
Abstract. It is shown that optical solitons in nonlinear ébre-
optic communication systems and soliton lasers can be repre-
sented as nonlinear Bloch waves in periodic structures. The
Bloch theorem is proved for solitons of the nonlinear Schr�o-
dinger equation in systems with the dispersion, the nonlineari-
ty, and the gain (absorption coefécient) periodically changing
over the length. The dynamics of formation and interaction,
as well as stability of the coupled states of nonlinear Bloch
waves are investigated. It is shown that soliton Bloch waves
exist only under certain self-matching conditions for the basic
parameters of the system and reveal a structural instability
with respect to the mismatch between the periods of spatial
modulation of the dispersion, nonlinearity or gain.
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1. Introduction

The use of optical solitons as ideal carriers of a data bit in
ébreoptic communication systems and the development of
soliton wavelength-division-multiplexed (WDM) communi-
cation systems with a bit rate of 40 Gbit sÿ1 is one of the
most signiécant recent achievements of quantum electro-
nics. Recent advances in this rapidly developing éeld of
science and technology are most comprehensively analysed
in a collection of papers [1] and review [2].

A group of Nakasawa at NTT Network Innovation
Laboratories (Japan) has performed spectacular experi-
ments on soliton data transmission in commercial ébre-
optic Tokyo Metropolitan Network. In this network, a com-
mercial ébreoptic cable provides a bit rate of 2.4 Gbit sÿ1 in
the usual regime. In the WDM soliton dispersion manage-
ment regime, a bit rate as high as 40 Gbit sÿ1 was obtained
in the network of length 1000 ë 2500 km.

One of the central problems of all-optic soliton ébreoptic
communication systems (in which laser ampliéers are used
as retransmitters rather than electronic ampliéers) is the
problem of the optimal control of the parameters of optical
solitons, which is also called the problem of soliton manage-
ment. The use of various combinations of optical ébres with
periodically varying dispersion signs (ébre dispersion man-
agement) allows the development of the soliton communi-
cation system providing a bit rate as high as several terabits
per second (see, for example, Refs [1, 2]). The concept of the
soliton management proved to be very useful for the buil-
ding of new types of femtosecond soliton lasers as well [3, 4].

The mathematical problem of soliton management is a
problem of the optimal control of the parameters of optical
solitons in the nonlinear Schr�odinger equation (NSE) model
for a closed or an open system with the system parameters
that periodically vary over the system length. These param-
eters are the group velocity dispersion, the nonlinearity of
the refractive index, coefécients of linear losses of emission
and of periodic ampliécation of solitons in communication
systems.

This work is devoted to the solution of this problem and
to the proof of the fact that Schr�odinger optical solitons in
periodic structures represent a nonlinear analogue of well-
known electron Bloch waves in crystals.

2. Nonlinear Bloch theorem
for Schr�odinger solitons

The concept of nonlinear Bloch waves was proposed by
Haus and Chen [3] to describe the dynamics of optical soli-
tons in the problem of soliton management. The authors of
paper [3] pointed out a profound analogy between electron
Bloch waves in crystals and nonlinear wave packets in ébre-
optic communication systems with spatially varying param-
eters. In such nonlinear periodic dispersion systems, a soli-
ton pulse produces a nonlinear scattering self-consistent po-
tential for itself due to the self-action during its propa-
gation. Haus and Chen considered the dynamics of a
system with a periodically varying dispersion sign in the
case when the equivalent averaged dispersion proves to be
zero. The theoretical approach to the problem of nonlinear
Bloch waves used in papers [3, 4] was based on the vari-
ation approximation of Anderson [5] and on the assum-
ption that Gaussian ëHermitian polynomials of a linear
eigenvalue problem can be used as test functions. In such an
approach, the nonlinear Bloch waves represent the so-called
dispersion-managed solitons, which are known to interact
with each other inelastically [1 ë 8].
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We will use an approach that differs from that applied in
papers [3, 4], which is based on the concept of quasi-particle
wave packets, which are formed in a medium with varying
parameters (potentials). By using a direct wave ë particle
analogy for an electron in a crystal and a soliton in a perio-
dic structure, we will show that the dynamics of Schr�odinger
solitons in a periodic nonlinear system obeys the nonlinear
Bloch theorem, the formulation of the problem having pro-
found quantum-mechanical analogues.

According to the Bloch theorem [9 ë 11], the wave func-
tion of an electron in a periodic crystal lattice

C�x� � Uk�x� exp�ikx� (1)

is the wave function exp (ikx) of a free electron modulated
by the so-called Bloch function, which has a period of the
crystal lattice:

Uk�x� � Uk�x� nL�. (2)

Let us show that the Schr�odinger soliton in a periodic
structure, like an electron in an external periodic potential,
can be described by the corresponding soliton Bloch func-
tion.

We will describe the self-action of a nonlinear pulse in a
system with periodically varying parameters in the NSE
approximation, which has, in standard soliton variables, the
form [12 ë 16]

i
qC�

qZ
� 1

2
D�Z� q

2C�

qX 2
�N�Z���C���2C�

� ÿig0C� � iG�Z�C�, (3)

where Z is the dimensionless length of the pulse pro-
pagation normalised to the dispersion length; C�(Z, X ) is
the éeld expressed in the units of the amplitude of the so-
called fundamental NSE soliton with constant coefécients
[12 ë 16]. The coefécients introduced into (3) describe the
periodic variation in the parameter of the group velocity
dispersion D(Z) � D(Z� nL), the nonlinearity parameter
N(Z) � N(Z� nL), and the gain G(Z) � over the length of
interaction of radiation with the spatially inhomogeneous
system. Linear losses are described by the parameter g0.

Due to the well-known space ë time analogy, equation
(3) describes both spatial solitons (`slot' beams) and usual
temporal solitons (stationary pulses), depending on whether
the coordinate X represents time or the spatial coordinate.
The sign plus in equation (3) corresponds to the problem for
a bright soliton (anomalous dispersion) and the sign minus
corresponds to a dark soliton (normal dispersion).

By using the substitution

~C��Z;X� � C��Z;X�
G�Z� , (4)

R�Z� � N�Z�G 2�Z�, (5)

where the function G(Z ) satisées the equation

qG�Z�
qZ

� ÿg0G�Z� � G�Z�G�Z�, (6)

equation (3) can be reduced to the form

i
q ~C�

qZ
� 1

2
D�Z� q

2 ~C�

qX 2
� R�Z��� ~C���2 ~C� � 0. (7)

The nonlinear Bloch theorem for solitons described by
the NSE model (7) can be represented, similarly to the Bloch
theorem for electrons (1), as the law for the transformation
of temporal (for soliton pulses) or spatial (for soliton beams)
envelopes of the bright soliton ~C�(Z,X ) and dark soliton
~Cÿ(Z,X ) modulated by the corresponding nonlinear Bloch
functions with the periodic parameters of the spatially inho-
mogeneous structure D(Z ) � D(Z� nL) and R(Z ) �R(Z
� nL):

~C��Z� � P 1=2�Z�
����
C
p

Z sech�ZP�Z�X �����
C
p

Z tanh�ZP�Z�X �

( )

� exp

�
� i

P�Z�
2

X 2

�
ÿ iaZ2�P�Z� ÿ P�0��, (8)

where Z is the form factor of the soliton pulse; a � 0:5 for
bright solitons and a � 1 for dark solitons. To prove the
nonlinear Bloch theorem (8), it is necessary érst to show
that the real function P(Z) describing the modulation in the
space of the canonical form of the bright and dark solitons
has the same periodicity as the parametric functions D(Z )
and R�Z�. Second, it is necessary to énd the explicit form of
the function R(Z ) �R(Z� nL).

Let us represent the nonlinear Bloch function for the
problem (7) in the general form as

~C��Z� � P 1=2�Z�Q��S�

� exp

�
� i

P�Z�
2

X 2 � i

� Z

0

K��z�dz
�
, (9)

where Q� and K� are the amplitude and phase of a soliton
wave. By substituting (9) into (7) and separating the real
and imaginary parts in the equation obtained, we obtain the
system

� 1

2

q 2Q�

qS 2
� R

DP
�Q��3 ÿQ�

K�

DP 2

� S 2Q�

2DP 4

�
DP 2 � qP

qZ

�
� 0 , (10)

�
DP 2 � qP

qZ

��
1

2
Q� � S

qQ�

qS

�
� 0 , (11)

where S (Z, X ) � P(Z )X; qS=qZ � X qP=qZ; qS=qX �
P(Z ):

Equation (10) is a quantum-mechanical Schr�odinger
wave equation for a harmonic oscillator in the self-con-
sistent nonlinear potential
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U�S;Z� � � R�Z�
D�Z�P�Z� �Q

��S��2

� S 2

2D�Z�P 4�Z�
�
DP 2 � qP

qZ

�
. (12)

A particular solution of equation (10) was obtained
numerically for the érst time in paper [17] assuming that
the basic parameters of the problem satisfy the condition

qP
qZ
�DP 2 � const � 1. (13)

The numerical solution, which was called the NSE quasi-
soliton with a harmonic potential, has the intermediate
form between a Gaussian and hyperbolic secant describing
the form of a canonical NSE soliton with constant coefé-
cients.

Unlike papers [17 ë 19], we will consider another partic-
ular solution of the problem at which the functions Q�

describe the bright and dark NSE quasi-solitons modulated
by the nonlinear Bloch function. We should énd the
compatible solution of the nonlinear system (10), (11) for
the Bloch function (9) under study. As follows from (1), the
condition

1

2
Q� � S

qQ�

qS
� 0 (14)

leads to a singular solution of the form

Q�S� � const���
S
p . (15)

To énd a nonsingular solution of the system (10), (11),
we require that the relation

qP
qZ
�DP 2 � 0 . (16)

would be satiséed. One can easily see that condition (16) for
the existence of a nonsingular solution allows the trans-
formation of equation (10) into a nonlinear Schr�odinger
equation with variable coefécients. As was shown in the
érst part of this paper [20], this equation has the Lax
representation and, therefore, it is completely integrable
then and only then when the so-called condition of mutual
matching between the coefécients at nonlinear and dis-
persion terms is satiséed:

R�Z� � CD�Z�P�Z�, (17)

where C is an arbitrary constant.
Therefore, if conditions (16) and (17) are satiséed, then

the solution of the system (10), (11) is represented in the
form of the bright or dark soliton modulated by the function
P(Z ):

Q��S� � Z sech�ZP�Z�X �;
Z tanh�ZP�Z�X �:

�
(18)

It follows from (5) and (17) that the soliton amplitude and
duration will be modulated [P (Z ) � P (Z� nL)] if the
conditions

R�Z� nL�
R�Z� � D�Z� nL�

D�Z�

� N�Z� nL�G 2�Z� nL�
N�Z�G 2�Z� � 1 . (19)

are satiséed.
It should be emphasised that we obtained analytic

solutions for soliton Bloch waves (8), (16), (17) in quad-
ratures in the most general form. The phase of a soliton
wave is determined by the relation

K ��Z� � 1

2
Z2D�Z�P 2�Z� (20)

for the bright soliton and by the relation

Kÿ�Z� � Z2D�Z�P 2�Z� (21)

for the dark soliton. It has the same translational symmetry
as the periodic perturbations of the parameters of a
nonlinear medium. Note that the moduli of phases of
the dark and bright solitons differ by a factor of two.

3. Nonlinear dynamics of soliton Bloch waves

The predicted soliton Bloch waves can be found under
different speciéc experimental conditions. When the dis-
persion parameter D(Z ) is assumed known upon planning a
particular experiment, we can approximate it by an analytic
periodical function D(Z ) � D(Z� nL) and énd the main
parameters describing a soliton Bloch wave from the
equation

P�Z� � P0

�
1� P0

� Z

0

D�Z 0�dZ 0
�ÿ1

,

(22)

R�Z� � P�Z�D�Z�
C

.

If, on the contrary, an analytic approximation R(Z) �
R(Z� nL) of the nonlinearity parameter R(Z ) is known in
a particular experiment, then the dispersion characteristic
and the parameters of a Bloch wave in the system are
determined by the expressions

P�Z� � P0 exp

�
ÿ C

� Z

0

R�Z 0�dZ 0
�
,

(23)

D�Z� � CR�Z�
P�Z� .

The nonlinear Bloch theorem for Schr�odinger solitons
(8), (16), (17) also allows one to solve a more general
problem of the optimal control of the soliton parameters in
communication systems and soliton lasers. A remarkable
feature of the solution (8) is the fact that the soliton
amplitude, duration, and phase in an inhomogeneous
medium are determined only by one function P(Z ) �
P(Z� nL). We will treat this function as a function of
the optimal control of the soliton parameters. By choosing
the function P(Z ) in accordance with the requirements of a
particular problem as an analytic function of the variable Z,
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we obtain the following conditions for the existence of the
soliton Bloch wave:

D�Z� � ÿ 1

P 2�Z�
qP
qZ

; R�Z� � ÿ 1

CP�Z�
qP
qZ

. (24)

As a rule, it is much more convenient to use in the
experiment a certain periodic gain G(Z ) � G(Z� nL) of
solitons. If this function can be approximated by a speciéed
analytic function of the variable Z, then the so-called map of
the main parameters ë dispersion and nonlinearity ë can be
found from the system of equations

D�Z�P�Z�
N�Z� � D0P0

N0

exp

�
ÿ 2g0Z� 2

� Z

0

G�z�dz
�
, (25)

P�Z� � P�0� exp

�
ÿ
� Z

0

N�x�CG�0�

� exp

�
ÿ 2g0x� 2

� x

0

G�z�dz
�
dx
�
. (26)

Consider a number of particular examples. Let us
assume that a periodic ébreoptic structure containing laser
ampliéers has a length that is multiple of the period L of
variation of the main parameters of the structure and is
closed to form a ring. Such a scheme of the optical soliton
memory has been proposed in paper [21]. The fundamental
solutions for this soliton memory model can be written in
terms of trigonometric functions. By approximating a
periodic dispersion function, for example, by the expression

D�Z� � 1� d sinm�kZ� (27)

and considering the simplest situation when the non-
linearity of the refractive index does not change over the
pulse propagation length (N(Z ) � 1), we obtain the
following solutions for a soliton periodically circulating
in the ring:

Pÿ1�Z� � ÿ
�
Cÿ Zÿ d

k

� kZ

0

sinmx dx

�
, (28)

2G�Z� � ÿD�Z�P�Z� � dkm sin�2kZ� sin2mÿ2�kZ�
D�Z� , (29)

where an arbitrary integration constant C may be both
positive and negative.

The space-time structure of bright and dark solitons
(27) ë (29), whose amplitude and duration change periodi-
cally (soliton Bloch waves), is shown in Fig. 1. Fig. 2 shows
the dynamics of interaction of periodic solutions (27) ë (29)
compared to the elastic interaction of canonical NSE
solitons with constant coefécients. The results presented
in Figs 2a ë c (in-phase interaction) and Fig. 2d (out-of-
phase interaction) were obtained by direct integration of
equation (3) for different values of the parameter k of the
structure periodicity (27).

Let us represent the control function P(Z ) in the form

P�Z� � �1ÿ b 2�1=2
1ÿ b cos�kZ� . (30)

When the parameter b! 1, this function represents a
periodic grating of delta functions. For b! 0, function (30)
tends to the constant value P(Z ) � 1 undergoing periodic
oscillations. Note that function (30) modulates a periodic
jump-like ampliécation of solitons over the propagation
length of a signal in soliton communication systems. The
results presented in Figs 3, 4 illustrate the dynamics of a
coupled state of initially immobile solitons (in the soliton
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Figure 1. Spatial interaction dynamics for bright (a) and dark (b) soliton
Bloch waves in a periodic nonlinear system (27) ë (29) for d � 0:75,
m � 1, and C � 105
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coordinate system), which was calculated using the control
function (30). A comparison of the interaction dynamics of
solitons (8), (30) (Fig. 3) with the dynamics of canonical
NSE solitons with constant parameters shows that, despite
a substantial difference in details, the nature of the elastic
interaction of solitons (8), (30) does not change substanti-
ally: soliton Bloch wave interact elastically. Fig. 4 illustrates

the details of formation of a complicated structure upon the
interaction of strongly overlapped soliton Bloch waves.

The fact that the problem of soliton Bloch waves can be
reduced to the completely integrable model [see (10), (11)
and (16), (17)] means that the coupled states of nonlinear
Bloch waves can be formed both in soliton data transmis-
sion and storage systems and in soliton ébre lasers.

To generate nonlinear Bloch waves of higher orders, the
initial conditions should be speciéed in the form

~C��Z � 0� � NP
1=2
0 Z sech�ZP0X� exp

�
i
P0

2
X 2

�
. (31)

The principal difference from a standard generation of
coupled soliton states in optical ébres with constant para-
meters over the ébre length [12 ë 16] is that now in order to
form a coupled state, it is necessary not only to increase the
soliton amplitude by several times but also to specify
properly the initial phase modulation of the soliton at the
entrance to the medium. For spatial solitons, this means the
speciécation of the initial parabolic wave front of the beam.

Fig. 5 shows the results of computer simulations of the
formation dynamics of coupled soliton states in a periodi-
cally nonlinear system (8), (30), which were obtained by
varying the period of spatial modulation of parameters
D(Z) and R(Z ) in the model (7). It follows from Fig. 5 that,
as the modulation period increases, the number of non-
linear foci, which characterise the coupled states of Schr�o-
dinger solitons [12 ë 16], noticeably decreases. A further in-
crease in the modulation period results in the stabilisation
of the emission structure and formation of a quasi-soliton
pulse. Computer simulations showed that the coupled states
of soliton Bloch waves are unstable, and even a slight mis-
match of about 1%ë2% between the periods of the spatial
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Figure 2. Nonlinear interaction dynamics for in-phase (aëc) and out-of-
phase (d) soliton Bloch waves compared to the interaction dynamics for
canonical NSE solitons with constant coefécients. The periodic disper-
sion D(Z ) and gain G(Z ) are speciéed by relations (27) ë (29) with
parameters m � 2, k � 2 (b, c) and k � 4 (d). The distance between the
soliton centres is Dx � 6 for Z � 0.
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Figure 3. Interaction dynamics for strongly overlapped soliton Bloch
waves (b) for the control function (30) compared to the interaction
dynamics for canonical NSE solitons with constant coefécients (a)
calculated for b � 0:75, k � 1, x � 3 and Z � 0.
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Figure 4. Detailed structure of the éeld distribution corresponding to
one period of the interaction of strongly overlapped dark soliton Bloch
waves.
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modulation of the dispersion and the gain results in a
complete stochastic behaviour of the system, as shown in
Fig. 5.

4. Conclusions

The results of computer simulations conérm a conclusion
about the `classical' elastic interaction of nonlinear Bloch
waves and the possibility of formation of their coupled
states. Note that one of the simplest methods for shaping
the dispersion over the propagation length of a soliton
pulse is the use of the fragments of different ébres with
opposite dispersion signs [22]. The importance of using the
initial phase modulation (chirp) in soliton transmission sys-
tems was recently demonstrated in paper [23].

However, the approach used by the authors of paper
[23], which is based on the variational approximation of
Anderson [5], did not allow them to obtain an exact analytic
solution of the problem. Unlike previous papers, we ob-
tained in this paper the exact analytic solutions for soliton
Bloch waves and showed that the nonlinear Bloch theorem
gives the transformation law for Schr�odinger solitons in
systems with periodically changing nonlinearity, dispersion,
and ampliécation. Soliton nonlinear Bloch waves exist only
for a certain relation between the main parameters of the
system. This means that in real soliton data transmission
and storage systems, as well as in soliton lasers, the disper-
sion and nonlinearity cannot be chosen arbitrarily but
should be related by the conditions of the nonlinear Bloch
theorem. In this case, along with the phase-modulated non-
linear Bloch waves with periodically varying amplitudes and
duration (8), there also exist soliton Bloch waves without
phase modulation with a constant duration [24].

The spatial analogue of the nonlinear Bloch waves is well
known in the literature over more than 25 years. This is a
periodic variation in the temporal and spatial parameters of
ultrashort light pulses in a laser cavity upon the intracavity
self-focusing of radiation. The possibility of using the
intracavity self-focusing of radiation for compression of
ultrashort light pulses and for increasing self-mode-locking
(the so-called radiation contrast) was predicted in paper [25].
At present, passive mode locking due to intracavity self-
focusing of radiation is widely used for the building of Kerr-
lens mode locking lasers (see, for example, papers [26 ë 29]
and references therein). It is also well known that such an
analogue of the spaceëtime nonlinear Bloch waves exists
only under certain conditions; otherwise, the opposite effect
of stochastic radiation is developed [30, 31]. It is obvious
that the further development of femtosecond laser systems
of the Ti : Al2O3 type will be based on the concept of soliton
Bloch waves.
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