
Abstract. Nonstationary SRS equations are solved analyti-
cally for short samples in the approximation of a prescribed
exciting éeld, and numerically for a longer medium taking
into account the pumping depletion. The dependence of the
energy of Stokes and anti-Stokes waves on their spatial mis-
matching is studied. The optimal angle of anti-Stokes gene-
ration is determined as a function of the length of the system,
pump pulse energy, and the rate of transverse relaxation.

Keywords: nonstationary stimulated Raman scattering, spatial
mismatching, intensities of Stokes and anti-Stokes waves, optimal
angle, transverse relaxation.

1. Introduction

Anti-Stokes emission is usually produced upon the action
of a light wave on excited molecules. Apart from this, it
may also appear due to the parametric interaction between
the laser and Stokes waves [1 ë 4]. In the general case, the
SRS contains both these effects and the difference between
them is arbitrary to a certain extent [4]. For a low excitation
energy of molecules, energy transfer from the laser and
Stokes waves to an anti-Stokes wave is the dominating pro-
cess supplying energy to the anti-Stokes wave. The eféciency
of this process depends on the phase difference Dkz (see
expression (2) below) between the interacting waves [1 ë 12].

It has been established theoretically that for stationary
SRS in the absence of a phase shift (Dk � 0), both Stokes
and anti-Stokes emission is suppressed [1 ë 3]. Experimen-
tally, this effect is frequently observed as a dark region in the
Stokes emission pattern of single-pass Raman ampliéers
[5 ë 6].

In the nonstationary case, when the pump pulse duration
is shorter than the transverse relaxation time of molecules or
is comparable with it, the effect of the spatial mismatching
Dk on the eféciency of anti-Stokes generation is found to be
somewhat different [7 ë 12]. An analytic solution of the
corresponding equations in the approximation of a pre-
scribed pumping éeld shows that in the asymptotic appro-

ximation, the intensity of the anti-Stokes component away
from the input boundary is maximum for a certain Dk, and
is equal to zero for Dk � 0 and Dkz4 1, as in the stationary
case [7, 8].

The numerical solution of a more general problem shows
that the intensity of the initial Stokes radiation additionally
affects the eféciency of parametric interaction [9, 10]. When
this intensity is low, a situation analogous to the stationary
SRS takes place [1 ë 4], which was also conérmed exper-
imentally [11]. If, however, the intensity of the input Stokes
signal is signiécant and is only an order of magnitude lower
than the pump intensity, the eféciency of conversion of the
energy of Stokes and laser waves into the anti-Stokes wave
energy is maximal for Dk � 0 and decreases with increasing
Dk [9, 10, 12].

SRS was studied in the ampliécation regime inRefs [7 ë
9, 12], when frequency-shifted weak signals were supplied
along with the pump pulse at the input face of the sample. In
this work, we analyse the situation which arises, for ex-
ample, in a single-pass Raman oscillator in which the Stokes
emission is produced due to spontaneous Raman scattering.
This problem is analogous to the one considered earlier in
Ref. [8], but in contrast to that problem, we consider the
nonstationary SRS both in relatively short samples (in which
the exciting wave intensity remains virtually unchanged) and
in longer samples with a signiécant pumping depletion. The
stochastic nature of spon-taneous Raman scattering and the
énite value of the transverse relaxation time in the Raman
transition are taken into account.

2. Model equations

Consider a medium represented by identical molecules with
frequencies orq and dipole transition moments drq, q � 1, 2
corresponding to the initial and énal levels of the Raman
transition, and r � 3, 4, 5, . . . corresponding to the inter-
mediate states (d12 � 0). We assume that a plane linearly
polarised wave is incident on the medium, the intensity of
the wave being moderate and its frequency lying far from
the resonance with any of the molecule transitions: jdrqELj
5 �h(oL ÿ orq), �horq.

Because the eféciency of the backward Stokes scattering
is insigniécant in the nonstationary case [13], and the
intensities of SRS components of an order higher than
the érst are relatively low [14], the éeld in the medium can be
represented in the form

E�r; t� �
X

f�L;s;a
efEf �z; t� exp�ÿiof t� ikf r� � c:c: (1)
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Here, Ef are slowly varying amplitudes of laser radiation
( f � L) and copropagating Stokes (f � s) and anti-Stokes
( f�a) waves; ef is the corresponding unit vector of
polarisation; os � oL ÿ o21; oa � oL � o21; and o21 is
the Raman transition frequency. The degree of phase
mismatching of the waves along the z axis is

Dk � ksz � kaz ÿ 2kLz; ksx;sy � kax;ay ÿ 2kLx;L;y � 0, (2)

where kf � of=vf � Zf of=c; vf is the velocity of the corre-
sponding wave; Zf is the linear part of the refractive index at
the frequency of ; z and x, y are the axes along and
perpendicular to the direction of propagation of the wave
EL (Fig. 1).

Under typical experimental conditions [11], the pump
intensity is � 5� 109 W cmÿ2 and below, hence the average
number of photons per molecule of a gas under normal
conditions and for visible radiation (at � 0:5 mm) does not
exceed 1:5� 10ÿ2; i.e., the level population can be treated as
constant in this case. For copropagating waves in gases for
samples of length L � 1 m and below, the quantity Ljvÿ1f ÿ
vÿ1f 0 j ( f, f 0 � L, s, a) deéning the time of their group delay
does not exceed 10ÿ14 s. Thus, the effect of the difference in
the velocities of interacting waves on the SRS kinetics can be
neglected in the case of nanosecond pulses. However, the
dispersion of the Raman medium may play a signiécant role
in the estimates of the anti-Stokes generation angle.

Under these conditions, the nonstationary SRS is
described by the system of equations [15]:

qeL

qx
� 2i�aQes � bQ �ea exp�iqx��, (3)

qes

qx
� 2irsa

�eLQ
�, (4)

qea

qx
� 2irab

�eLQ exp�ÿiqx�, (5)

qQ
qt
� i�a �eLe

�
s � be �Lea exp�iqx�� ÿ gQ. (6)

Here, ef � ZEf=(pn0�hoL)
1=2 are dimensionless complex

amplitudes of the Stokes ( f � s), anti-Stokes ( f � a), and
laser éelds ( f � L); n0 is the concentration of molecules;
Z � Zf ( f �L, s, a); Q is the nondiagonal element of the
collective density matrix, which describes the polarisation
induced in the system; x � z=vOÿ1 is the dimensionless
coordinate; v � vf ( f �L, s, a); t � (tÿ z=v)=Oÿ1 is the
dimensionless delay time; g � G=O; q � Dkv=O; rs;a �
os;a=oL; a � ms=jmsj; b � ma=jmsj; G is the transverse relax-

ation rate for the j1i ÿ j2i transition; ms � m s
12, ma � m a

21 are
the Raman polarisabilities deéned by the expression

m f
mn �

1

�h

X
r

�dmref��drneL�
orn � oL

� �dmreL��drnef�
orm ÿ oL

( f � s, a; m 6� n � 1, 2). The quantities Oÿ1 � Z2=pn0oLjmsj
and vOÿ1 deéne the time and spatial scales of the non-
stationary SRS, respectively. We take into account the
dependence of the refractive index on the frequency of light
in expression (2). A similar approach was used in Ref. [14].

We assume that the Stokes emission is generated in the
medium due to spontaneous Raman scattering, which can
be described by specifying a small initial polarisation

es�0; t� � 0, (7)

Q�x; 0� � a, (8)

while the anti-Stokes component is generated due to
parametric interaction of the laser and Stokes waves, i.e.,

ea�0; t� � 0. (9)

In expression (8), a is a random quantity described by the
Gaussian distribution

P0�a� �
2a

k 2
exp

�
ÿ a 2

k 2

�
, (10)

where k � 1=
����
N
p

is the distribution width [16 ë 18], and N is
the total number of molecules in the sample.

It follows from Eqns (3) ë (6) that their solutions have a
certain symmetry relative to the quantity q:

ef�ÿq� � ÿe �f �q� � f � L; s; a�; Q�ÿq� � Q ��q�. (11)

Thus, the intensities of the waves and the polarisation of
the medium are independent of the sign of q.

As in previous papers [7 ë 12], we consider the scattering
for the case of a weak dependence of Raman polarisabilities
on frequency:

osjmsj2 � oajmaj2.

3. Solution of Maxwell ë Bloch equations

Let us estimate a number of quantities appearing in
Eqns (3) ë (6) for the example of SRS in hydrogen.
According to Ref. [19], the transverse relaxation time T2

for the Q01(1) vibrational ë rotational transition is 7:5�
10ÿ9 s atm=p0 (where p0 is the gas pressure). At low
pressures, the polarisation relaxation time associated with
the motion of molecules is T �2 � 2=(kLÿ ks) �V ( �V is the
average thermal velocity of molecules), which amounts to
about 4:3� 10ÿ10 s for the given transition at room
temperature (T � 300 K).

Due to a decrease in the mean free path of molecules and
its approaching to the length 1=(kLÿ ks) with increasing
pressure, the average velocity determining the Doppler
broadening becomes lower than the mean thermal velocity
�V and continues to decrease gradually [20]. In this case, the
inhomogeneous broadening of the Stokes line decreases,
while its homogeneous broadening increases, so that its total

y

kL kL

ks

Dk

ka

Figure 1. Vector diagram for anti-Stokes parametric generation.
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width decreases at érst, attains its minimum value Domin

� 4� 108 sÿ1 (Dicke effect) in the vicinity of p0 � 1:85 atm,
and then increases [21]. Because the time T2 ' 4:1� 10ÿ9 s
in the vicinity of Domin, the value of T �2 is about 6.7 ns.

If the second harmonic radiation from a neodymium
laser (lL � 5:32� 10ÿ7 m) is used for pumping, the Stokes
wavelength is ls � 6:83�10ÿ7 because the width Dv of the
Q01(1) transition is 4158.55 cmÿ1 [22]. Since the differential
Raman cross section for hydrogen molecules is ds=dO '
5:28� 10ÿ31 cm2 moleÿ1 srÿ1 [23], the quantity jmsj2 �
k 4
s ds=dO will be approximately equal to 5� 10ÿ51 cm6.
For the pressure p0 � 3 atm at temperature T � 300 K,

the concentration of molecules is n0 � 7:2� 1019 cmÿ3.
Because only 66.7% molecules are in the ground state in
this case, we obtain O � 3:7� 1010 sÿ1. Therefore, the tem-
poral scale is t0 � Oÿ1 ' 2:7� 10ÿ11 s and the spatial scale
is L0 � vOÿ1 ' 8:2 mm. Thus, choosing the pump pulse
duration tL < T �2 ' 7 ns (several hundred t0), we can neglect
the inhomogeneous broadening, whereas the transverse
relaxation should be taken into account.

3.1 Short sample

Consider érst a medium of a relatively small size, i.e., the
case L ' (1ÿ 2)L0 (L � 1 cm for the experimental con-
ditions considered above). In this case, the change in the
pump éeld during SRS can be neglected and treated as
speciéed, i.e., eL � eL(0, t) [24].

Let us introduce the new amplitudes of éelds and
polarisation

As � aes
exp�gt�
eL

,

Aa � b
exp�iqx�ea exp�gt�

eL
, (12)

B � Q exp�gt�.

Then, Eqns (4) ë (6) take the form

qAs

qx
� ipB �, (13)

qAa

qx
� iqAa � ipB , (14)

qB
qt
� ijeLj2A�s � ijeLj2Aa,

where p=2 � rs � rajbj2. Let us introduce a new variable

u�t� �
� t

0

jeLj2dt ,

which is proportional to the pump pulse energy at the
instant t. In this case, the equation for qB=qt is con-
siderably simpliéed:

qB
qu
� iA�s � iAa. (15)

Let us differentiate Eqn (15) with respect to x and take into
account Eqns (13) and (14). As a result, we obtain a new

equation for polarisation, which does not contain the
amplitudes of the Stokes éeld:

q 2B

quqx
� ÿqAa . (16)

Thus, the problem is reduced at the érst stage to the
solution of a system of two equations (14) and (16). Their
solution can be obtained by the method of successive
approximations in the parameter q, and has the form

Aa � ÿ
a

u
exp�iy�

X1
k�0

jk�y�
�ÿix�k�1
�k !�2 , (17)

B � a

�
1� y exp�iy�

X1
k�0
� jk�y� ÿ ijk�1�y��

�ÿix�k�1
��k� 1�!�2

�
. (18)

The amplitude As is determined from Eqn (15):

As �
a

u
exp�ÿiy�

X1
k�0
��k� 1� jk�y� ÿ yjk�1�y�

� iyjk�y��
�ix�k�1

k !�k� 1�! , (19)

where y � qx=2; jk(y) is a spherical Bessel function of the
érst kind of the order k; x � gx; and g � pu. The solution
(17) ë (19) is valid for any x and y, i.e., for any g, q and x.
The quantity 2y � qx � Dkz is the difference between the
phases of interacting waves. The meaning of the quantity x
will be explained below. Taking into account the trans-
formation (12), we énally obtain

ea�x; t� � ÿa
px
b
eL�0; t� exp

�
ÿ i

qx
2
ÿ gt

�

�
X1
k�0

jk

�
qx
2

� �ÿipxu�t��k
�k !�2 , (20)

es�x; t� � a
px
a
eL�0; t� exp

�
ÿ i

qx
2
ÿ gt

�X1
k�0

�ipxu�t��k
k !�k� 1�!

�
�
�k� 1� jk

�
qx
2

�
ÿ qx

2
jk�1

�
qx
2

�
� i

qx
2
jk

�
qx
2

��
, (21)

Q�x; t� � a
qx
2
exp

�
ÿ i

qx
2
ÿ gt

�

�
X1
k�0

�
jkÿ1

�
qx
2

�
ÿ jk

�
qx
2

�� �ÿipxu�t��k
�k !�2 . (22)

For further analysis, it should be interesting to consider
two particular cases of the solutions (20) ë (22): q � 0 and
jqjx4 1. Because jk( y) �

���
p
p

( y=2) k�1=2�2G(k� 3=2)�ÿ1 for
a small argument [G(z) is the gamma function], we obtain
for q � 0

ea�x; t� � ÿia
p

b
xeL�0; t� exp�ÿgt�, (23)

es�x; t� � ia
p

a
xeL�0; t� exp�ÿgt�, (24)
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Q�x; t� � a exp�ÿgt�. (25)

For jqjx4 1, we use the asymptotic representation
jk(y) � sin (yÿ kp=2)=y for y4 1. This gives

ea � a
p

bq
eL�0; t� exp�ÿgt�

n
J0
ÿ�4pxu�t� �1=2�

ÿ exp�ÿiqx�I0
ÿ�4pxu�t��1=2�o, (26)

es � a
i

a
eL�0; t� exp�ÿgt�

�
px
u�t�

�1=2
I1
ÿ�4pxu�t��1=2�, (27)

Q � a exp�ÿgt�I0
ÿ�4pxu�t� �1=2�, (28)

where Jn(z) and In(z) are the Bessel function and the
modiéed Bessel function of the order n. One can see that in
this case the anti-Stokes component can be neglected and
we arrive at a solution analogous to the one obtained
earlier by Carman et al. [25].

Solutions (20), (21) or (23), (24), (26), (27) allow us to
énd the intensity of the corresponding wave

If �
cZjEfj2=2p
�hof n0SL

S � O
2rfl
jef j2, (29)

which is equal to the number of photons with the frequency
of ( f � s, a) êying through the transverse cross section S of
the sample per unit time (per molecule). The energy of a
Stokes (anti-Stokes) pulse of duration tL is

Wf �
� tL

0
If �L; t�dt �

1

2rf l

� tL

0
jef �l; t�j2dt � f � s; a�, (30)

where tL � tL=t0; l � L=L0.
For a rectangular pulse of amplitude E �0�L and duration

tL, formula (30) can be written in the explicit form

Wf � a 2M 2
f � f � s; a�.

Here,

M 2
s �

X1
k;n�0
f��k� 1�jk�y� ÿ yjk�1�y����n� 1�jn�y�

ÿyjn�1�y�� � y 2jk�y�jn�y�g
xk�n�1

��k� 1�!�n� 1�!�2

��k� n�!g ��k� n� 1; 2gtL�, (31)

M 2
a �

X1
k;n�0

jk�y�jn�y�
xk�n�1

�k! n!�2

�k� n�!g��k� n� 1; 2gtL�, (32)

where g�(m, z) is an incomplete gamma function [26]; y �
ql=2 � DkL=2; x � pe�0�L tLl � GL; gtL � GtL; e

�0�
L is the

dimensionless amplitude corresponding to E �0�L ;

G � g

vOÿ1
� 4p 2n0jmsj2PLtL

cZ3�h
ks (33)

is the nonstationary gain; and PL is the intensity of laser
radiation.

We see that the Stokes and anti-Stokes components
behave in different manners for different values of q and Dk.
It follows from formulas (23), (24) and (29) that for a
complete phase matching (Dk � 0), i.e., in the direction of
the angle

y0 �
�
4kakL ÿ 4k 2

L ÿ k 2
a � k 2

s

2kakL

�1=2
(Fig. 1), the intensities Is and Ia are close to each other and
do not increase with time even if G � 0. This situation is
analogous to stationary SRS [1 ë 4]. If, however, the
mismatching of waves becomes signiécant (jDkjz4 1),
i.e., the angles y between them are much larger than y0,
the coupling between the anti-Stokes wave and the Stokes
wave is lost completely, and the former is not generated
while the second is ampliéed to the maximum extent.

If t � (4pux)1=2 4 1 in Eqns (27) and (28), we can use the
asymptotic representation I1(t) � (2pt)ÿ1=2 exp t and write

Is � x 1=2 exp
h
2�4gx�1=2

i
� z 1=2 exp

h
4�Gz�1=2

i
.

Thus, the quantity x appearing in the solutions (17) ë (22)
deénes the increment of the Stokes emission intensity in the
absence of the anti-Stokes component.

Because the parameter a in the formula Wf � a 2M 2
f is a

random quantity, the energies Ws;a of the Stokes and anti-
Stokes pulses êuctuate, and their distribution functions are
analogous to those obtained earlier in Ref. [18]:

P�Wf� �
1
�Wf

exp

�
ÿWf

�Wf

�
, (34)

where the mean pulse energy is given by

�Wf �
�1
0

WfP�Wf�dWf � k 2M 2
f , (35)

and their relative standard deviations can be written in the
form

df �
� � 1

0
�Wf ÿ �Wf�2P�Wf�dWf

�1=2
�W ÿ1

f � 1 � f � s; a�. (36)

Because the mean anti-Stokes pulse energy is close to
zero in accordance with formulas (32), (35), (23) and (26) for
small and large values of the parameter q, it can be expected
that this energy will be maximum for a certain intermediate
value qopt (Fig. 2). Calculations based on formulas (32) and
(35) show that in the absence of transverse relaxation, the
energy �Wa indeed assumes its largest value for jyj � x=4
(jqoptj � g=2) or

jDkoptj �
G

2
. (37)

The average Stokes pulse energy increases monotonically
with jqj.

Thus, in the case of a weak depletion of pumping during
nonstationary SRS, there exists an optimal difference
between the wave vectors of the interacting waves, which
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determines the direction y of the most intense anti-Stokes
generation (Fig. 1). Since jDkoptj amounts to a few inverse
centimetres and is therefore much smaller than kf, it follows
from Fig. 1 that angle y is deéned by the expression

y � ÿy 2
0 � Dy 2

�1=2
, (38)

where Dy 2 � ksjDkoptj=kakL. The angle Dy is comparable
with angle y0 and has a value equal to a few milliradian.
Thus, under the experimental conditions described above,
the quantity jDkoptj ' 5:8 cmÿ1 for p0 � 3 atm, tL �
5� 10ÿ9 s and PL � 5� 109 W cmÿ2. This gives y0 �
3.0 mrad and Dy � 3:2 mrad.

In the case under consideration here (tL � T2), trans-
verse relaxation practically does not change the direction of
the anti-Stokes radiation having the highest intensity, but
lowers the SRS pulse energy at both frequencies.

3.2 Extended system

The intensity of the Stokes component increases with
increasing the sample length. For L > L0, this increase is
signiécant and the intensity of Stokes radiation becomes
comparable with that of laser radiation. Therefore, we must
reject in this case the prescribed pump éeld approximation.

Taking into account the depletion of the exciting wave,
we obtain from Eqns (3) ë (5) the law of conservation of the
number of photons:

NL�x; t� �Ns�x; t� �Na�x; t� � NL�0; t�, (39)

where

Nf�x; t� �
Z2jEfj2=2p

�hof n0
� jefj2

2rf
� f � L; s; a�

is the number of photons with frequency of per molecule.
Thus, the increase in the intensity of the Stokes wave is
limited by the pump intensity.

One can see from Eqn (5) that the product of the pump
éeld and polarisation determines the intensity of anti-Stokes
generation. In turn, it follows from Eqn (6) that the latter
depends mainly on the product of the amplitudes of Stokes
and laser waves (Ia 5 Is). For jDkjz5 1, the amplitude es is

small (the growth of es is suppressed), while for jDkjz4 1
the amplitude eL is small (depletion of eL pumping due to
the growth of es). The product eseL of amplitudes taking
Eqn (39) into account will be maximum when they are
comparable, i.e., for a certain intermediate value of jDkj.
Consequently, as in the case of weak pumping depletion,
there exists an optimal spatial mismatching of the interact-
ing waves in the present case, when the intensity of the anti-
Stokes component is the highest. This is conérmed by a
numerical analysis of Eqns (3) ë (5) (Fig. 3).

The larger the value of L, the higher the increment of the
Stokes radiation intensity and the pumping intensity dec-
rement, i.e., the smaller the difference jDkj for which the
product eseL assumes its highest value. Consequently, the
difference jDkoptj decreases with increasing L (jDkoptj � Lÿ1)
and approaches zero for large values of L. Apart from
jDkoptj, i.e., the angle of optimal anti-Stokes generation, the
angular dimensions of the anti-Stokes ring (Fig. 3) also
decrease upon an increase in the sample length.

In contrast to Sec. 3.1, the pump pulse duration has an
insigniécant effect on the difference jDkoptj (and hence on
the angle Dy) in the case of a strong depletion of pumping:
these quantities increase only slightly upon an increase in tL.
Transverse relaxation also has a similar effect on these
quantities in the case tL � T2 considered here. However, an
increase in the transverse relaxation rate leads to a rapid
decrease in the energy of anti-Stokes pulses, although the
sensitivity �Wa to the variation of this parameter decreases
with increasing L.

4. Conclusions

In the regime of generation of SRS pulses having a duration
comparable with the transverse relaxation time in the
Raman transition, a suppression of the ampliécation of
Stokes and anti-Stokes components is observed in the
direction of a complete spatial matching of laser, Stokes
and anti-Stokes waves deéned by the angle y0. For an angle
of emission much larger than y0, the connection between
the anti-Stokes and Stokes waves is completely lost and the
former wave is not generated, while the ampliécation of the
latter is maximum. Consequently, there exists an optimal
spatial mismatching of waves participating in the para-

1 2

�Ws;a

�
10ÿ7 photon moleculeÿ1

3

4 5

0 5 10 15 20 jDkjL0

1

2

3

4

5

Figure 2. Dependences of the average energies of Stokes ( 1, 2 ) and anti-
Stokes ( 3 ë 5 ) pulses on spatial mismatching in the case of a weak
depletion of pumping for the transverse relaxation rate G0 ( 1, 3 ), 0:005O
( 2, 4 ), 0:010O ( 5 ), tL � 200t0, e

�0�
L � 0:2, L � 2L0, and k � 10ÿ6

���
2
p

.
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2

3

0 5 10 15 jDkjL0 0 5 10 jDkjL0
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Figure 3. Dependences of the average energies of anti-Stokes pulses on
spatial mismatching in the case of a strong depletion of pumping for a
sample of length (a) L � 5L0 and (b) L � 10L0 for different transverse
relaxation rates. The remaining parameters are the same as in Fig. 2.
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metric process in which the anti-Stokes radiation intensity is
the highest.

For relatively short samples (L4L0) in which the
attenuation of the laser radiation can be neglected, the
angle y of the most efécient anti-Stokes generation is about
twice as large as the angle y0 of complete phase matching.
The optimal angle y for such samples does not depend on
their length and is directly proportional to the square root of
the exciting pulse energy. The direction of the most efécient
anti-Stokes radiation is practically stable while the energy of
the corresponding pulses experiences large-scale (about
100%) êuctuations.

For extended systems (L > L0) with a signiécant deple-
tion of the pump pulses, the optimal angle of anti-Stokes
generation decreases with increasing L approximately in
inverse proportion to L1=2 and approaches the angle of
complete phase matching for large values of L. The pump
pulse duration in long media does not affect the angle y
signiécantly. As in short samples, the spread in the optimal
angles of anti-Stokes generation is quite small. The energy
dispersion of Stokes and anti-Stokes pulses decreases with
increasing L, and amounts to 10%ë15% in the direction of
angle y for L ' 10L0 in the absence of phase relaxation.

Under conditions of conservation of phase memory of
molecules, the angular width of the anti-Stokes ring (at half-
height) is close to the difference yÿ y0. Enhancement of the
collision dephasing considerably broadens the anti-Stokes
rings and slightly increases their mean angles. In this case
also, no signiécant increase is observed in the spread of
energies of Stokes and anti-Stokes pulses.
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