplitude Fÿ is excited in the micro-
resonator, and the energy of this wave enters the laser
resonator. Then, we obtain from the stationary equation
(1a) under the condition (a) and zero detuning D � 0

jEj � K1tjFÿj. (A1)

On the other hand, the condition (b), which expresses the
energy conservation in the system, gives the equality

g 2
jFÿj2
8p

V0

tc
� jEj

2

8p
VL

t
, (A2)

where V0 is the volume of the microresonator mode; VL is
the volume of the laser mode; g is a coefécient that takes
into account the transmission of matching optics and the
overlap of mode éelds of the laser and microresonator in
the matching prism; and tc is the photon lifetime [see
expressions (12) and (13)]. It follows from (A1) and (A2)
that

K1 � g
�
V0

VL

�1=2
1

�ttc�1=2
. (A3)

To determine K2, we consider excitation of a micro-
resonator mode by the éeld E generated in the laser. We will
énd the éeld amplitude E0 in the laser input spot of cross
section Sc on the prism hypotenuse from the equality of the
output laser power and the incident-beam power in the
input spot:

Wg 2
jEj2
8p

VL

t
� jE0j2

8p
Scc , (A4)

where W is the eféciency of laser radiation coupling, which
takes into account reêectivities of laser mirrors and
distributed losses; and c is the speed of light. The expression
for the coefécient of coupling K2

0 between the incident-éeld
amplitude E0 and the wave-amplitude F� was obtained for
the model of a ring resonator [26]. It follows from exp-
ressions (3) and (4) of paper [26] that (in our notation)

K2
0 � 1

�tct 00�1=2
, (A5)

where t 00 is the round-trip transit time in the microreso-
nator.

From expressions (A4) and (A5) for K2 and the product
of coupling coefécients, we have

K2 � K2
0 jEj
jE0j
� g
�
Wt 0c
t 00

�1=2�VL

V0

1

�ttc�1=2
�
; t 0c �

V0

Scc
, (A6)

K1K2 �
b
ttc

; b � g 2
�
Wt 0c
t 00

�1=2

. (A7)
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