
Abstract. The steady-state two-wave interaction on a trans-
mission photorefractive grating produced in a cubic gyrotro-
pic crystal of the symmetry group 23 in an external dc elec-
tric éeld is studied. The analytic solution of the equation for
coupled waves is obtained for an arbitrary orientation of the
crystal and arbitrary polarisation of incident light beams in
the éxed pump approximation. It is shown that a nonunidirec-
tional contribution to the energy exchange between the waves
can exist, which is caused by the local component of the pho-
torefractive grating. In a particular case of light waves with a
wavelength of 633 nm propagating in the (001) plane of a
Bi12TiO20 crystal and of the orientation of the grating vector
along the [�110] axis, this contribution greatly exceeds a usual
unidirectional contribution. The dependence of the two-wave
gain on the modulation coefécient of the interference pattern
on the input face of the crystal is studied by numerically inte-
grating a total system of coupled-wave equations.

Keywords: photorefractive grating, two-wave interaction, gyrotro-
pic crystal.

1. Introduction

The interaction of two light waves on dynamic phase
holograms formed by them in a photorefractive crystal has
been studied over more than 30 years [1 ë 9]. The results of
these studies are used for ampliécation of weak light sig-
nals, data recording, storage, and reading [8, 9]. Current
interest in the two-wave interaction [10 ë 17] is caused by
the fact that complicated multiwave interactions that are
used in applications of modern photorefractive optics [8, 9,
18, 19] represent a set of coupled two-wave processes.

A permittivity grating produced upon the interaction of
two plane light waves in a photorefractive crystal is shifted
in the general case with respect to the interference pattern.
This shift depends on the mechanism of transfer of charge
carriers excited by light, which induces an electric éeld in the
crystal [8, 9, 18]. Upon the stationary two-wave interaction

on a photorefractive grating of the diffusion type, such a
shift is equal to a quarter of the spatial period (L=4).
Analysis of coupled-wave equations neglecting the trans-
formation of the polarisation structure of a light éeld during
the interaction shows that such a nonlocal photorefractive
response results in the redistribution of energy between the
interacting waves, their phases being unchanged.

A photorefractive grating produced due to the nonlinear
photogalvanic effect is shifted with respect to the interfer-
ence pattern by L=2. Such a local response changes the
phases of the interacting waves but does not change their
intensity [3 ë 5, 7 ë 9, 18]. The energy transfer between the
light waves on the local grating can occur upon the
nonstationary interaction, for example, upon writing or
reading of a photorefractive hologram [4, 6]. It follows from
the scalar theory of the steady-state interaction of two plane
light waves in the case of nonlocal photorefractive response
of a medium that, by neglecting the photogalvanic effect and
the absorption grating, the direction of energy transfer from
one wave to another depends only on the orientation of the
vector K of the photorefractive grating with respect to the
crystallophysic coordinate system, while a change in the
ratio of intensities of the beams does not affect the direction
of energy transfer [3 ë 5, 7 ë 9].

The studies of nonstationary mechanisms of the forma-
tion of photorefractive holograms in cubic photorefractive
crystals Bi12GeO20;Bi12SiO20;Bi12TiO20;GaAs, etc. in the
presence of a static light-intensity grating in an external ac
electric éeld or of a grating travelling in a dc electric éeld [8,
9] showed a strong inêuence of the vector nature of the two-
wave interaction on the energy-transfer eféciency [10 ë 17].
The coupled-wave equations were recently analysed, taking
into account the transformation of the polarisation structure
of the light éeld caused by the interaction in the presence of
the natural circular and external éeld-induced linear bire-
fringence, in papers [10, 13, 17]. It was shown that the
energy exchange between the light waves interacting on the
nonlocal photorefractive grating also contains a nonunidi-
rectional component, which always ampliées a weak wave.
This result was experimentally conérmed in paper [14].

In this paper, we consider the steady-state energy
exchange upon the interaction of two plane monochromatic
light waves on a transmission photorefractive grating
containing the local and nonlocal components, which
was produced in a cubic gyrotropic crystal of the symmetry
group 23 in an external dc electric éeld, taking into account
the transformation of the polarisation structure of the light
éeld caused by the interaction of the waves. For simplicity,
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we neglected absorption of light and additional contribu-
tions from the photoelastic and piezoelectric effects to the
modulation of the optical properties of the medium.

2. Theoretical model

The vector diagram of the symmetric two-wave interaction
is shown in Fig. 1 for the case when an external electric éeld
E0 is applied along the grating vector. Due to the natural
circular and induced linear birefringence, the light éeld in a
crystal can be represented as a superposition of four plane
waves, which, in the paraxial approximation, have the form

~S1;2 � S1;2 x� �e1;2 exp i otÿ n1;2kx� Kz=2�ÿ �
;

�
(1)

~R1;2 � R1;2 x� �e1;2 exp i otÿ n1;2kxÿ Kz=2�ÿ �
;

�
where n1;2 and e1;2 are the refractive indices and the
normalised polarisation vectors of the natural waves of the
medium, respectively, which correspond to the direction of
propagation along the normal (the x axis) to the crystal
boundary; k � 2p=l is the wave number of light in vacuum;
and K � 2p=L. The amplitudes of the natural waves Sj(x)
and Rj(x) are assumed dependent on x because of their
interaction. The analytic expressions for the wave para-
meters n1;2 and e1;2 are presented in papers [10, 20] for
arbitrary orientations of an external éeld and the normal to
the crystal face directed perpendicular to the éeld. For two
particular cases of the interaction considered below, when
the vector K of the photorefractive grating is oriented along
the [001] axis and the light waves propagate in the (�110)
plane (the longitudinal geometry) or when the vector K is
parallel to the [�110] axis and the waves propagate in the
(001) plane (the transverse geometry), the parameters n1;2
and e1;2 can be obtained using expressions presented in
Table 1.

Note that in the absence of an external electric éeld
(E0 � 0), the natural waves are circularly polarised with
opposite directions of rotation, and the wave surfaces
corresponding to the natural waves represent spheres
with radii nk� r.

The perturbations of the permittivity induced by an
external electric éeld (E0 6� 0) due to a linear electrooptical
effect changes polarisation of the natural waves from cir-
cular to elliptical, retaining the initial direction of rotation.
In the case of a longitudinal geometry, the polarisation
ellipses are elongated along coordinate axes y jj ��110� and
z jj �001�, respectively. In the case of a transverse geometry,
these ellipses are elongated along the straight lines directed
at angles �458 and ÿ458 to the axis z jj ��110�. The wave sur-
faces are transformed to ellipsoids, which, unlike the wave
surfaces of nongyrotropic media [21], have no common

points. In the case of a longitudinal geometry, the sections
of these surfaces by the plane of incidence (�110) of light
waves give ellipses elongated along the direction of the
applied electric éeld, the [001] axis. In the case of a trans-
verse geometry, the similar sections by the (001) plane give
ellipses elongated along the normal x0 jj �110� to the crystal
boundary.

In the steady-state two-wave interaction regime, the
amplitude of the éeld of a spatial charge in the linear
approximation over the modulation coefécient m(x) of the
interference pattern produced by plane monochromatic light
waves (1) can be written in the form [8, 9]

E1 x� � � ÿm x� � E 0 � iE 00
ÿ �

; (2)

where

m x� � � 2
S1 x� �R �1 x� � � S2 x� �R �2 x� �

I0
; (3)

E 0 � E0E
2
q

Eq � Ed� �2�E 2
0

; E 00 � Eq
Ed Eq � Ed� � � E 2

0

Eq � Ed� �2�E 2
0

; (4)

Table 1. Refractive indices and polarisation vectors of natural waves, as well as tensor convolutions that determine the relation between the light
waves of the same (g11 and g22) and different (g12 and g21 � g�12) types for two particular orientations of the two-wave interaction in a cubic gyrotropic
photorefractive crystal of the symmetry 23.

Geometry Refractive indices Polarisation vectors Tensor convolutions

Longitudinal: x jj �110�; z jj �001� n1;2 � n� �dn=2� � Dn
e1 � �y0 � irz0�=�1� r 2�1=2
e2 � �ry0 ÿ iz0�=�1� r 2�1=2

g11 � �r=k�2=�dnDnÿ 2Dn2�;
g22 � ÿ1ÿ g11; g12 � ÿr=�2Dnk�

Transverse: x jj �110�; z jj ��110� n1;2 � n� ��r=k�2 � dn2�1=2 e1 � �exp�ÿij�y0 � iz0�=
���
2
p

e2 � �y0 ÿ i exp�ij�z0�=
���
2
p g11 � ÿdn=��r=k�2 � dn2�1=2;

g22 � ÿg11; g12 � 1=��dnk=r� � i�
Note s :Dn � ��r=k�2 � �dn=2�2�1=2; r � �k=r��Dnÿ �dn=2��; j � arctan�dnk=r�; dn � n3r41E0=2; n is the refractive index of the unperturbed crystal; r41
is the electrooptical coefécient; r is the speciéc optical rotation; y0 and z0 are the unit vectors of the coordinate system.
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Figure 1. Vector diagram of the two-weave interaction on the trans-
mission photorefractive grating in a cubic gyrotropic crystal in an
external dc electric éeld (kS and kR are the wave vectors of the incident
waves; jkR1;R2j � jkS1;S2j � n1;2k�).
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I0 �
X2
j�1

Sj x� �
�� ��2� Rj x� �

�� ��2
is the average light intensity normalised to the coefécient
n=240p, whose dimensionality is 1 Cm; E0 is the applied
electric éeld strength (E0 � E0z0); Ed � 2pkBT=Le is the
diffusion éeld; Eq � eNaL=2pe is the trap-saturation éeld;
Na is the acceptor concentration in the crystal; T is the
absolute temperature; e is the elementary electric charge;
and e is the static permittivity of the crystal.

The coupled-wave equations can be obtained from the
wave equation for gyrotropic media by the method of slowly
varying amplitudes. Taking into account the known expres-
sions for perturbations of the optical properties of the
crystal caused by the linear electrooptical effect, we énd

dS1 x� �
dx

� pn3r41 E 00 ÿ iE 0
ÿ �
2l

m x� �

� g11R1 x� � � g12 exp iDkx� �R2 x� �� �; (5)

dS2 x� �
dx

� pn3r41 E 00 ÿ iE 0
ÿ �
2l

m x��

� g �12 exp ÿiDkx� �R1 x� � � g22R2 x� �� �; (6)

dR1 x� �
dx

� ÿ pn3r41 E 00 � iE 0
ÿ �
2l

m � x� �

� g11S1 x� � � g12 exp iDkx� �S2 x� ��;� (7)

dR2 x� �
dx

� ÿ pn3r41 E 00 � iE 0
ÿ �
2l

m � x� �

� g �12 exp ÿiDkx� �S1 x� � � g22S2 x� �� �; (8)

where Dk � (n1 ÿ n2)k. For arbitrary orientations of the
crystal and the grating vector, the tensor convolutions de-
scribing contributions of the intramode (g11; g22) and inter-
mode (g12) processes can be calculated using the relations
presented in papers [10, 20]. For particular cases of the
longitudinal and transverse geometry, these convolutions
are presented in Table 1.

Coupled-wave equations (5) ë (8) have the integral

jS1j2 � S2j j2� R1j j2� R2j j2� I0; (9)

which corresponds to the fundamental law of conservation
of the light-éeld energy during its redistribution between
interacting beams in a nonabsorbing medium.

3. Interaction in the éxed pump wave
approximation

The interaction under study can be analysed at small modu-
lation coefécients m(x)5 1 of the interference pattern using
the éxed pump-wave éeld approximation and assuming that

the scalar amplitudes Rj(x) are independent of x �R1(x)
� R1(0) � R10 and R2(x) � R2(0) � R20]. In this case, we
can obtain from equations (5) and (6) the expression for the
modulation coefécient

m x� � � m0 exp
pn3reff x� � E 00 ÿ iE 0

ÿ �
x

l

" #
; (10)

where m0 is the modulation coefécient for x � 0;

reff x� � � r41 Zin ÿ 2Im Zinter
1ÿ exp iDkx� �

Dkx

� �� �
(11)

is the effective electrooptical coefécient. The parameters
Zin �

ÿ
g11jR10j 2 � g22jR20j 2

�
=I0 and Zinter � g12R

�
10R20=I0

describe the contributions from intramode and intermode
processes to the interaction, respectively, and determine the
spatial dependences of the modulation coefécient and the
éeld amplitude of the spatial charge [see expression (2)].
Note that the photorefractive grating with the amplitude
proportional to E1(x) is shifted with respect to the
interference pattern with the modulation coefécient m(x)
and contains the local and nonlocal components whose
amplitudes are proportional to E 0 and E 00.

The integration of equations (5) and (6), taking into
account relations (10) and (11), gives the vector amplitude
S(x) � S1(x)e1 � S2(x)e2 exp (iDkx) of the total light éeld of
the signal wave in the form

S x� � � Sjj x� ��
m0

2
exp

pn3reff x� � E 00 ÿ iE 0
ÿ �

x

l

� �
ÿ 1

� �
Rjj x� �

�

� pn3r41 E 00 ÿ iE 0
ÿ �
l

X x� �R? x� �
�
; (12)

where

X x� � �
� x

0

g z� � exp pn3reff z� � E 00 ÿ iE 0
ÿ �

z
l

" #
dz; (13)

g z� � � g11 ÿ g22� �R10R20

IR0
� g12

R 2
20

IR0
exp iDkz� �

ÿ g �12
R 2

10

IR0
exp ÿiDkz� �; (14)

Rjj(x) � R10e1 � R20e2 exp (iDkx) and Sjj(x) � S10e1 � S20e2
� exp (iDkx) are the polarisation vectors of the pump and
signal waves, respectively, in the absence of the interaction
in the crystal; and IR0 � jR10j2 � jR20j2 � I0. The vector
R?(x) � R �20e1 ÿ R �10e2 exp (iDkx) characterises the compo-
nent of the signal-wave light éeld orthogonal to the pola-
risation state of the pump éeld Rjj(x) (Rjj(x)R

�
?(x) � 0):

Expressions (12) ë (14) describe the polarisation structure
S(x) of a weak light wave interacting with a strong pump
wave on the photorefractive grating produced in the cubic
gyrotropic crystal in an external electric éeld, which
contains both the local (�E 0) and nonlocal (�E 00) compo-
nents. They are valid in the general case of an arbitrary
polarisation of light waves incident on the input face of an
arbitrarily oriented sample and impose no restrictions on the
direction of the external éeld if it is applied perpendicular to
the x axis (E0jjK).
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Note that the appearance of the component with the
polarisation vector R?(x) in the polarisation structure S(x)
is caused not only by intermode processes with the phase-
matching conditions kS1 � kR2 ÿ K� Dk and kS2 � kR1
ÿKÿ Dk (see Fig. 1) proceeding with the transformation
of the polarisation-state type (e2 ! e1 and e1 ! e2) but also
by intramode processes (kS1 � kR1ÿ K and kS2 � kR2 ÿ K),
which proceed without a change in the polarisation state.
The intramode processes affect the polarisation component
�R?(x) of a weak light éeld due to their different eféciency,
which is determined by their tensor convolutions g11 and g22
(see Table 1). This part of the polarisation component with
the vector R?(x) is described by the term proportional to the
difference g11 ÿ g22 in expression (14).

When the light waves incident on the crystal have the
same polarisation, the polarisation state of the signal wave
Sjj(x) coincides, in the absence of interaction, with the
polarisation state of the pump wave Rjj(x). When
m(x)5 1, we can assume that m0 � 2(IS0=IR0)

1=2 and the
relations Rjj(x) � 2Sjj(x)=m0 and R?(x) � 2S?(x)=m0 are
valid. If the local component of the spatial-charge éeld can
be neglected (E 0 � 0), then the structure of expression (12)
becomes similar to the structure of relations obtained in
papers [10, 14, 17].

When the beams incident on the crystal have the same
polarisation, the two-wave gain G � ln�IS=IS0� of a weak
signal wave intensity IS (IS0 � jS10j2 � jS20j2) can be
represented as a sum of two components

G x� � � Gjj x� � � G? x� �; (15)

where

Gjj x� � �
2pn3reff x� �E 00

l
; (16)

G? x� � � 1

x
ln

(
1� pn3r41 E 0 � iE 00

ÿ �
l

X x� �
�����

� exp ÿ pn3reff x� �E 00
l

x

" #����2
)
: (17)

The érst term in (15) is the contribution of the
component with the polarisation vector Sjj(x) to the
weak light éeld intensity. It describes a usual unidirectional
energy exchange, which can either enhance a weak light
wave (when Gjj(x) is positive) or weaken the wave (when
Gjj(x) is negative). The coefécient Gjj(x) is determined only
by the nonlocal component E 00 of the spatial charge éeld. A
special feature of the unidirectional energy transfer is a
change in its direction [a change in the sign of Gjj(x)] upon
the rotation of a sample (Fig. 1) around the x axis through
1808. The modulus of |Gjj(x)| does not change in this case.

The second term in (15) is the contribution of the
component with the polarisation vector S?(x) orthogonal
to Sjj(x) to the weak light éeld intensity. This contribution is
nonunidirectional because G?(x) > 0 always. The coefécient
G?(x) is determined both by the local (E 0) and nonlocal
(E 00) components of the spatial charge éeld. Due to the
nonunidirectional energy exchange, a weak signal wave can
be eféciently ampliéed even in the case of a purely local
photorefractive response of the crystal, when E 00 � 0. The
component G?, unlike Gjj, depends both on the product of
the effective electrooptical coefécient by the sample thick-

ness reff(d )d (x � d ) and on the product reff(x)x in the
interval 04x4 d, which determines the integral X(d) [see
expression (13)]. The exponents of the exponential factors in
expression (17), which are proportional to the above
products, have real parts with opposite signs. The expo-
nential in the integrand of the integral X(d) (13) is multiplied
by the periodic function g(x) (14). Therefore, when the
sample is rotated through 1808 around the x axis, resulting
in the change of the signs of the effective electrooptical
coefécient reff(x) and of the function g(x), the component
G?(d) changes.

Fig. 2 shows the dependences of the total gain G (curves
1 ) and its components Gjj (curves 2 ) and G? (curves 3 ) on
the sample thickness d for the longitudinal geometry of the
interaction in a Bi12TiO20 crystal with typical parameters
n � 2:58, r � 6 deg mmÿ1, and r41 � ÿ5 pm Vÿ1 at a wave-
length of 633 nm. We assumed in calculations that the light
waves at the boundary x � 0 were linearly polarised
perpendicular to the plane of incidence, and the electric
éeld strength E0 was positive and equal to 10 kV cmÿ1. The
solid curves in Fig. 2 correspond to the sample orientation
at which the positive direction of the z axis in the coordinate
system chosen by us (Fig. 1) coincides with the crystallo-
graphic axis [001]. The dashed curves correspond to the
sample orientation that is obtained from the previous
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Figure 2. Dependences of the two-wave gain ( 1 ) and its unidirectional
( 2 ) and nonunidirectional ( 3 ) components on the thickness of the
Bi12TiO20 crystal for the longitudinal geometry of the interaction at the
acceptor concentrations Na � 1021 (a) and 1022 mÿ3 (b).
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orientation by rotating the sample through 1808 around the
x axis. In this case, the z axis is directed along the �00�1� axis
of the crystal.

The curves in Fig. 2a were calculated for the sample with
the acceptor concentration Na � 1021 mÿ3 and the grating
period L � 17 mm at which the nonlocal component of the
spatial-charge éeld is maximum (E 00 � 5 kV cmÿ1) and the
usual (unidirectional) energy exchange is highly efécient
(Gjj � 4:3 cmÿ1) and only weakly depends on d (see curves
2 ). This is explained by the fact that in the case of
longitudinal geometry of the interaction (K jj �001�), the
effective electrooptical coefécient

r 001� �
eff x� � � ÿ r41

2

(
1� 1

1� �b=2�2

�
"�

b
2

�2
� sin

�
2rx

�
1� b=2� �2�1=2�

2rx
�
1� b=2� �2�1=2

#)
; (18)

[where b � pn3r41E0=(rl)] is mainly determined by the
intramode process. This process is described by the term
�1� 2 b=2� �2�=�1� b=2� �2�, which does not depend on the
coordinate x and is close to 2 in a strong external éeld
(E0 � 10 kV cmÿ1). The contribution of the intermode pro-
cess is determined by the term sin

�
2rx

�
1� b=2� �2�1=2	=�

2rx
�
1� b=2� �2�3=2	, which does not exceed 0.16. There-

fore, the deviation of the polarisation state of the inter-
acting waves from the optimal state caused by the optical
activity and induced linear birefringence results in a small
decrease in r 001� �

eff and Gjj with increasing sample thickness.
In the case of the longitudinal geometry of the inter-

action, the dependence of the product r 001� �
eff (x)x on the

coordinate is determined by the linear function. The
coefécient G�? , corresponding to the sample orientation
at which the z axis coincides with the crystallographic
axis [001] and the coefécient reff(x) is positive (solid curve
3 in Fig. 2a), is smaller than the coefécient Gÿ? correspond-
ing to another orientation at which the z axis coincides with
the crystallographic axis �00�1� and the coefécient reff(x) is
negative (dashed curve 3 in Fig. 2a ). When the condition
j2pn3reff(x)E 00x=lj51 is fulélled, the nonunidirectional com-
ponent G? of the total gain increases proportionally to x2.

The coefécient G�? reaches the maximum value G�? max �
0:17 cmÿ1 at x � 0:78 cm and then decreases to zero at
x!1. For this reason, the total gain G(x) for the érst
orientation only slightly differs from its positive unidirec-
tional component. In the case of the second orientation, the
coefécient Gÿ? monotonically increases with x and reaches
the maximum value Gÿ?max � 3:57 cmÿ1 for x � 10 cm.
Therefore, upon the interaction in thick samples oriented
so that the positive direction of the z axis coincides with the
crystallographic axis �00�1�, the positive nonunidirectional
component is comparable with the negative unidirectional
component, while the modulus of the total gain G(x) is
small, for example, G(0:1) � 0:33 cmÿ1.

The curves in Fig. 2a correspond to the local-component
strength E 0 � 5:2 kV cmÿ1, which is lower than the max-
imum value E 0max � E0, which is reached at high strengths of
the trap saturation éeld Eq 4E0 [see expression (3)]. The
curves in Fig. 2b were calculated for the sample with the
acceptor concentration Na � 1022 mÿ3. In this case, E 0 �
9.9 kV cmÿ1, which is virtually equal to E0, while the
strength of the nonlocal component E 00 � 1 kV cmÿ1 is
smaller approximately by a factor of éve than the strength

corresponding to the case considered above. This results in a
decrease in the unidirectional component Gjj of the total
gain G and in an increase in the relative contribution of the
nonunidirectional component G?, leading to a strong depen-
dence of the gain G on the sample thickness already for
d5 2 mm. For d5 7:5 mm, the component Gÿ? becomes
greater than jGjjj, and a weak light wave is ampliéed for
both orientations of the sample. In this case, unlike the
previous one, the maximum positive total gain G � 1:9 cmÿ1

is reached in a thick sample with d � 0:92 cm rather than in
a thin sample.

Fig. 3 shows the dependences of quantities G, Gjj and G?
on the sample thickness d calculated for the transverse
geometry of the interaction. The solid curves in Fig. 3
correspond to the sample orientation at which the positive
direction of the z axis coincides with the crystallographic
axis ��110�, while the dashed curves correspond to the sample
orientation at which the z axis is directed along the ��110� axis
of the crystal. For this geometry and the polarisation of light
waves at the boundary x � 0 being linear and orthogonal to
the plane of incidence, a photorefractive grating is produced
only due to intermode processes, and the expression

r
�110� �
eff x� � � r41

sin2 rx�1� b2
� �1=2�
rx 1� b2
ÿ � (19)

for the effective electrooptical coefécient does not contain
the term independent of x.
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Figure 3. Dependences of the two-wave gain ( 1 ) and its unidirectional
( 2 ) and nonunidirectional ( 3 ) components on the thickness of the
Bi12TiO20 crystal for the transverse geometry of the interaction at the
acceptor concentrations Na � 1021 (a) and 1022 mÿ3 (b).
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As the sample thickness is increased, the value of r �
�110�
eff

decreases nonmonotonically, so that the contribution of the
unidirectional component Gjj to the total gain is small
compared to that from the nonunidirectional component
G?. A comparison of Figs 3a and 3b shows that in the case
of transverse geometry, unlike the longitudinal one (see
Fig. 2), the increase in the local component E 0 of the éeld
amplitude of the spatial charge enhances the total two-wave
gain G(d). The coefécient G�? in the case of the positive
effective electrooptical coefécient reff(x) (dashed curve 3 )
can be either larger or smaller than the coefécient Gÿ? for the
negative reff(x) (solid curve 3 ).

4. Effect of an external electric éeld
on the eféciency of energy transfer
for transverse geometry

The characteristic feature of the transverse geometry of
interaction in strong electric éelds E0 �10 kV cmÿ1 is the
ampliécation of a weak signal wave for both orientations of
a sample, which can be obtained from each other by rota-
ting the sample around the vertical axis (Fig. 3). However,
when E0 is decreased, such nonunidirectional energy trans-
fer is violated. The numerical analysis shows that for the
parameters of the Bi12TiO20 crystal presented above and the
spatial period L � 17 mm of the photorefractive grating
used in calculations, the nonunidirectional energy transfer
can occur for all x if the external éeld does not exceed the
value Emin � 1:73 kV cmÿ1.

Fig. 4 shows the dependences of the total two-wave gain
G and of its unidirectional (Gjj) and nonunidirectional (G?)
components on the external éeld strength E0 for the case
when the positive direction of the z axis coincides with the
crystallographic axis ��110�, d � 1 cm, and the acceptor con-
centration Na � 1021 mÿ3. When polarisation of the pump
wave at the boundary x � 0 is linear and orthogonal to the
plane of incidence, the effective electrooptical coefécient
(19) is a symmetric function of E0 (reff (E0� � reff (ÿE0)),
while the integral (13) is an antisymmetric function of
E0 (X(E0� � ÿX(ÿE0)). In this case [see expressions (16)
and (17)], both components of the gain G are symmetric
functions of E0, as demonstrated in Fig. 4a. One can see
that the component G? for small external éelds jE0j <
1.73 kV cmÿ1 is less than the modulus of the component Gjj,
which is negative. In this region of values of E0, the signal
wave is weakened due to the interaction with the reference
wave. If the positive direction of the z axis coincides with the
crystallographic axis �1�10�, then the signal wave is ampliéed
both due to unidirectional and nonunidirectional energy
exchange. For this orientation of the sample, G > 0 for all
E0.

For the right (rig) or left (lef) circular polarisation of the
waves incident on the crystal, the effective electrooptical
coefécient can be written in the form

r �110� �
eff rig; eff lef�x���r41

b
1� b 2

�
1ÿ sin�2rx�1� b 2�1=2�

2rx�1� b 2�1=2
�
; (20)

from which it follows that it is an antisymmetric function of
the external éeld (b0 �E0). The dependences of the two-
wave gain G and of its nonunidirectional component on E0

in Fig. 4b contain both symmetric and antisymmetric
components. In the region of positive E0, the gain G? is
greater than the modulus of the gain Gjj, which is negative

here, and any light wave is ampliéed for any E0. The energy
transfer eféciency is higher for the negative external éeld E0

and lower for positive éeld than in the case of linear
polarisation of the incident waves (cf. Fig. 4a). In the case
of circular polarisation of the incident waves, the energy
transfer remains nonunidirectional for any thickness d of
the sample and any E0. In this case, the rotation of the
sample around the [110] axis through 1808 does not change
the two-wave gain.

5. Energy exchange for an arbitrary modulation
coefécient

The use of the general expressions derived above for
analysis of the polarisation structure and intensity of a
weak signal wave upon its interaction with a reference wave
on the photorefractive grating in a cubic gyrotropic crystal
in an external electric éeld is limited by the éxed pump-
wave light éeld approximation. This approximation is valid
for a small modulation coefécient m(x)5 1 of the
interference pattern. Because the complete system of
coupled-wave equations (5) ë (8) was obtained by neglecting
nonlinear [in m(x)] corrections to the amplitude of the
spatial-charge éeld, its numerical integration cannot com-
pletely describe the interaction for large modulation
coefécients. However, the extrapolation of the solutions
of these equations to the case m(x) � 1 allows us to observe
the type of variations occurring during the levelling of
intensities of the interacting light waves.
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Figure 4. Dependences of the two-wave gain G and its unidirectional
(Gjj) and nonunidirectional (G?) components on the external electric éeld
strength for the transverse geometry of the interaction in a 1-cm thick
Bi12TiO20 crystal in the case of ( a ) linear and ( b ) circular polarisation.
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Fig. 5 shows the dependences of the two-wave gain on
the interaction length for different modulation coefécients
m0 at the boundary x � 0, which were calculated by the
known formula [4, 8, 9]

Gsd �
1

x
ln

� jS sd
1 �x�j2 � jS sd

2 �x�j2
jS10j2 � jS20j2

� jR10j2 � jR20j2
jR sd

1 �x�j2 � jR sd
2 �x�j2

�
, (21)

where the superscript sd means that the scalar amplitudes
of the natural waves are the solution of the self-consistent
self-diffraction problem (3), (5) ë (8) and satisfy to the law
of conservation of energy (9). The calculations were
performed for the transverse geometry at the acceptor
concentration Na � 1021 mÿ3 and the parameters of the
Bi12TiO20 crystal presented above. The solid curves in
Fig. 5, as in Fig. 3, correspond to the sample orientation at
which the positive direction of the z axis coincides with the
crystallographic axis ��110�, while the dashed curves
correspond to the sample orientation at which the z axis
is directed along the �1�10� axis of the crystal.

One can see from Fig. 5 that the nonunidirectional
energy exchange is observed for all m0 < 1, and the depend-
ences of the two-wave gain Gsd calculated for opposite
directions of the z axis are symmetric with respect to the
abscissa only for m0 � 1. This corresponds to the disap-
pearance of the nonunidirectional energy transfer at the
equal intensities of the incident waves.

Note that the gain Gsd depends on m0 nonmonotonically
for samples of thickness d > 0:55 cm. The numerical cal-
culation showed that this dependence is caused by the
contribution of the local component E 0 of the spatial charge
éeld to the energy exchange. The nonmonotonic dependence
of the two-wave gain on the ratio of the intensities of light
beams at the input face of the sample is not typical for most
of experimental and theoretical studies of the two-wave
interaction in photorefractive crystals [8, 9, 22, 23]. The
exception is the experiments on the two-wave interaction in

a Bi12SiO20 crystal in an external meander éeld performed
recently [24]. However, the presence of the point of inêexion
in the dependence G(m0) is attributed in this paper to the
inêuence of the corrections to the érst-harmonic amplitude
of the spatial-charge éeld, which are nonlinear over the
modulation coefécient.

6. Conclusions

Our analysis of the steady-state symmetric two-wave
interaction in a cubic gyrotropic crystal has shown the
possibility of efécient energy exchange on the unshifted
component of a transmission photorefractive grating. The
contribution of such energy exchange to the intensity of a
weak light wave is always positive and it is caused by the
appearance in its polarisation structure of the component
whose polarisation is orthogonal to that of a strong pump
wave. In a particular case of the interaction in the Bi12TiO20

crystal, when the grating vector is oriented along the ��110�
axis and light waves propagating in the plane (001) are
polarised perpendicular to this plane or have circular
polarisation, the coefécient of nonunidirectional energy
transfer can exceed that of the unidirectional energy
transfer for any sample thickness if the external éeld
exceeds the threshold éeld, which is determined by the
photorefractive parameters of the sample and by the spatial
period of the grating. For the light waves having the same
intensity at the crystal boundary, the contribution from the
nonunidirectional energy exchange to the two-wave gain is
zero.
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