
Abstract. The existence of the Lax representation for a
model of soliton management under certain conditions is
shown, which proves a complete integrability of the model.
The exact analytic solutions are obtained for the problem of
the optimal control of parameters of Schr�odinger solitons in
nonconservative systems with the group velocity dispersion,
nonlinear refractive index, and gain (absorption coefécient)
varying over the length. The examples demonstrating the non-
trivial ampliécation dynamics of optical solitons, which are
important from practical point of view, are considered. The
exact analytic solutions are obtained for problems of the op-
timal ampliécation of solitons in optical ébres with monotoni-
cally decreasing dispersion and of Raman pumping of solitons
in ébreoptic communication systems.
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1. Introduction

The problem of control of the parameters of optical soli-
tons has a long history. Mollenauer, Stolen, and Gordon
have shown in their pioneering experiments [1] that one of
the simplest methods of control of the parameters of optical
solitons is a multisoliton compression followed by the
spectral éltration of ultrashort emission fragments [1 ë 4].
By using cascade schemes for compression of N-soliton
pulses in two fragments of silica ébres with substantially
different anomalous dispersions, the authors of paper [5]
obtained 18 ë 19-fs wave packets of extremely short dura-
tion, whose envelope contains only three optical cycles, and
which are the shortest wave packets produced up to now.

Optical ébres with the dispersion characteristic contin-
uously varying over the length (the dependence of the total
dispersion of the ébre on the wavelength [6]) fabricated at

the General Physics Institute, RAS, simulated the develop-
ment of efécient methods for the adiabatic compression of
solitons and opened the possibility for the building of gene-
rators of high-frequency trains of optical solitons for ébre-
optic communication [6 ë 8]. The use of various combina-
tions of optical ébres with alternating dispersion signs (ébre
dispersion management) resulted in the development of so-
liton wavelength-division-multiplexed communication sys-
tems with a bit rate of 40 Gbit sÿ1.

The problem of optimal control of the parameters of
optical solitons as ideal carriers of a data bit, which is also
called the problem of soliton management, is at present one
of the key problems. A detailed analysis of the state of the
art of experiments and theory in this rapidly developing éeld
of science and technology can be found in book [9]. In this
book, the studies of all research groups and companies
playing a leading role in the development of methods for
data transmission using optical solitons are considered.

A mathematical problem of soliton management is a
search for soliton-like solutions of a nonlinear Schr�odinger
equation (NSE) in a closed or open line with parameters
variable over the length, such as the group velocity dis-
persion, nonlinearity of the refractive index, coefécients of
nonlinear losses of radiation and of periodical ampliécation
of solitons in communication systems.

In this paper, we prove that the NSE model with
variable coefécients is completely integrable under certain
conditions. The solutions found in the form of soliton pulses
with a nontrivial law of the phase variation and having a
canonical form represented by hyperbolic secant or tangent
exist only in the case of a certain relation between the
parameters of a nonlinear system and a soliton being
channelled. These properties stimulate the technological
development and fabrication of new optical ébres with a
speciéed law of variation of basic parameters over the ébre
length.

Our main purpose is to initiate new experimental studies.
This determines the character of representation of basic
results, which allows a reader to repeat easily the corre-
sponding calculations and to select the so-called map of
parameters for each speciéc experiment. The speciécity of
the results obtained is that an open inénite set (`ocean') of
new soliton solutions of the NSE model allows one to
calculate easily the required parameters of the problem if,
for example, the dispersion variation over the ébre length is
known from the experiment. In this case, the main problem
of the experiment is to be as close as possible to the optimal
map of parameters at which the problem of soliton manage-
ment, as shown below, proves to be exactly integrable.
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This paper consists of two parts. In the érst part, the Lax
representation is obtained for the soliton management mo-
del and the conditions are found under which the problem is
completely integrable. In the second part, the nonlinear
Bloch theorem is obtained for optical solitons and the sta-
bility of N-soliton Bloch waves (coupled states) is analysed
in a periodically nonlinear and dispersion system.

2. The Lax representation
in the soliton management model

A modern progress in the theory of nonlinear waves is
caused érst of all by the development and application of the
inverse scattering transform, which is called after its crea-
tors the spectral problem method of Zakharov ë Shabat [10]
or of Ablowitz ëKaup ëNewell ë Segur [11]. It was proved
that, if the so-called Lax representation [12] is found for a
nonlinear wave equation, then the solution for this equation
can be found by the inverse scattering transform (see, for
example, [12 ë 20] and references cited in [13 ë 20]). The exi-
stence of the Lax representation proves the complete inte-
grability of the problem under study.

It should be emphasised that the problem of classié-
cation of completely integrable equations has a rather long
history. The problems considered below have been discussed
in detail in papers [13 ë 19].

A general algebraic formulation of the problem is as
follows. We will attempt to write the NSE with variable
coefécients as a condition for the integrability of a pair of
linear equations. Let us represent two linear differential
operators, which depend on the spectral parameter l, in the
form

l̂�l� � q
qx
ÿ L̂

�
l; q;

qq
qx
;
q 2q

qx 2
; . . . ;

q nq

qxn

�
, (1)

t̂�l� � q
qt
ÿ Â

�
l; q;

qq
qx
;
q 2q

qx 2
; . . . ;

q nq

qxn

�
, (2)

where L̂ and Â are the n� n matrices and q(x, t) is the
required potential. For the complex n-component vector
function w(x, t) � fc1, . . . , cng, differential operators (1)
and (2) satisfy the system of equations

l̂�l�w�x; t� � 0 , (3)

t̂�l�w�x; t� � 0 . (4)

Equation (3) is known as the spectral problem for the
operator l̂(l), while equation (4) determines the time
evolution of scattering for t > 0. Note that hereafter in
this section we use the space ë time variables x and t, as
accepted in quantum-mechanical problems of scattering by
the potential q(x, t), while the formulation of the problem
itself has deep quantum-mechanical analogues [13]. On
passing to the soliton management problem, we use the
coordinate representation, which is commonly accepted in
problems of optical solitons.

The integrability (compatibility) condition for a pair of
linear equations (3) and (4) has the form

�
l̂�l�; t̂�l�� � 0 (5)

and means that the operators l̂(l) and t̂(l) are com-
mutative operators. In the matrix form, equation (5) is
written as

qL̂
qt
ÿ qÂ

qx
� �L̂; Â� � 0. (6)

Equation (6) should be satiséed for any values of the
spectral parameter l and it is known as the Lax represen-
tation or the Lÿ A pair determining a system of equations
for the scattering potential q (x, t).

Below, we will consider the construction of the Lax pair
in a more general case, taking into account the fact that
variables in the potential q (x, t) can be complicated, for
example, mutually dependent functions. We will show below
that the Lax representation allows one to obtain an heuristic
`prompt' as to what form a general solution of the problem
for solitons should be sought in media with variable para-
meters. By making the change x! s (x, t), t! t, we pass in
(1), (2) to the complicated function q�s (x, t), t� of conégura-
tional variables and take the matrices L̂ and Â in a standard
form

L̂ �
� ÿil q�s; t�
r�s; t� il

�
; Â �

�
A B
C ÿA

�
. (7)

The substitution of (7) into matrix equation (6) gives
equations for potentials q (s, t) and r (s, t) as functions of
the complicated argument s (x, t):

qq
qt
� qq

qs
qs
qt
� qB

qs
qs
qx
� 2qA� 2iBl ,

qr
qt
� qr
qs

qs
qt
� qC

qs
qs
qx
ÿ 2rAÿ 2iCl , (8)

qA
qs

qs
qx
� qCÿ rB .

By using a standard procedure for a search for the Lax pair
for the usual NSE (with constant coefécients), we represent
the functions A(l), B (l), and C (l) as polynomials of degree
l:

A � A0 � A1l� A2l
2 � . . . ,

B � B0 � B1l� B2l
2 � . . . , (9)

C � C0 � C1l� C2l
2 . . . .

To obtain the NSE, it is sufécient to consider expansions
in (9) only up to quadratic terms in l. The Korteweg ë de
Vries equation (together with the NSE) is obtained when
cubic terms are taken into account in the expansion of
matrix elements in the spectral parameter l. To obtain a
system of evolution equations for the components q (s, t)
and r (s, t) of the potential, we substitute (9) into (8) and
collect similar terms:

qA0

qs
qs
qx
� qC0 ÿ rB0,

qA1

qs
qs
qx
� qC1 ÿ rB1,
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qA2

qs
qs
qx
� 0, (10)

qB1

qs
qs
qx
� ÿ2qA1 ÿ 2iB0 ,

qC1

qs
qs
qx
� 2rA1 � 2iC0 ,

qA2 � iB1 � 0 ,

rA2 � iC1 � 0 .

Equations for the potential components q (s, t) and r (s, t)
directly follow from (8) and (9):

qq
qt
� qq

qs
qs
qt
� qB0

qs
qs
qx
� 2qA0 ,

(11)
qr
qt
� qr
qs

qs
qt
� qC0

qs
qs
qx
ÿ 2rA0 .

We should énd the conditions under which the system of
equations (11) is reduced to one NSE with variable coefé-
cients (we will call it the generalised NSE). From (10), we
obtain the expressions for matrix elements

A0 �
1

2
A2qr� a0�t� ,

B0 � iA1qÿ
1

2
A2

qq
qs

qs
qx

,

C0 � iA1r�
1

2
A2

qr
qs

qs
qx

, (12)

B1 � iA2q ,

C1 � iA2r .

As a result, system (11), after the reduction [16]

r � ÿbq � (13)

and under the `strict' conditions

A�1�t� � ÿA1�t�; A�2�t� � ÿA2�t�; a �0 �t� � ÿa0�t� (14)

imposed on the matrix elements, leads to the completely
integrable generalised NSE model

i
qq
qt
� 1

2

�
D2�t�

�
qs
qx

�2 � q 2q

qs 2
�N2�t�jqj2q

ÿ i

�
V�t� qs

qx
� qs

qt

�
qq
qs
ÿ 2G�t�q (15)

with time-dependent coefécients

A1�t� � iV�t�; A2�t� � iD2�t�; a0�t� � iG�t�;

N2�t� � bD2�t� , (16)

where the functions V (t), D2(t), N2(t), and G(t) are the real
functions of the variable t.

Therefore, the Lax representation for the soliton mana-
gement model has the form

L̂ �
� ÿil q
ÿbq � il

�
, (17)

Â �
�
A B
C ÿA

�
, (18)

A �
�
ÿ i

2
bD2�t�jqj2 � iG�t� � iV�t�l� iD2�t�l2

�
, (19)

B �
�
ÿ i

2
D2�t�

qq
qs

qs
qx
ÿ V�t�qÿD2�t�ql

�
, (20)

C �
�
ÿ i

2
bD2�t�

qq �

qs
qs
qx
� bV�t�q � � bD2�t�q �l

�
. (21)

Finally, the system of linear equations solved by the
method of inverse scattering problem can be written in the
form

qc1�s; t�
qs

� ÿilc1 � q�s; t�c2 ,

(22)
qc2�s; t�

qs
� ÿbq ��s; t�c1 � ilc2 ,

qc1�s; t�
qt

�
�
iD2�t�l 2 � iV�t�lÿ i

2
bD2�t�jq�s; t�j2� iG�t�

�
c1

ÿ
�
D2�t�q�s; t�l� V�t�q�s; t� � i

2
D2�t�

qq�s; t�
qs

qs
qx

�
c2 ,

(23)

qc2�s; t�
qt

�
�
bD2�t�q ��s; t�l� bV�t�q ��s; t� ÿ i

2
bD2�t�

� qq ��s; t�
qs

qs
qx

�
c1 �

�
ÿ iD2�t�l 2 ÿ iV�t�l

� i

2
bD2�t�jq�s; t�j2 ÿ iG�t�

�
c2 .

3. Exact solutions for the soliton management
model

The Lax representation (17) ë (21) for equation (15) gives an
heuristic method for the construction of the general
solution of the Schr�odinger equation with variable coefé-
cients. Indeed, as follows from (15) and (16), the problem
proves to be completely integrable if

D2�t�
�
qs
qx

�2
� bD2�t� ,

from which it follows that s (x, t) � const x� f (t), where
f (t) is an arbitrary function of time, i.e., the spectral
parameter l is independent of time in the general case.

The generalised NSE in the problem of soliton manage-
ment has the form
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i
qC
qZ
� 1

2
D�Z� q

2C
qX 2 �N�Z�jCj2Cÿ ig0C� iG�Z�C, (24)

where g0 are linear (spatially homogeneous) losses. Equa-
tion (24) is written here in the so-called canonical variables,
when the dimensionless length Z of the pulse propagation
are normalised to the dispersion length, and the éeld C is
expressed in units of the soliton-pulse amplitude [21ë25].
The parameters introduced into (24) describe variations in
the dispersion D(Z ), the nonlinearity N(Z ), and the gain
G(Z ) over the length of interaction of emission with a
spatially inhomogeneous system. According to the well-
known space-time analogy, equation (24) describes spatial
solitons (`slot' beams) or usual temporal solitons (stationary
pulses) if the coordinate X represents time or the transverse
coordinate, respectively.

When the system described by equation (24) is con-
servative (losses and ampliécation are absent), the condition
of its complete integrability is deéned, according to (15) and
(16), as

N�Z� � bD�Z� (25)

and the simplest solution for a soliton without the phase
modulation (i.e., a soliton with a trivial phase, which
linearly depends on X ) has the form

C�X;Z� � 1���
b
p

Z sech�ZX� exp
�ÿ 0:5iZ2

� Z
0 D�z�dz�

Z tanh�ZX� exp
�ÿ iZ2

� Z
0 D�z�dz�;

8<: (26)

in the intrinsic coordinate system, where an arbitrary
parameter Z is introduced for the deénition of the soliton
form factor. The upper expression in (26) corresponds to a
bright soliton obtained under the initial conditions
N(Z � 0) � bD(Z � 0), while the lower expression corre-
sponds to a dark soliton obtained under the initial
conditions with the opposite sign N(Z � 0) � ÿbD(Z � 0).

Consider in more detail the case of a nonconservative
system described by the complete equation (24). By using
the substitution

~C�X;Z� � C�X;Z�
G�Z� , (27)

R�Z� � N�Z�G 2�Z�, (28)

where the function G(Z ) satisées the equation

qG�Z�
qZ

� ÿg0G�Z� � G�Z�G�Z�, (29)

we write equation (24) in the form

i
q ~C
qZ
� 1

2
D�Z� q

2 ~C
qX 2

� R�Z�j ~Cj2 ~C. (30)

One can easily see that equation (30) proves to be com-
pletely integrable then and only then when the condition

R�Z� � bD�Z� (31)

is satiséed.

Therefore, there exist the following completely integrable
models for solitons in nonconservative systems:

i
qC
qZ
� 1

2
CN�Z� exp

�
ÿ 2g0Z� 2

� Z

0

G�z�dz
�
q 2C
qX 2

�N�Z�jCj2Cÿ ig0C� iG�Z�C, (32)

i
qC
qZ
� 1

2
D�Z� q

2C
qX 2

� 1

C
D�Z� exp

�
2g0Zÿ 2

� Z

0

G�z�dz
�

� jCj2Cÿ ig0C� iG�Z�C, (33)

i
qC
qZ
� 1

2
F�Z�F�Z� q

2C
qX 2

� F�Z�jCj2C

� i

2
C

q
qZ

lnF�Z�, (34)

where the functions N(Z ), G(Z ), D(Z ), F(Z ), and F (Z )
are arbitrary integrable and differentiable functions.

For the complete analysis, we present the example of the
simplest solution of equation (34) for a soliton without the
phase modulation in the intrinsic coordinate system:

C�X;Z� �

F 1=2�Z�
Z sech�ZX� exp

�ÿ 0:5iZ2
� Z

0 F�z�F �z�dz�
Z tanh�ZX� exp

�ÿ iZ2
� Z

0 F�z�F �z�dz�:
8<: (35)

Note that the soliton solutions of equations (32) ë (34)
without the phase modulation have a unique feature of not
changing their duration in the process of ampliécation
(absorption).

Another nontrivial solution for the model (24) is phase-
modulated solitons, which were predicted in papers [26 ë 28].
Consider these solutions in more detail.

We will write the solution of equation (30) in the form

~C�X;Z� � P 1=2�Z�Q�S�X;Z�;Z� exp

�
i
C�Z�

2
X 2

�
, (36)

where the variable S is a complicated function S � S(X,Z ).
Note that we purposely use similar designations s (x, t) and
S(X,Z ) for two complicated functions in (7), (8) and (36) in
order to emphasise a deep relation between the two theo-
retical methods being developed here.

The substitution of (36) into (30) gives the nonlinear
evolution equation for the function Q(S,Z ) of the form

i
qQ
qZ
� 1

2
DP 2 q 2Q

qS 2
� RPQjQj2

ÿ i

2P
Q

�
qP
qZ
�DCP

�
ÿ iT

qQ
qS

�
qP
qZ
�DCP

�

ÿT 2 Q

2

�
qC
qZ
�DC 2

�
. (37)
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One can easily see that the Lax representation (17) ë (20) for
equation (37) exists then and only then when the two
conditions

qP
qZ
�DCP � 0, (38)

qC
qZ
�DC 2 � 0 (39)

are simultaneously satiséed.
Now, we should write in the explicit form the compa-

tibility (solubility) condition for the system of equations (38)
and (39):

C�Z� � �YP�Z�, (40)

where Y is an arbitrary constant, which can assume any
values, including zero. Therefore, we obtain an inénite
`ocean' of soliton solutions for the soliton management
model (24), which was found for the érst time in papers
[26 ë 28].

The relation with the Lax representation (17) ë (20) is
established by the mutual dependence of the main para-
meters:

N2�Z� � R�Z�P�Z�; D2�Z� � D�Z�P 2�Z�. (41)

As shown in the previous section, the Lax representation
(17) ë (20), which means the complete integrability of the
NSE model (15), exists then and only then when dispersion
and nonlinearity are connected by the relation

N2�Z� � bD2�Z�. (42)

In the soliton menegement model considered the Lax repre-
sentation similar to (17) ë (20) exists then and only then
when more complicated mathematical conditions are satis-
éed, which, however, open up the wide opportunities for
the experimental realisation of the effects under study. The
parameters of a nonlinear system, for example, a soliton
communication system, the data storage system, or a soli-
ton laser, which are also well described by the model (36),
(40), cannot be arbitrary and should be chosen in accor-
dance with two main conditions.

First, all the basic spatially dependent parameters of the
model (24) should be interrelated:

R�Z� � bD�Z�P�Z� � N�Z�G 2�0�

� exp

�
ÿ 2g0Z� 2

� Z

0

G�z�dz
�
. (43)

Second, the solutions in the form of bright and dark quasi-
soliton pulses of the type (36) with the function

Q�S� �
Z sech�ZP�Z�X �

Z tanh�ZP�Z�X �

8<: (44)

and the nontrivial phase exists then and only then when the
conditions

P � P0

�
1� P0

� Z

0

D�Z 0�dZ 0
�ÿ1

; R � P�Z�D�Z�
C0

(45)

are satiséed.

It is assumed in (45) that the dispersion characteristic
D(Z ) of the system is an arbitrary integrable function,
which an experimenter may choose at will. Then, the rest of
the parameters of the system ë the gain and nonlinearity ë
should satisfy the condition (45).

When it is more convenient to choose in a particular
experiment, for example, the speciéed proéle of the effective
nonlinearity parameter (or the gain proéle in a distributed
periodic system), the rest of the parameters should satisfy
the condition

P � P0 exp

�
ÿ C

� Z

0

R�Z 0�dZ 0
�
; D � C0R�Z�

P�Z� . (46)

Therefore, the problem of the optimal control of soliton
parameters with the help of spatially inhomogeneous
systems proves to be integrable and has the solutions of
the type (36), (44) under the conditions (45), (46).

To illustrate the nontrivial dynamics of the solutions
obtained, we consider a number of speciéc examples. The
NSE model with variable coefécients (15) is completely
integrable under the conditions (16) imposed on the basic
parameters of the model. Within the framework of this
model, solitons (26) without the phase modulation, both
bright and dark, interact elastically and do not change their
form. They only acquire different accelerations, as one can
see from Figs 1 and 2. Figs 1 and 2b show the space ë time
dynamics of the `trappon' type for bright and dark solitons,
which was calculated in the parametric region

D2�t� � cos t; N2�t� � b cos t . (47)

ÿ15 ÿ10 ÿ5 0 5 10 15 X

ÿ30 ÿ20 ÿ10 0 10 20 X

0

2

4

6

8

10

12

Z

10.0

5.0

7.5

12.5

2.5

Z

0

10ÿ1

10ÿ2

10ÿ3

10ÿ4

10ÿ5

10ÿ6

Figure 1. Interaction of NSE (15) soliton solutions (26) in the parametric
region (47) for b � 4:0 and initial soliton velocities 10.0 and ÿ10:0.
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The interaction dynamics of solitons calculated for the
parameters

D2�t� � N2�t� � 1ÿ at, (48)

is presented in Fig. 2 (dynamics of the `boomeron' type).
It should be emphasised that the qualitative features of

the propagation of solutions presented in Figs 1, 2 corre-
spond to trappons and boomerons (see Ref. [17], pp. 336,
337), which were, however, obtained for much more com-
plicated models.

The dynamics of solitons (26) calculated using the model
(47), (48) should be compared with the dynamics of phase-
modulated soliton solutions (36) obtained for the param-
eters

R�Z� � cosZ; D�Z� � cosZ exp�sinZ�,

P�Z� � exp�ÿ sinZ� (49)

or

R�Z� � 1ÿ aZ; D�Z� � �1ÿ aZ� exp
�
Zÿ aZ 2

2

�
. (50)

Solutions (36) with parameters (49), (50) presented in
Fig. 3 were obtained in the regions of complete integrability
of the model (24). They interact elastically, but are sub-

stantially different from solutions (26) with parameters (47),
(48) in that they not only acquire the acceleration but also
change their duration and amplitude. This important differ-
ence is caused by the fact that solutions (36), (49), and (50)
have the nontrivial phase modulation, which is determined
by the parameter P(Z ). In this connection, in order to
distinguish them from solutions (26), (47), and (48) shown in
Figs 1 and 2, it is expedient to call new solutions the quasi-
solitons, emphasising that they can change their amplitude,
duration, and phase in inhomogeneous media.

The large-scale numerical calculations showed that the
gain and interaction dynamics of solitons without the phase
modulation (32) ë (35) has all the features of the interaction
of `true' solitons. The results obtained for the functions
D(Z ), N(Z ), G(Z ), F (Z ), and F(Z ) of different forms will
be described in a separate paper. Here, we present the
calculation of the gain and interaction dynamics for in-
phase and out-of-phase solitons of the model (32) in the
simplest case of G(Z ) � G(0) � const (Fig. 4). The charac-
teristic feature of the soliton solutions of equations (32) ë
(34) is that the soliton duration is constant during the
increase of its energy. Note also that the self-consistence of
the dispersion, nonlinearity, and gain in the model (32) ë
(34) is accompanied by the averaging of the spatial sto-
chastic variations in the gain (absorption coefécient), and
vice versa, the stochastic variations in the dispersion should
be taken into account in the gain (absorption coefécient)
according the expression

G�Z� � 1

2F�Z�
qF
qZ

.

Consider two practically important cases. Let us present
an exact analytic solution for the problem of Raman
pumping of solitons. Consider the most interesting case,
when a wave of the molecular vibrations of the medium is
excited by two laser beams from the opposite ends of an
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Figure 2. Dynamics if the bright (a) and dark (b) solitons (26) in the
parametric region (48).

0 10 20 X ÿ30 ÿ10 10 X

a b

0

3

6

9

12

Z

Figure 3. Nonlinear dynamics of a quasi-soliton (36) of the 'trappon'
type with parameters (49) (a) and of a quasi-soliton (36) of the `boom-
eron' type with parameters (50) (b).
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optical ébre [24]. The gain distribution is described in this
case by the function

G�Z� � exp�ÿgZ� � exp�g�Zÿ L�� . (51)

The problem proves to be completely integrable if the
dispersion is determined by the expression

D�Z� � expf2�A sinh�gZ� ÿ B cosh�gZ� � B�g, (52)

where

A � 1

g
�1� exp�ÿgL��; B � 1

g
�1ÿ exp�ÿgL��; (53)

and g are linear losses at the Raman frequency.
It should be emphasised that two substantially different

situations appear in the problem of the Raman pumping of
solitons, which are illustrated in Figs 5a and 5b. In the érst
case, the pump decays rather strongly so that the gain at the
ébre centre is virtually zero, and the optimal function D(Z )
has two inêections. In the second case, on the contrary, the
pump decays weakly, and the gain is a monotonic function.
The optimal dispersion characteristic is a linear increasing
function.

Consider the exact analytic solution for the problem of
the soliton propagation in a ébre with the decreasing dis-
persion [6]

D�Z� � 1

1� aZ
. (54)

In this case, the expression for the optimal gain has the
form

G�Z� � 1

2�1� aZ�
�

1ÿ aC0 � ln�1� aZ�
C0 ÿ �1=a� ln�1� aZ�

�
. (55)

The optimal coefécient P(Z ) is determined by the soliton
duration
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Figure 4. The gain and interaction dynamics for in-phase (a) and out-of-
phase (b) solitons (32) calculated for G(0) � 1:0, initial soliton velosities
1.0 and ÿ1:0.
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Figure 5. Optimal map for the parameters of an optical ébre upon
Raman pumping of solitons (51) calculated for g � 0:1 (a) and 0.01 (b).
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T�Z� � 1

P�Z� � C0 ÿ
1

a
ln�1� aZ�. (56)

The typical dependences D(Z ), T (Z ), and G(Z ) are
shown in Fig. 6. The dispersion decreasing as a hyperbolic
function requires the production of a very interesting gain
proéle in the ébre, when absorption érst dominates and
then the gain dominates. This can be interpreted (Fig. 5) as
the counter Raman pumping of a soliton. Fig. 7 shows the
interaction dynamics of solitons with optimal and non-
optimal phase proéles.

Note in conclusion that the new class of solutions
obtained in this paper is a more general and contains cano-
nical NSE solitons with constant coefécients. The passage to
the limit occurs for the parameter Y! 0, when the soliton
amplitude and duration take stationary values according to
(31) ë (33).
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