
Abstract. The theory of intracavity quasi-phase-matched
self-frequency conversion in an active nonlinear periodically
poled structure is developed. The processes of quasi-phase-
matched self-frequency doubling, self-halving and mixing
using the pump wave in a periodically poled Nd:Mg:LiNbO3

crystal are studied. The dependences of the eféciency of nonli-
near optical conversion in these processes on the reêection
coefécient of the output mirror and on linear losses in the
medium are investigated.

Keywords: self-frequency doubling and halving, quasi-phase-mat-
ching, active nonlinear periodically poled crystals.

1. Introduction

Investigations of active nonlinear crystals in which the
active (laser) properties of the crystal are ensured by the
ions of rare-earth elements (Nd, Er, Yb) and the matrix
plays the role of a nonlinear medium [1 ë 4] are stimulated
by wide applications of compact and reliable lasers emitting
in the blue ë green, red and IR spectral regions. Recent ad-
vances in the éeld of self-frequency conversion are associ-
ated with the appearance of new active nonlinear crystals
possessing a high nonlinearity and a high concentration of
rare-earth elements, as well as a high optical damage thres-
hold and good mechanical characteristics [5 ë 7].

It is interesting to use as an active nonlinear medium a
periodically poled crystal in which quasi-phase-matched
(QPM) wave interactions can be realised. The advantage
of such a crystal is the possibility of thermally noncritical
phase matching of interacting waves even when the con-
ditions of conventional phase matching cannot be fulélled
[8, 9].

The use of selective pumping together with the QPM
wave interaction technique allows the realisation of various
three-frequency wave interactions in an active nonlinear
crystal involving laser radiation and the pump wave. This

provides new schematic solutions for lasers with self-freq-
uency conversion, which can be used in optical memory sys-
tems, laser displays, high-resolution digital printing, and
telecommunications.

In this work, we propose a theory for the intracavity
three-frequency QPM wave interactions in an active non-
linear periodically poled Nd:Mg:LiNbO3 crystal and analyse
in detail the self-frequency doubling, halving and mixing
using the pump wave.

2. Theoretical approach and the system
of equations

We will analyse the intracavity three-frequency QPM wave
interactions in an active nonlinear periodically poled
Nd:Mg:LiNbO3 crystal as follows. At érst, we consider a
system of truncated equations describing nonlinear three-
frequency wave interactions in a periodically poled medium
and then supplement one of the equations in this system
with a term accounting for the ampliécation of the wave
under study by the active medium and add to the obtained
system of equations another equation describing the inverse
population dynamics in the active medium. The resulting
system of equations takes into account simultaneously the
nonlinear and active properties of the crystal and is used to
analyse three particular cases of self-frequency conversion
in an active nonlinear medium (self-frequency doubling,
halving and mixing using the pump wave). We assume that
the active nonlinear periodically poled crystal is placed in a
cavity formed by plane mirrors deposited on the end faces
of the crystal at the positions z � 0 and z � L (Fig. 1).

In the érst approximation of the dispersion theory, the
system of truncated equations for three-frequency (o1�
o2 � o3) nonlinear interaction of plane waves [10] for
squares of moduli of the amplitudes and phases of the
waves in the case of a periodically poled medium has the
form
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where Y� � j�3 ÿ j�2 ÿ j�1 is the phase difference; S�j and
j�j are the slowly varying square of the modulus of the
amplitude and phase of a wave with frequency oj

propagating along the z axis (`+') and in the opposite
direction (` ë ') (Fig. 1); bj � 4poj(ejd

�2�eiek)=cnj is the
nonlinear coupling factor; d �2� is a second-order tensor
of nonlinear susceptibility of the medium; c is the velocity
of light in vacuum; Dk � k1 � k2 ÿ k3 is the phase
mismatch; ej; nj; uj and kj are the unit polarisation vector,
the refractive index, the group velocity and the wave vector
of a wave with frequency oj, respectively; g(z) � (ÿ 1)M�z�

is a sign-alternating function characterising the modulation
of the nonlinear susceptibility with a period L � 2l;
M(z) � �z=l� 1� is the layer number in the medium; l is
the thickness of an individual layer; L � N0L � 2N0l is the
cavity length; 2N0 is the number of domains; the coefécient
aj characterises the linear losses in an active nonlinear
medium; and j � 1; 2; 3. If the QPM conditions are fulélled,
we can write Dk � 2pm=L, where m is an odd number
(quasi-phase-matched order).

Let us average both sides of Eqns (1) ë (3) over the
length of the cavity taking into account the small variation
in S�j and j�j on this length. Such an approach is justiéed
under the condition that the length of the active nonlinear
periodically poled crystal is much smaller than the charac-
teristic length of nonlinear interaction. This condition is
fulélled in the range of the parameters of the crystal and the
cavity studied by us (their values are close to the real
parameters of the experiment). Integrals of the type
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appearing during averaging are taken using the layer-by-
layer calculation. For example,
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:

Neglecting the difference in the group and phase
velocities (uj � c=nj) and introducing the dimensionless
intensities in the form I �j � cnjS

�
j 8pIs= , where Is is the

saturation intensity of the active medium, we arrive at the
following system of equations for dimensionless intensities
I �j and phase differences C� � j�3 ÿ j�2 ÿ j�1 � DkL=2
averaged over the cavity length:
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where Tc � 2L=c is the round-trip transit time for light in
the cavity; and mj � 2048p5L 2Is(ejd

�2�eiek)
2 tan2�DkL=4�

�sinc2�DkL=2�=cn1n2n3l2j : The factor tan2�DkL=4� is
related to a periodic modulation of the nonlinear suscept-
ibility of the medium. In the case of an exact QPM, we have
tan2�DkL=4�sinc2�DkL=2� � 4=p2m2.

We assume that the left mirror in Fig. 1 reêects radiation
with frequency oj totally, while the right (output) mirror has
the intensity reêection coefécient Rj for a wave with
frequency oj. In this case, the system of equations (4) ë
(6) is supplemented by the following boundary conditions:

Iÿj L� � � RjI
�
j L� �; Iÿj 0� � � I�j 0� �;

C� L� � � Cÿ L� � ÿ pÿ DkLÿ dCL; (7)

C� 0� � � Cÿ 0� � ÿ pÿ DkL� dC0;

where dC0;L are the additional phase shifts introduced by
the left and right cavity mirrors, respectively; dC �
dCL � dC0 is the total phase shift. Because variations in
the intensities and phases of the waves over the cavity
length are small, we have

Iÿj � RjI
�
j � RjIj, C� � Cÿ ÿ pÿ DkLÿ dC � C (8)

and the system (4) ë (6), taking (7) into account, can be
written as:
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Figure 1. Schematic representation of an intracavity active nonlinear
periodically poled medium (L is the pole period, l is the layer thickness,
Ps is the spontaneous polarisation vector of the medium).
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where nj � 2�1ÿ Rj�=�1� Rj� � 2ajL are dimensionless
linear losses for a wave with frequency oj inside the cavity;
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The system of equations (9) ë (11) describes the nonlinear
interaction of waves by neglecting the active properties of
the medium. As mentioned above, this system of equations
should be modiéed slightly by taking into account the active
properties of the medium. These properties are described by
the system of Statz ë de Mars equations [11] which can be
written in the dimensionless form as

d I�q � Iÿq
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ÿ �
nqTc
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where N is the ratio of the inverse population density to the
threshold density; 1� Z � Ppump=Pth is the ratio of the
pumping power to the threshold power; T1 is the inverse-
population relaxation time; I �q � cnqS

�
q =8pIs is the dimen-

sionless intensity of a wave with frequency oq, which is
ampliéed in the active medium. In our case, q � 1 or 2 or 3
(one of the three interacting waves is ampliéed). Taking (8)
into account, we can represent the system (12), (13) in the
form

dIq
dt
� nqIq

nqTc
Nÿ 1� �; (14)

dN

dt
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1� ZÿN Iq � IqRq � 1
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The system of equations (9) ë (11), (14), (15) describes
the three-frequency QPM nonlinear wave interaction in an

active nonlinear periodically poled medium and is a genera-
lisation of the equations for self-frequency doubling [12] to
the case of arbitrary Rj and QPM wave interactions. In this
case, the right-hand side of Eqn (14) should be substituted
into one of Eqns (9) or (10) for the term njIj=njTc depending
on the frequency (o1;2 or o3) of the wave that is ampliéed by
the active medium.

Below, we will consider three particular cases: (1) second
harmonic generation o�o! 2o in an active nonlinear
medium (self-frequency doubling); (2) subharmonic gener-
ation o! o=2� o=2 in an active nonlinear medium (self-
frequency halving); (3) frequency mixing o� opump ! osum

involving a pump wave. In the cases under study, a wave
with frequency o is ampliéed in the active medium.

3. QPM self-frequency doubling

Consider the QPM self-frequency doubling o� o � 2o. In
this case, o1 � o2 � o, o3 � 2o, l � 2pc=o, and taking
into account that a wave with frequency o1 is ampliéed in
the active medium Eqns (9) ë (11), (14), (15) assume the
form:
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where I1;3 is the dimensionless intensity of the érst and
second harmonics respectively.

Assuming a high-Q cavity for a wave with frequency
o (R1 � R2 � 1), we obtain
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For dC � 0, the system of equations (16) ë (19) has two
steady-state solutions:
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n
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; (20)
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Depending on the values of the parameters n1;3; e1;3; R3 and
Z, one of the two steady-state solutions is realised. The
solution (20) exists for all values of the parameters n1;3, e1;3,
R3, Z, while the solution (21) exists only for 4n1Z

������
R3

p
5

n3 1� R3� �. In the case R1 � R2 � 1 and dC 6� 0, the system
(16) ë (19) does not have a simple analytic solution for the
second harmonic intensity.

Figs 2 and 3 show the characteristic dependences cor-
responding to the stable branches of the solutions (20) and
(21). One can see from these dependences that there exists an
optimal reêection coefécient R2o of the output mirror for
the second-harmonic wave for which the second harmonic
has the maximum output power. Calculations were made for
a Nd:Mg:LiNbO3 crystal of length L � 0:5 cm and the pole
period L � 7 mm placed in a double cavity, one of whose
mirrors has reêection coefécients Ro � R2o � 100%, while
the other has Ro � 100% and R2o < 100%. It is assumed
that the ee ë e interaction takes place in the crystal, involving
the highest nonlinear coefécient d33 for lithium niobate for
l � 2pc=o � 1:084 mm, Is � 10 kW cmÿ2 (calculated accor-
ding to the data presented in Ref. [4]), Pth � 0:1 W, and for
a beam radius r0 � 10ÿ4 m in the cavity.

4. QPM self-frequency halving

Consider now the QPM self-frequency halving o � o=2
� o=2. In this case, taking into account that a wave with
frequency o3 is ampliéed in the active medium, o1 � o2 �
� o=2; o3 � o; l � 2pc=o and Eqns (9) ë (11), (14), (15)
assume the form:
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where I1;3 are dimensionless intensities of the waves with
frequencies o=2 and o, respectively. For the parametric
generation of a low-frequency wave, the cavity must have a
high Q for waves with frequencies o=2 and o simulta-
neously (R1 � R2 � 1;R3 � 1). For such a cavity, we can
write

e1 � m1�1� R 2
1 � 2R1 cos�DkL� dC��=�1� R1� 2;

e3 � x3 � m3�1� R 2
1 � 2R1 cos�DkL� dC��=4;

x1 � m1�1� cos�DkL� dC��=2;

y � c3 � c1 � �pÿ DkLÿ dC�=2:

For dC � 0, the system of equations (22) ë (25) has two
steady-state solutions for the intensity I1:

I1 �
n1n3 Ze1 ÿ 2n21

ÿ �
e1e3� �1=2 e1 � 2n21

ÿ � ; (26)

I1 �
Zn3R

1=2
1 ÿ n1 1� R1� �

n3R1 � n1 1� R1� �R1=2
1

: (27)

As in the case of self-frequency doubling, one of the two
steady-state solutions is obtained, depending on the values
of parameters n1;3; e1;3; R1 and Z . The solution (26) exists
for Ze1 5 2n21, and (27) for Zn3R

1=2
1 5n1 1� R1� �. The cha-

racteristic dependences corresponding to stable branches of
solutions (26) and (27), presented in Figs 4 and 5, show that

P2o=Ppump

Ppump=Pth � 15

0 0.2 0.4 0.6 0.8 1.0 R2o

0.5

0.4

0.3

0.2

0.1

10

5

Figure 2. Dependences of the normalised second-harmonic output power
on the reêection coefécient of the output mirror for the second harmonic
for different pump powers (n1 � 0:08; a2o � 0:1 cmÿ1, m � 1).

a2o=0.03 Ômÿ1

0.1 Ômÿ1

0.3 Ômÿ1

0.1

0.2

0.3

P2o=Ppump

0 0.2 0.4 0.6 0.8 1.0 R2o

Figure 3. Dependences of the normalised second-harmonic output power
on the reêection coefécient of the output mirror for the second harmonic
for different linear losses a2o (n1 � 0:08;Ppump=Pth� 5;m � 1�.
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being a parametric process, the self-frequency halving has a
threshold. Also, the optimal reêection coefécient Ro=2 exists
for which the output power of the subharmonic is maxi-
mum. Calculations were made for the ee ë e interaction in a
Nd:Mg:LiNbO3 crystal with L � 0:5 cm and L � 22 mm
placed in a double cavity, one of whose mirrors has the
reêection coefécient Ro=2 � Ro � 100%, and the other
Ro � 100% and Ro=2 < 100%.

5. QPM frequency mixing using a pump wave

Semiconductor lasers have been used actively in recent
years for pumping active media. A part of the pumping
radiation is absorbed by the active medium, while the
unabsorbed pumping radiation can participate in nonlinear
optical interaction. Consider the intracavity nondegenerate
frequency mixing o1 � o2 � o3, where o1 is the lasing
frequency and o2 is the pump frequency.

For QPM frequency mixing at a constant pump wave
power I2 � const; j�2 � const, and in the absence of a
cavity (R2 � 0) at the pump frequency, Eqns (9) ë (11),
(14) and (15) have the form
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sinF
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"
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�
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dt
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1=2 cosF
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�����
m1
p
I1
ÿ

�����
m3
p
I3

� �

� dC
n1 � n2 ÿ n3� �Tc

; (30)

dN

dt
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where I2 � (1=dÿ 1)Ppump=pr
2
0 Is; d is a coefécient charac-

terising absorption of pumping radiation by the active
medium (0 < d4 1); F � j� arcsin�cos�DkL=2� dC=2��.
In the case of exact QPM and for dC � 0, the system of
equations (28) ë (31) has two steady-state solutions:

I3 �
m3I2 Zn1n3 1� R1� � 1� R3� � ÿ I2 m1m3� �1=2

h i
n23 1� R1� � 1� R3� �2 n1n3 1� R1� � 1� R3� � � I2 m1m3� �1=2

h i ;
(32)

I3 �
�m1=m3�1=2
1� R1� �

Zn1 1� R1� � ÿ n3 1� R3� �
n1 1� R1� � � n3 1� R3� � : (33)

Figs 6 and 7 show the characteristic dependences cor-
responding to stable branches of the solutions (32) and (33).
One can see that as in the case of self-frequency doubling,
the use of a high-Q cavity for small a3 makes it possible to
considerably increase the eféciency of nonlinear optical
conversions. Calculations were made for a Nd:Mg:LiNbO3

crystal with L � 0:5 cm and L � 4:2 mm placed in a double
cavity, one of whose mirrors has the reêection coefécient
R1 � R3 � 100%, and the other R1 � 100% and R3 <
< 100%. As before, it is assumed that the ee ë e interaction
is realised in the crystal and l1 � 2pc=o1 � 1:084 mm, l2
� 2pc=o2 � 0:81 mm, l3 � 2pc=o3 � 0:464 mm, 1=dÿ 1 �
0.3.
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Figure 4. Dependences of the normalised second-harmonic output power
on the reêection coefécient of the output mirror for the subharmonic for
different pump powers (n3 � 0:08; ao=2 � 0:08 cmÿ1, m � 1).
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Figure 5. Dependences of the normalised second-harmonic output power
on the reêection coefécient of the output mirror for the subharmonic for
different linear losses ao=2 (n3 � 0:08;Ppump=Pth� 15;m � 1�.
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Figure 6. Dependences of the normalised output power of a wave with
frequency o3 on the reêection coefécient of the output mirror for I3 for
different pump powers (R1 � 1; n1 � 0:08; a3 � 0:1 cmÿ1, m � 1).
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6. Conclusions

We have presented in this work the theory of intracavity
three-frequency QPM interactions of light waves in active
nonlinear periodically poled crystals. We analysed in detail
QPM processes of self-frequency doubling, halving and
mixing using the pump wave in an active nonlinear peri-
odically poled Nd:Mg:LiNbO3 crystal. The existence of op-
timal reêection coefécients of output cavity mirrors for the
efécient generation of the second harmonic, subharmonic,
and a wave with the sum frequency is shown.

The results presented in this work conérm that the use of
semiconductor pumping and QPM wave interactions opens
up new avenue for applying active nonlinear media to realise
three-frequency wave interactions.
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