
Abstract. The dynamic analogy between the Bose condensate
of photons (laser), Bose condensate of atoms, and Bose con-
densate of Cooper pairs in a superconductor is discussed. It is
pointed out that the coherent state of Bose condensates of
different types can appear only due to stimulated transi-
tions.The equations are discussed that combine into a uniéed
dynamic system the order parameter of the Bose condensate
and the concentration of atoms beyond the condensate for an
ensemble of atoms captured by a trap, as well as the order
parameter of Cooper pairs, the concentration of free quasi-
particles, and the densities of phonons and photons in a
semiconductor.

Keywords: Bose condensate, laser, superconductor, stimulated
transitions, coherence.

1. Coherence of Bose condensates
and the inversion condition

The Bose condensate has attracted particular interest of
researchers érst of all in connection with the problems of
superconductivity and superêuidity [1, 2]. The advent of

masers and lasers [3 ë 6] enlarged the family of Bose con-
densates because a coherent state of an electromagnetic
éeld with a certain frequency and spatial conéguration
generated by a laser also can be treated as the Bose conden-
sate of photons. The comparatively recent successful experi-
ments [7 ë 9] on cooling atoms down to extremely low
temperatures of the order of 10ÿ7 K have stimulated new
interest in Bose condensates. At such low temperatures, the
Bose condensate of atoms at a low concentration was
obtained and the interference of two ensembles of Bose
condensates of atoms captured by a trap was observed [10].
Note that the Bose condensate of atoms attracts érst of all
general physical interest. In the Bose condensate, the wave
nature of matter is distinctly manifested, and an ensemble
of a rather large number of particles behaves as a classical
éeld having amplitude and phase.

As a rule, the Bose condensate of particles is a priori
treated as a coherent state of matter. It is implicitly assumed
that this coherent state is automatically formed upon Bose
condensation. However, a researcher in the éeld of laser
physics can hardly agree with this statement without any
proof. Indeed, for example, photons can be accumulated in
a single cavity mode in an `underexcited' laser due to
spontaneous transitions; however, this state of an electro-
magnetic éeld is not coherent. The coherent state of an
electromagnetic éeld (of photons) is created in a laser due to
stimulated transitions when the self-excitation condition is
fulélled. According to this condition, the electromagnetic
energy emitted by an active medium should exceed losses
caused by its possible absorption and scattering in the laser
and by the radiation emitted by the laser.
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1.1 Laser
To specify the self-excitation condition in a laser, consider a
simplest scheme of a laser consisting of an active (working)
medium and a cavity (Fig. 1). In the scheme in Fig. 1, the
cavity is formed by two coaxial mirrors, one of which being
partially transparent to extract the generated radiation
outside. We will consider two-level atoms as a model of the
active laser medium. This approximation is good enough
because two energy levels of the active medium, with the
frequency of transition between them being close to the
radiation frequency (Fig. 2), make a dominant contribution
to the interaction of laser radiation with the active medium.

The rate of photon emission upon transitions from the
upper level to the lower one is described by the obvious
expression

Sem �W21N2g1�nk � 1k�. (1)

Here, W21nk is the probability of the stimulated transition
from the level 2 to level 1 induced by photons with the wave
vector k and the density nk; W21 � 1k is the probability of
the spontaneous transition from the level 2 to level 1
accompanied by emission of a photon with the wave vector
k; N2 is the concentration of particles at the upper energy
levels; and g1 is the statistical weight of the lower energy
level.

The rate of transition from the lower level to the upper
level accompanied by absorption of a photon with the wave
vector k is

Sabs �W12N1g2nk, (2)

where N1 is the concentration of particles at the lower level
and g2 is the statistical weight of the upper level.

To produce a coherent state of an electromagnetic éeld
upon the interaction of radiation with matter, the stimulated
radiation should prevail over spontaneous radiation and the
emission rate should exceed the absorption rate. These con-
ditions give the relation

W21N2g1nk >W12N1g2nk. (3)

Because W21 �W12 [11], the inequality

N2

g2
>

N1

g1
. (4)

follows from (3), which is known as the `inverse population
condition'.

For interband transitions in a semiconductor laser
(Fig. 3), the condition equivalent to inequality (4) has
the form

fe�ee��1ÿ fh�eh�� > fh�eh��1ÿ fe�ee��, (5)

where fe;h(eh) is the distribution function of electrons in the
conduction band or holes in the valence band and ee;h is the
energy of electrons and holes. Due to the hierarchy of the
relaxation times inherent in a semiconductor, the thermo-
dynamic quasi-equilibrium within subsystems of electrons
in the conduction band and of holes in the valence band is
established faster than the interband equilibrium [12]. This
allows one to use the quasi-equilibrium distribution func-
tions of electrons in the conduction band and of holes in the
valence band:

fe;h �
�
exp

�
ee;h ÿ me;h

kT

�
� 1

�ÿ1
, (6)

where me;h is the chemical potential of electrons and holes,
respectively. By substituting expression (6) into (5), we
obtain the inversion condition [13]

me ÿ mh > �ho; �ho � ee ÿ eh , (7)

or me > �ho because the effective mass of carriers in the
conduction band in materials used in semiconductor lasers
(for example, GaAs) is noticeably lower than the hole mass
[14], and therefore, me 4 mh.

The condition (4) [or equivalent condition (7)] is
necessary but not sufécient for producing a coherent state
of the éled in a laser (the coherent photon condensate). The
sufécient condition is

2

1

3

4
�ho

Figure 1. Simplest scheme of a laser: ( 1 ) active medium; ( 2 ) highly
reêecting mirror; ( 3 ) partially transparent mirror; ( 4 ) output coherent
radiation.

1 N1; g1

2 N2; g2

Figure 2. Scheme of a two-level atom (N1;2, g1;2 are populations and
statistical weights of the corresponding energy levels.

Valence band

Conduction band

me

�ho Eg

mh

Figure 3. Energy band diagram of a semiconductor. Eg: energy gap; me;h:
chemical potential of charge carriers in the conduction and valence
bands; �ho: energy of laser photons.
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N2

g2
ÿN1

g1
> DNth, (8)

where DNth is the threshold difference of populations of
energy levels, which depends on the total losses of the
electromagnetic radiation in a laser and the transmission of
the output mirror. Clearly, similar conditions should be
satiséed for obtaining coherent states of any Bose particles.

1.2 Bose condensate of atoms

Recall the mechanism of Bose condensation. The chemical
potential m in the energy distribution of Bose particles in
gas (the Bose ë Einstein distribution)

n�e� �
�
exp

�
eÿ m
kT

�
ÿ 1

�ÿ1
(9)

cannot be positive. For this reason, the maximum density nc
of particles that can be `accumulated' by the Bose ëEinstein
distribution is determined by the relation [1]

nc � 4p
ÿ
2m 3

�1=2
g

�1
0

�
exp

�
e
kT

�
ÿ 1

�ÿ1 ��
e
p

de

�2p�h�3

� 0:166g

�
mkT

�h 2

�3=2
, (10)

where k is the Boltzmann constant; m is the particle mass;
and g is the statistical weight. Expression (10) determines
the minimum temperature at which the speciéed concen-
tration n of particles is described by the distribution (9)
with the zero (maximum) chemical potential. This is the cri-
tical temperature, below which Bose condensation begins,
i.e., particles are accumulated at the lowest energy level of
the system (Fig. 4). Let us present some numerical estimates
for clarity. By combining laser and magnetic cooling of
atoms in a trap, the authors of papers [7 ë 9] managed to
cool the atoms down to 10ÿ7 K. The critical concentration
of sodium atoms at which the Bose condensation begins at
this temperature is 4:5� 107 cmÿ3. The critical concen-
tration of excitons with a mass close to the free electron
mass is � 1016 cmÿ3 at temperature 1 K.

Because in a real trap the motion of atoms is quantised,
the integral relation (10) should be replaced by a sum over
the quantum states of a particle in the trap:

Nc �
X
j

�
exp

�
ej
kT

�
ÿ 1

�ÿ1
. (11)

Here, Nc is the total number of particles in the trap. In an
isotropic trap with the parabolic potential, ej � �hot( jx � jy
�jz), where ja are the quantum numbers corresponding to
the quantisation of the translational motion along axes x, y,
and z; ot is the oscillation frequency of atoms in the trap.
For ot < kT, the summation can be approximately replaced
by integration, which gives [22]

Nc � 1:202g

�
kT

�hot

�3
. (12)

The difference between expressions (10) and (12) is
explained by the fact that the average volume occupied
by atoms in the trap with a parabolic potential is not éxed
because the amplitude of their oscillations depends on their
energy. Therefore, the average radius of the atomic packet
depends on the oscillation frequency of atoms in the trap
and on temperature. The oscillation frequency in relation
(12) can be expressed in terms of the average radius of the
atomic packet and temperature, which will result in exp-
ression (10). If the volume occupied by atoms in the trap
were éxed, as for example, in a three-dimensional `potential
box', we would obtain expression (10) immediately after the
calculation of a sum over the states.

Consider Bose condensation from the point of view of
formation of a coherent state. Note that while the inducing
agent in a laser is an electromagnetic éeld, the inducing
agents in an atomic system are atoms themselves in the Bose
condensate. The relation that is equivalent to the inversion
condition in the laser should follows from the requirement
that the rate of the induced formation of the Bose con-
densate would exceed its decay rate. As a result, it is easy to
obtain the relation

W!n0n�e� >W n0�n�e� � 1�, (13)

where W! and W are the probabilities of the direct and
inverse processes, respectively; n0 is the concentration of
particles in the Bose condensate. The left-hand side of
expression (13) is the rate of `creation' of an additional
particle in the Bose condensate induced by the condensate
itself due to the transition of a particle with the energy e to
the condensate. The right-hand side of expression (13) is the
rate of the inverse process, i.e., of the condensate decay and
the creation of a particle with the energy e in an ensemble of
particles outside the Bose condensate. The inverse process
requires the consumption of the energy e, so that W!=W 

� exp (ÿ e=kT ) [15]. Taking this relation into account, the
inequality (13) takes the form

n�e� >
�
exp

�
e
kT

�
ÿ 1

�ÿ1
. (14)

The right-hand side of (14) is nothing but the equilib-
rium distribution function of particles outside the Bose
condensate. This means that even a weak deviation from the
equilibrium distribution resulting in an increase in the
number of particles with some energy e will lead to the
appearance of a state, which can be called the inversion state
using the laser terminology. Therefore, when some particles
leave the Bose condensate, the condensate is immediately
restored due to stimulated, i.e., coherent transitions. There-
fore, below the critical temperature the Bose gas consists of
the coherent Bose condensate, whose particles have the mini-
mum energy, and of an ensemble of incoherent particles.

Bose condensate

Atoms outside

the Bose

condensate

e

Figure 4. Energy level diagram for Bose particles.
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At the absolute zero, the concentration of incoherent
particles is zero. This statement is strictly true for the ideal
gas of bosons. In gas of particles with a weak repulsive
interaction, there are particles with the nonzero momentum
even at the absolute zero whose relative concentration in gas
of free particles is determined by the expression [1]

nÿ n0
n
� 8

3
���
p
p ÿ

nl 3
�1=2

, (15)

where l is the scattering length of the interacting particles
and n is their total concentration. For gas in a trap, a
similar expression has the form [16]

Ng ÿN0

Ng

� 0:065

�
l

R
Ng

�2
, (16)

where Ng is the total number of particles in the trap; N0 is
the number of particles in the Bose condensate; and R is the
trap radius.

1.3 Superconducting Bose condensate

The interaction of electrons resulting in their pairing occurs
most eféciently for the electrons whose energy is close to
the Fermi energy [1, 17 ë 19] (corresponding to the Fermi
surface in the momentum space). The interaction strength
decreases deep from the Fermi surface, so that the effective
number of the interacting electrons becomes noticeably
lower than their total number. Therefore, the energy band
diagram of a superconductor can be represented as shown
in Fig. 5. The superconducting condensate of Cooper pairs
lies above the cushion of unpaired electrons. Due to the
interaction with some agent, Cooper pairs can decompose,
producing unpaired quasi-particles at the concentration n,
which are separated from the condensate of Cooper pairs
by the superconducting energy gap of the width D.

Using this scheme, we can write the expression [20 ë 22]

W�N0npnÿp >WÿN0�1ÿ np��1ÿ nÿp� (17)

for the superconducting condensate of Coopers pairs, which
is analogous to the inequality (13). Here, np is the con-
centration of free quasi-particles with the momentum p.
Assuming that a subsystem of free particles in a supercon-
ductor is quasi-equilibrium, we have

np �
�
exp

�
ep ÿ mn
kT

�
� 1

�ÿ1
, (18)

where mn is the chemical potential of free quasi-particles.
Taking into account that the energy 2ep is required for the
decomposition of the condensate of Cooper pairs, it follows
from (17) that

mn > 0 . (19)

Because the equilibrium between the condensate of
Cooper pairs and an ensemble of quasi-particles exists
when the chemical potential of quasi-particles is zero, an
arbitrarily weak deviation from the equilibrium in favour of
quasi-particles will result in the `inversion'. Let us compare
(19) with analogous condition (7) for a laser. The condition
(7) is much more stringent: a weak deviation from the
thermodynamically equilibrium distribution does not pro-
duce inversion in lasers. The matter is that laser photons
carry away a large part of the energy accumulated in the
active medium, whereas the condensate of Cooper pairs, like
the Bose condensate of atoms, is created with the zero
energy.

Consider now the dynamics of Bose condensates. We
begin with the dynamics of lasers because at present it is
most thoroughly studied both theoretically and experimen-
tally due to a number of reasons. In this connection the
dynamics of lasers can be used as the basis for a deeper
understanding and prediction of dynamic processes proceed-
ing in Bose condensates of other types.

2. Mathematical model of a laser

Let us assume that the active medium of a laser interacts
with an electromagnetic éeld. Then, the propagation of the
electromagnetic éeld in the matter can be described by the
equation for the electric component E (r; t) of the electro-
magnetic éeld

q 2E�r; t�
qt 2

ÿ c 20H
2E�r; t� � 2ac0

qE�r; t�
qt

� ÿ4p q 2Ptot�r; t�
qt 2

, (20)

where c0 is the velocity of light in vacuum; a is the
coefécient of nonresonance losses; and Ptot(r; t) is the total
polarisation of the ampliéer medium. It is reasonable to
separate the latter into two parts: P0(r; t) and P (r; t). The
quantity P (r; t) describes the polarisation of atoms in the
active medium, which are directly `responsible' for amplié-
cation (working atoms). They are in an excited state and
resonantly interact with the radiation éeld. To describe
polarisation, a dynamic model is required, which will be
discussed below. The quantity P0(r; t) describes the pola-
risation of the rest of atoms in the medium, whose con-
centration, as a rule, is much higher than that of working
atoms. This part of polarisation can be considered quasi-
equilibrium and can be described by the expression

P0�r; t� � ŵ0E�r; t�. (21)

Below, we will assume that the operator ŵ0 is a constant.
Taking into account the Lorentz correction for the acting
éeld, the total polarisation of the medium is [23]

Free quasi-particles

Bose condensate

of Cooper pairs

Unpaired electrons

below the Fermi level

D

Figure 5. Energy band diagram of a superconductor (D is the width of
the superconducting gap).
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Ptot�r; t� � w0E�r; t� �
e0 � 2

3
P�r; t�; e0 � 1� 4pw0. (22)

Finally, equation (20) can be represented in the form

q 2E�r; t�
qt 2

ÿ c 20
e0

H 2E�r; t� � 2ac0
1

e0

qE�r; t�
qt

� ÿ4p e0 � 2

3e0

q 2P�r; t�
qt 2

. (23)

When laser ampliéers are studied, it is reasonable to use the
of Eqn (23) in the form of a travelling wave with the corres-
ponding initial and boundary conditions. To obtain lasing,
the active medium is placed inside a resonator. Because the
resonator has the eigenmodes with characteristic resonance
frequencies and éeld conégurations, it is convenient to
represent the éeld and polarisation as the expansion in the
eigenmodes Uj (r) of the resonator

E�r; t� �
X
j

Ej�t�Uj�r�; P�r; t� �
X
j

Pj�t�Uj�r�. (24)

If necessary, the conditions can be provided when only
one mode dominates. In this case, Eqn (23) can be reduced
to the oscillator equation for the amplitude of the corre-
sponding mode of the éeld and polarisation

d 2E�t�
dt 2

� oc

Q

dE�t�
dt
� o2

cE�t� � ÿ4p
e0 � 2

3e0

d 2P�t�
dt 2

, (25)

where oc is the resonance frequency of this mode and Q is
the Q factor that takes into account all linear energy losses
in the resonator. To simplify notation, we retained the same
letter notation for the amplitudes of the expansion of the
éeld Ej (t) and polarisation Pj (t) with the index of a par-
ticular mode, but omitted the index.

The most popular model for the description of the pola-
risation dynamics of working atoms is the so-called two-
level approximation, which we already mentioned above. In
an atom interacting with the éeld, only two energy levels
coupled by the transition that is resonant with the éeld
frequency are considered. It can be shown [24ë26] that the
polarisation P (r; t) of a medium of two-level atoms satisées
the equations

d 2P�r; t�
dt 2

� 2

t2

dP�r; t�
dt

� o2
0P�r; t� � ÿ2o0

jmdj2
�h

NEloc�r; t�,

dN�r; t�
dt

� 1

t1
N�r; t� � J�r; t� � 2

�ho0

Eloc�r; t�
dP�r; t�

dt
,

(26)

where N is the difference of populations of the working
levels of the active medium; J(r; t) is the parameter cha-
racterising the pump rate; t2 is the polarisation relaxation
time, which determines the width of a spectral line; t1 is the
relaxation time of the level population; o0 is the frequency
of transition between the working levels of atoms; md is the
matrix element of the dipole moment corresponding to this
transition. Equation (26) contains a local éeld acting on a
particle, which is related to the Maxwell éeld entering Eqn
(25) by the expression [27]

Eloc�r; t� �
e0 � 2

3

�
E�r; t� � 4p

3
P�r; t�

�
. (27)

Let us denote the difference of populations of the
working levels in the absence of pumping by N �0�. In the
thermodynamic equilibrium, N �0� is determined by the Bol-
tzmann distribution. As mentioned above, to obtain the
gain, it is necessary (but not sufécient!) that the population
of the upper level be higher than that of the lower level. This
requires the supply of energy to the system resulting in
transfer of atoms from the lower energy level to the upper
level.

The system of Eqns (23) and (26) describes all funda-
mentally important processes related to the laser operation
and the pulse propagation through the ampliéer. Note that,
unlike Eqn (23), Eqns (26) are nonlinear, which results in the
appearance of an inénite system of linked equations in the
case of expansion of the éeld and polarisation in the cavity
modes. However, when one mode is excited, only one term
will dominate in the expansion in modes (24). In this case,
the dynamics of a single-mode laser should be described by
the system of Eqns (25) and (26). The additional informa-
tion of the laser dynamics is contained in Refs [28 ë 33].

Below, we consider the features of the dynamics of
single-mode lasers using the system of Eqns (25) and (26).
Some features of the dynamics of ampliéers were discussed
in papers [34, 35].

The system of Eqns (25) and (26) contains the param-
eters

oc; o0; 2gc �
oc

Q
; g1 �

1

t1
; g2 �

1

t2
;

(28)

grad �
�
2po0

m 2
d

�h
N0

�1=2
.

The relation between these parameters is such that

oc;o0 4 gc; g1; g2; grad; joc ÿ o0j. (29)

This makes it possible to use the method of slowly varying
amplitudes in the analysis of Eqns (10), (11), in which the
éeld and polarisation are represented in the form

E�t� � A�t� exp�ÿio0t�,
(30)

P�t� � 3

e0 � 2
B�t� exp�ÿio0t�,

where A(t) and B (t) are the functions slowly varying in time
compared to a rapidly oscillating exponential. The diffe-
rence of populations N(t) can be also considered a function
slowly varying in time. The procedure of substituting (30)
into Eqns (25) and (26) was described, for example, in
Refs [30 ë 33]. This substitution gives the system of equ-
ations

dA

dt
� �gc � iDc�A � ibB; Dc � oc ÿ o; b � 2po0

e0
,

dB

dt
� �g2 � iD0�B � ÿ

i~m 2

�h
NA; D0 � o0 ÿ o;

(31)

~m 2
d � jmdj2

�
e� 2

3

�2
,
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dN

dt
� g1N � ~J�t� � i

2�h
�AB � ÿ A�B�; ~J � J� g1N

�0�.

Here, we neglected the term 4p(e0 � 2)m 2
dNB=(9�h) because it

is small compared to the term B=t2 for most laser media.
Depending on the relation between parameters gc, g1, g2,

grad, joc ÿ o0j, lasers can be divided into four dynamic
classes.

Lasers for which the above parameters are of the same
order of magnitude belong to the class A. Their dynamics is
described by a complete system of Eqns (31).

Most existing lasers belong to the class B. For these
lasers, g2 4 g1, gc, grad, and joc ÿ o0j. Such a relation bet-
ween parameters allows one to simplify the system of Eqns
(31) by neglecting the derivative of polarisation and exclud-
ing from equations the polarisation as a dynamic variable.
As a result, we obtain

dA

dt
� �gc � iDc�A �

1

2
sc
�
1ÿ i

D0

g2

�
NA,

(32)
dN

dt
� g1N � ~J�t� ÿ 2scN

jAj2
8p�ho

,

where

s � 4p
o
c

~m 2
d

�h

1

g 22 � D2
0

is the cross section for stimulated transitions.
Lasers for which g2, g1 4 gc, grad, joc ÿ o0j, belong to

the class C. In this case, the derivatives in two last equations
of the system (31) can be neglected, and both polarisation
and the difference of populations N of energy levels can be
excluded as dynamic variables. The system of equations is
reduced to one equation for the complex amplitude A

dA

dt
� �gc � iDc�A �

1

2
sc
�
1ÿ i

D0

g2

�

� N0

1� 2scjAj2=8p�ho
A. (33)

For lasers of the class D, we have gc 4 g1, g2, grad,
joc ÿ o0j, which allows one to exclude the éeld as a dynamic
variable:

dB

dt
� �g2 � iD0�B � b

~m 2
d

�h

gc ÿ iDc

g 2c � D2
c

BN,

(34)
dN

dt
� g1N � ~Jÿ b

�h

gc
g 2
c � D2

c

jBj2.

3. Properties of the dynamics of class A lasers

To simplify an analysis performed below, we consider the
case when o0 � oc, which gives D0 � Dc � 0. Equation (31)
has two nonzero stationary solutions

jAj2 � A2
sat�rÿ 1�; iB � � gc

b
A; A2

sat �
�h 2g1g2

~m 2
, (35)

where

r � 2p
m 2
d

�h

oc
~J

gcg1g2
.

These solutions correspond to the monochromatic lasing.
Two stationary states C� and Cÿ of the laser correspond to
them in the phase space A, B, N (Fig. 6). They cannot be
distinguished from each other upon detection of the radi-
ation éeld because they differ only in the phase difference
for the éeld and polarisation. The lasing regimes (35)
become unstable [36, 37] if

r > r � � gc
g2

gc � g1 � 3g2
gc ÿ g1 ÿ g2

. (36)

To énd out what regime develops instead of stable lasing
with the constant éeld amplitude, it is necessary to analyse
Eqns (31) numerically. The result of such a study, which
was érst performed in papers [36, 37], is shown in Fig. 7.
For r > r �, a complicated self-modulation process was
developed instead of steady-state lasing. Gradually increas-
ing oscillations were observed around one of the stationary
points shown in Fig. 6 (C�), and then the system jumped to
another equilibrium region, etc. Fig. 8 shows the time de-
pendence of the self-modulation process [38]. The residence
time of the system in the vicinity of one of the stationary
points is a random quantity, so that the process is a random
one as a whole.

Cÿ C�

0

rÿ 1

1

r

A

Asat

B

Asat

N

~J=g1

Figure 6. Phase plane of a laser (C� and Cÿ are stationary states of the
laser).

A

1 2 3 4 6 7 t
�
ns

5
0

Figure 7. Time dependence of the laser-éeld amplitude in the regime of
random oscillations (calculation [36]).
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Let us analyse the behaviour of the system in the am-
plitude ë phase representation. Fig. 9 shows the time depen-
dences of the radiation intensity and of the sine of the phase
difference [39]. One can see sharp jumps of the phase
difference, which occur when the radiation intensity vani-
shes. Fig. 10 presents spatial phase trajectories in the dyna-
mic chaos regime.

It follows from expression (36) that to observe the dyna-
mic chaos experimentally, the condition gc ÿ g1 ÿ g2 > 0
should be satiséed. The dependence of r � on the parameter
gc=g2 is shown in Fig. 11. One can see that r � has a mini-
mum, which depends on the ratio g1=g2 and is approxima-
tely 15 for g1=g2 � 1. Therefore, to observe the regime of
random oscillations, a laser is required in which the exci-
tation threshold can be exceeded more than an order of
magnitude. Such conditions can be obtained in a NH3 laser
[40 ë 42].

Let us discuss in more detail the results of paper [41]. In
this paper, 15NH3 molecules were excited by a 13CO2 laser.
The purely rotational 153-mm aR(4, 4) transition was used
for lasing. It can be expected that the gain line in the active
medium will be homogeneously broadened at comparatively

t
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A

Figure 8. Time dependence of the laser-éeld amplitude in the regime of
random oscillations (calculation [38]).
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Figure 9. Variation in the phase difference between the éeld and pola-
risation of laser radiation in the regime of random oscillations without
noise effects (calculation [39]). The thick curve is the laser-éeld ampli-
tude, the thin curve is the sine of the phase difference.
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Figure 10. Phase portrait of the laser trajectory in the regime of random
oscillations.
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Figure 11. Critical value of the excitation parameter r � as a function of
gc=g2.
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Figure 12. Time dependence of the éeld amplitude and the phase diffe-
rence between the éeld and polarisation of laser radiation in the regime
of random oscillations (experiment [42]).
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high gas pressures, and the lasing regime will be described
by the theoretical model (31). These expectations were com-
pletely conérmed. Fig. 12 shows the oscillations that were
observed in the 15NH3 laser for gc=g2 � 4:5, g1=g2 � 0:25,
and r > 10:8 in the absence of mismatch. One can see that
the pattern of random oscillations is completely consistent
with theoretical predictions (see Figs 7 ë 9).

At comparatively low pressures, noticeable deviations
from the predictions of the two-level model were observed.
The reader can énd the details in original papers [40 ë 42]
and references therein.

4. Properties of the dynamics
of lasers of classes B, C, D

The class B lasers described by Eqns (32) have obviously
the same stationary solutions as the class A lasers. However,
we can expect beforehand that the dynamics of class B lasers
is simpler. The mater is that, because the system of
Eqns (32) contains only the éeld-energy density in the ca-
vity, the equations for class B lasers have in fact the two-
dimensional phase space, so that the éeld phase does not
play the role of a dynamic variable. In an autonomous sys-
tem with a two-dimensional phase space, no dynamic chaos
can appear. One can easily verify that the stationary solu-
tions for class B lasers are always stable: the relations
between relaxation parameters for these lasers do not admit
the existence of the critical value of the excitation parameter
r � [see (36)]. The dynamic possibilities of class B lasers are
seemingly rather limited. However, these lasers have `hid-
den' dynamic resources, as we will show below.

For the dimensionless variable X � jAj2=A2
sat(rÿ 1) at

the dimensionless time scale tÿ O0t, where O0 � �g1gc(r ÿ
ÿ 1)�1=2, Eqns (32) are equivalent to the second-order equa-
tion

X 00 ÿ �X
0�2
X
� X�Xÿ 1� �

�
g
gc

�1=2

f �X 0;X �, (37)

where the prime means differentiation over t and

f �X 0;X� � ÿX 0�1� �rÿ 1�X �. (38)

For most class B lasers, the parameter g1=gc 5 1, so that the
solutions of Eqn (37) are close to the solutions of the con-
servative equation

X 00 ÿ �X
0�2
X
� X�Xÿ 1� � 0. (39)

After the change of the dynamic variable Y � lnX, equa-
tion (39) can be written inn the form

Y 00 �U�Y� � 0; U�Y� � eY ÿ 1. (40)

It is obvious that (40) is the equation of motion in a
constant potential U(Y ). The study of Eqn (39) shows [43,
44] that it describes a peculiar oscillator whose oscillation
period depends on the oscillation amplitude. Small-ampli-
tude oscillations about the stationary state X � 1 are close
to sinusoidal oscillations with the period T0 � 2p�g1gc(r

ÿ 1)�ÿ1=2 at the dimensional time scale. As the oscillation
amplitude increases, they are transformed to a sequence
of pulses whose duration decreases with increasing maxi-
mum oscillation amplitude Xmax as � 3:525X 1=2

max, while the
time interval between the pulses increases as (8Xmax)

1=2.
Taking the right-hand side of Eqn (37) into account, we see
that the decay time of the oscillations is close to 1=rg1.
However, even a weak external periodic perturbation is suf-
écient to excite undamped strong oscillations of the éeld
amplitude.

Let us demonstrate this by the example of a weak
modulation of the loss factor (the photon lifetime) in the
cavity. Let us introduce a variable loss factor into (32) and
write the equations for the photon density W � jAj2=(8p�ho)
in the cavity:

dW

dt
� 1

tc
�1� d cosOt�W � ÿsNW,

(41)
dN

dt
� g1N � Iÿ 2sNW.

The loss modulation factor d is assumed small. The modu-
lation frequency O is of the order of O0 � �g1gc(rÿ 1)�1=2,
but can be several times smaller than this value. Fig. 13
shows the time dynamic of the photon density W and the
population difference N. Note that a weak modulation of
the loss factor results in a weak modulation of the popu-
lation, but in a strong modulation of the photon density. As
d increases or the modulation frequency becomes higher
than O0 � �g1gc(rÿ 1)�1=2, the regular oscillations occur-
ring through a successive doubling of the period become
random. This does not contradict to the above statement
that a chaos is impossible in a system in a two-dimensional
phase space because the system (41) is not autonomous. All
these theoretical conclusions were conérmed experimentally
[45].

The class B lasers (as class A lasers) can generate the so-
called giant pulse. Due to a long lifetime of particles at the
upper level, they can be accumulated at this level provided
the cavity mirrors are blocked because otherwise a sufécient
amount of particles cannot be accumulated due to stimu-
lated emission. If, after the accumulation of particles at the
upper level, the mirrors are rapidly unblocked, the lasing
threshold will be strongly exceeded and the energy stored at
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W (rel. units), N (rel. units)
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Figure 13. Time dependences of the photon density W and the
population difference N in the class B laser in the case of a weak periodic
modulation of the loss factor in the laser cavity.
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the upper level will rapidly transfer to the cavity in the form
of an electromagnetic radiation and will be emitted by the
laser as a short high-power pulse. In practice, the cavity
mirrors are unblocked in time of the order of 10ÿ8 s using
the Kerr or Pockels effects [29].

The dynamics of class D lasers is similar as a whole to
that of class B lasers. The only difference is that a giant-
pulse class D laser (grad 4 g2) can emit in the giant pulse
virtually 100% of the energy stored in its active medium,
whereas the class B laser (grad 5 g2) can emit in the giant
pulse only up to 50% of the stored energy.

This is explained as follows. For grad 4 g2, the radiative
processes dominate over relaxation processes, and a two-
level quantum system (a two-level atom) can transfer from
one quantum state to another under the action of the
resonance éeld with the 100% probability [46]. The relax-
ation shifts the phase of polarisation and the level popu-
lation inversion in the éeld becomes impossible. Figs 14
and 15 show pulses emitted by class B and D lasers. The
pulse emitted by class B laser is asymmetric. The difference
of the energy level populations tends to zero, half the stored
energy being not emitted. The pulse emitted by the D class
laser is symmetric, and the level population difference
changes its sign to the pulse end. The pulse shape is close
to hyperbolic secant, which is typical for a soliton [46].

The class C lasers have a simple dynamics. The dynamic
phase space of Eqn (33) is one-dimensional. The stationary
states of class C lasers are stable, and a weak modulation of
their parameters causes a weak modulation of the éeld
amplitude in these lasers.

5. On the quantum theory of a laser

In the quantum theory of a laser, as in quantum electro-
dynamics, an electromagnetic éeld is considered as a set of
quantum oscillators. The éeld can be naturally expanded in
the eigenmodes of the laser cavity:

E�r; t� � i
X
k

ok

�
â�k �t�U �k �r� ÿ âk�t�Uk�r�

�
, (42)

where the expansion coefécients â�k , âk represent the
creation and annihilation operators for a photon in the
corresponding mode of the cavity. The commutative rela-
tions between the operators corresponds to the commu-
tative relations for an oscillator:

âkâ
�
k ÿ â�k âk � 1; (43)

where n̂k � â�k âk is the number operator for photons in a
given cavity mode. However, a problem arises in the des-
cription of a coherent éeld. The coherent éeld corresponds
to a nonzero average éeld value, however, averaging of the
éeld (42) over a state with the speciéed number of photons
gives zero. This problem can be solved by introducing
coherent states jaki of the éeld, which are the eigenstates of
the photon annihilation operator [11, 47 ë 49]

âkjaki � akjaki. (44)

The éeld

hE�r; t�i � i
X
k

ok�a �k �t�U �k �r� ÿ ak�t�Uk�r�
�

(45)

averaged over these functions is nonzero and is a quantum
analogue of a classical coherent éeld. The matter is that the
quantum coherent state jaki corresponds to a minimal
indeterminacy in the phase and the number of photons.

The expansion of the coherent state in the states jnki
with a certain number of photons has the form [11, 49]

jaki �
X
nk

exp

�
ÿ jakj

2

2

�
ak

n
1=2
k !
jnki. (46)

One can see that the number of photons in the coherent
state is not determined. The probability of detection of the
number nk of photons in the coherent state is [11, 49]

w�nk� � exp
ÿÿ jakj2� jakj2nk!

. (47)

Expression (47) is a well-known Poisson distribution.
The study of photon statistics in a He ëNe laser [50] has
demonstrated very good agreement of expression (47) with
experimental results. However, one should not believe that
any laser always generates only coherent states of the type
(44).

The quantum theory of a laser can be constructed based
on Eqns (31) by considering the dynamic variables in them
as operators. The presence of relaxation terms in the
equations necessitates the introduction of external êuctua-
tion forces (Langevin forces) into the right-hands sides of
the equations. This approach to the description of the
quantum theory of a laser is discussed in [51]. In addition,
the density-matrix formalism can be used [52].
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Figure 14. Giant-pulse shape for the class B laser and the time depen-
dence of the population difference.
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Figure 15. Giant-pulse shape for the class D laser and the time depen-
dence of the population difference.
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6. System of equations
for the Bose condensate of atoms

The dynamics of the Bose condensate of atoms is described
by the equation [1, 53ë57]

i�h
q
qt
c�r; t� �

�
ÿ �h 2

2m
D� Vint�r; t��U jc�r; t�j2

�
c�r; t�, (48)

where Vint(r; t) is the energy of interaction of the condensate
with an external éeld, for example, with the éeld of a trap
in which atoms are captured; U � (4p�h 2acoh)=m is the
energy of the pair interaction between particles; and acoh is
the scattering length. Eqn (48) is called in the literature
either the Pitaevskii ëGross equation or the nonlinear
Schr�odinger equation. It was obtained from the Schr�odin-
ger equation for a system of interacting particles by the
method of self-consistent éeld. Therefore, the dynamic
variable c(r; t) represents initially the wave function of a
subsystem of atoms forming the Bose condensate. In the
limit of a suféciently large numbers in the condensate, this
function is treated as a classical quantity and is called the
order parameter. Similarly to the laser coherent éeld, the
wave function c(r; t) can be considered as a classical limit of
the average value of the annihilation operator for particles in
the Bose condensate.

The dynamic meaning of equation (48) is similar to that
of equation (33) for class C lasers. Within the framework of
equation (48), the dynamics of particles outside the Bose
condensate (incoherent particles) remains unexplored. How-
ever, equation (33) contains parameters that determine the
appearance and existence of a coherent laser éeld, whereas
equation (48) has no quantities that would determine the
conditions of the appearance and existence of the order
parameter. Therefore, it is clear that equation (48) describes
only an ensemble of particles under stationary (quasi-stati-
onary) conditions at the temperature below the critical one.
In this sense, the existence of the term containing the time
derivative in this equation can be justiéed only in the case
when the time dependences of the parameters entering
Eqn (48) do not result in the fallout of some incoherent
particles from the condensate. The dynamics of incoherent
particles becomes fundamentally important when atoms
enter the trap and leave it and also upon the perturbation
of the éelds in the trap, which distort the equilibrium
distribution of particles. In other words, the dynamic coup-
ling between Eqn (48) and the equation for atoms outside
the Bose condensate is required.

To énd such a coupling, we will use the law of con-
servation of the number of particles. According to papers
[58, 59], we rewrite equation (48) in the form of two real
equations for the modulus jcj of the order parameter and its
phase j (c � jcjeij):

qjcj2
qt
� ÿdiv j; j � i

�h

2m
�cHc � ÿ c �Hc� � �h

m
jcj2Hj

(49)

qj
qt
jcj � �h

2m

�
H 2jcj ÿ �Hj�2jcj�ÿ Vint�r; t�

�h
jcj ÿU

�h
jcj3,

where j is the current of coherent particles. The érst equa-
tion in (49) represents the law of conservation of the
number of particles in the Bose condensate, which does not
interact with other subsystems. Upon the interaction of
these particles with a subsystem of incoherent particles, the
particles will transfer from one subsystem to another. To
take this interaction into account, this equation should be
supplemented with a corresponding term describing such
transitions.

It is convenient to proceed further using the language of
quasi-particles introduced by Bogolyubov [1, 60]. The cre-
ation (B̂�p ) and annihilation (B̂p) operators for quasi-
particles with the momentum p are coupled with the
corresponding operators Â�p and Âp of noninteracting atoms
by the relations

Âp �
B̂p � LpB̂

�
ÿp

�1ÿ L 2
p �1=2

; Â�p �
B̂�p � LpB̂ÿp
�1ÿ L 2

p �1=2
,

Lp �
1

mu 2

�
e�p� ÿ p 2

2m
ÿmu 2

�
,

(50)

e�p� �
�
u 2p 2 �

�
p 2

2m

�2 �1=2

; u �
�
UNg

m

�1=2

, (51)

where e(p) is the kinetic energy of quasi-particles with the
momentum p; Ng is the number of particles in the system.
The use of quasi-particles is convenient because, in par-
ticular, their equilibrium energy distribution is described by
the Bose ëEinstein law with the zero chemical potential

np �
�

exp

�
e�p�
kT

�
ÿ 1

�ÿ1

. (52)

By using the law of conservation of particles, we can
write

qjcj2
qt
� Sÿ div j; S �

�
S rec
p �r; t�

d 3p

�2p�h�3 , (53)

where

S rec
p �r; t� �W!�p�ÿjcj2 � 1

�
np�r; t�

ÿW �p�jcj2�np�r; t� � 1� (54)

describes the particle exchange between the subsystems. The
meaning of equation (54) is quite clear. The term
W!(p)(jcj2 � 1)np(r; t) describes the transition resulting
in an increase in the concentration of particles in the Bose
condensate and a decrease in the concentration np(r; t) of
quasi-particles by unity in some incoherent subsystem.
Therefore, this term is proportional to the concentration of
particles in the Bose condensate plus unity. The term
W (p)jcj2�np(r; t)� 1� describes the inverse transition. The
functions W!(p), W (p) depend on the speciéc interaction
between atoms.

Because atoms involved in the condensate interact not
only with each other but also with incoherent particles, we
should make the replacement
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U

�h
jcj3 ! U

�h

ÿjcj2 � n
�jcj (55)

in the right-hand side of the second equation of system (49),
where

n �
�
np�r; t�

d 3p

�2p�h�3 (56)

is the total concentration of incoherent particles as a
function of the coordinate and time.

The second equation from (49) and equation (53), in
which the replacement (55) was performed, can be combined
to form a single complex equation using the following idea.
The exchange term (54) can be naturally separated into two
components. One of them is proportional to jcj2 and des-
cribes the induced (coherent) part of the process of the
particle exchange between subsystems. This component is
included into the equation as a regular term. Another com-
ponent represents the spontaneous incoherent process and is
included into the equation in the form of a random Lan-
gevin force Z(r; t). As a result, we obtain the equation

q
qt
c�r; t� � 1

i�h

�
ÿ �h 2

2m
D� Vint�r; t� �U

ÿjc�r; t�j2
� n�r; t���c�r; t� � S�n�c�r; t� � Z�r; t�, (57)

S�n� � 1

2

�
fW!�p�np�r; t� ÿW �p��np�r; t� � 1�g d 3p

�2p�h�3 ,

hZ�r; t�Z�r; t 0�i � f �tÿ t 0�
�
W!�p�np�r; t�

d 3p

�2p�h�3 ,
(58)

where f (tÿ t 0 ) describes the correlation properties of the
Langevin force. The time dependence of the correlation
function is determined by physical conditions. It is often
assumed in the literature that a random Langevin force is d-
correlated [see, for example, 61, 65, 66].

We will describe the dynamics of an ensemble of
incoherent quasi-particles using the kinetic equation [63, 64]

q
qt

np�r; t� �
q
qr

np�r; t�
qe
qp
ÿ q
qp

np�r; t�
qe
qr

� ÿS rec
p �r; t� � S col

p �r; t� �Q in
p �r; t� ÿQ out

p �r; t�, (59)

where S col
p (r; t) is the collision integral for quasi-particles;

and Q in
p (r; t) is the input of incoherent particles to the

system and Q out
p (r; t) is their output from the system. While

the input of particles is speciéed by external circumstances,
their output depends on the distribution function of quasi-
particles. The input and output of particles can be also
determined by the boundary conditions.

Equations (57) and (59) represent the desired system.
This system can describe cooling (heating) of a system of
particles and Bose condensation. It is evident that Bose
condensation occurs when the exchange integral (58) is
positive. The positive sign of this integral gives the `inver-
sion' condition (5). Equations (57) and (59) yield the law of
conservation of particles in the form

q
qt

�
jc�r; t�j2 �

�
np�r; t�

d 3p

�2p�h�3
�

� ÿdiv j�
� �

Q in
p �r; t� ÿQ out

p �r; t�
� d 3p

�2p�h�3 . (60)

The system can contain particles that play the role of a
buffer and do not experience Bose condensation under the
conditions under study. Their role can be taken into account
in the particle exchange term and the collision integral.

Kinetic Eqn (59) is valid when the motion of particles is
not quantised. Because the motion in a trap is quantised,
Eqn (59) is valid only when the energy quantum of a particle
in the trap is less than kT, and hence, of kTc (Tc is the
critical temperature of Bose condensation). Otherwise Eqn
(59) should be replaced by its quantum analogue, which is a
purely technical problem.

Let us assume that an ensemble of atoms is cooled to the
absolute zero and there is neither inêow nor outêow of
atoms. In this case, the number of atoms in the condensate is
strictly deéned, and the condensate cannot be in the
coherent state. However, this is valid for an ideal gas. In
a gas of interacting particles, there are always a certain
number of real particles (not quasi-particles!) with nonzero
energy even at the absolute zero. Their distribution is des-
cribed by the relation ([1], Ch. 3, (23.18))

Np �
1

2

m 2u 4

�e�p� � p 2=2m�mu 2�e�p� . (61)

Therefore, the number of real particles in the Bose con-
densate is not strictly deéned. This speciées the degree of
uncertainty of its phase (the degree of coherence):

DN0Dj �
1

2
; DN0 �

ÿ

N 2

p

�ÿ hNpi2
�1=2

;

(62)

hNpi �
8

3
���
p
p

�
Nga

3

V

�1=2
.

7. `Atomic laser' and its dynamics

If the conditions are provided under which incoherent
atoms captured by a trap leave it in the form of a coherent
condensate, then the trap will resemble a laser generating a
coherent electromagnetic wave. Traps that are used for
producing the atomic Bose condensate are commonly con-
structed so that the atoms with the negative projection of
the total momentum on the direction of the magnetic éeld
of the trap (for example, mF � ÿ1) are located in the
attractive potential (Fig. 16), while the potential energy of
atoms with mF 5 0 in the trap has a maximum and decays
to its periphery, so that the atoms with mF 5 0 are forced
out from the trap. For this reason, the Bose condensate is
formed by atoms with the negative value of mF. In real
experiments, the sodium, rubidium, and lithium atoms are
used for which the total momentum is F � 1. By applying a
radio-frequency éeld, which transfers atoms from the state
mF � ÿ1 to the state mF � 0 [10], coherent atoms can be
extracted from the trap. Of course, the éeld should be
suféciently monochromatic lest the mutual coherence of the
atoms leaving the trap be destroyed.
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Atoms in the trap are usually cooled below the critical
temperature by applying a radio-frequency éeld, in the same
way as upon extracting coherent atoms from the trap
(Fig. 16). The frequency of this éeld is chosen so that the
high-energy atoms, whose frequency substantially differs
from the frequency of low-energy atoms with, would be in
the resonance. For this reason, the high-energy atoms trans-
fer to the state with an unstable potential and leave the trap,
providing cooling of the atoms remaining in the trap. The
cooling rate can be controlled by varying the intensity and
frequency of the applied éeld. By choosing different freq-
uencies for the cooling and extracting éelds, the conditions
can be provided when these two processes will not appreci-
ably affect each other.

The dynamics of an atomic laser was described in paper
[10] by the system of equations

i�h
q
qt

c��r; t� �
�
ÿ �h

2m
D� V int

� �r; t� �Ujc�r; t�j2
�

�c��r; t� � �hOc��r; t� exp��iot�, (63)

jc�r; t�j2 � jc��r; t�j2 � jcÿ�r; t�j2.

Here, c� and cÿ are the order parameters for the Bose
condensate of atoms in the attractive and repulsive poten-
tials of the trap, respectively; �hO(r) � mH(r) is the coupling
coefécient between the condensates caused by radio-freq-
uency radiation; m is the magnetic dipole moment of an
atom for the mF � ÿ1! mF � 0 transition; H and o are
the amplitude and frequency of the radio-frequency éeld,
respectively. The coupling coefécient can be changed by
varying the radio-frequency éeld amplitude. The latter rela-
tion in (63) was presented in paper [10]. In our opinion, a
more correct relation is the superposition of two order
parameters, which we will take into account below.

The system of Eqns (63) does not reêect the fact that
upon generation of a coherent atomic beam, the atoms
should enter the trap in the incoherent state and leave it in
the form of the coherent Bose condensate. Therefore, inco-
herent atoms are also involved in the generation process,
and a consistent description of an `atomic laser' should be
based on a system of equations unifying the equations for
the Bose condensate and a subsystem of incoherent atoms.

The equation for an `atomic laser' obtained using this
uniéed system has the form [59]

q
qt

c��r; t� � ÿ
i

�h

�
ÿ �h 2

2m
D� V int

� �r; t�

�U
�jc�r; t�j2 �N�r; t���c� �r; t� � S�n��c��r; t�

ÿ iO�r�c��r; t� exp��iot� � Z�r; t�, (64)

q
qt

np��r; t� �
q
qr

np��r; t�
qe
qp
ÿ q
qp

np��r; t�
qe
qr

� ÿS rec
p� �r; t� � S col

p �r; t� �Q in
p��r; t� ÿQ out

p� �r; t�,

where

c�r; t� � c��r; t� � cÿ�r; t�.

Strictly speaking, there are three potentials in the trap for
atoms with the total momentum F � 1. Following paper
[10], we restricted ourselves to a model case of two poten-
tials. The writing of a system of equations for three and
more potentials presents no substantial problems.

A comprehensive analysis of the system of equations (64)
is a complicated problem. This analysis can be based on the
results of studies of the dynamics of lasers, which has been
developed well enough in papers [24, 25, 30 ë 33, 40 45]. By
simplifying the system (64), we can elucidate some impor-
tant questions.

Let us assume that the trap potential is time-independent
and énd the eigenfunctions F�(r) of the trap potentials by
solving the equations

�
ÿ �h 2

2m
D� V int

� �r; t�
�
F��r� � E�F��r�, (65)

where E� are the energy eigenvalues for the corresponding
potentials. We assume that E� � e� is a purely real quan-
tity for a stable potential, and Eÿ � eÿ � ig is a complex
quantity for an unstable potential.

Let us represent the required order parameters in the
form

c��r; t� � A�t�F��r� exp
i

�h

�
e�tÿ

�
u��t�dt

�
,

(66)

cÿ�r; t� � B�t�Fÿ�r� exp
i

�h

�
eÿtÿ

�
uÿ�t�dt

�
,

where

u��t� � U

� �jc�r; t�j2 � n�r; t��jF��r�j2d 3r .

We replace the equations for the distribution of particles
over momenta by the equation for the average number
density of particles. We represent the term describing the
output of incoherent particles from the trap in the relaxa-
tion form Q out

� � v�n�. By substituting (66) into the érst
equation of the system (64) and by multiplying the obtained
equation by F ��(r), we integrate all the terms of the equa-
tion over the trap volume. As a result, we obtain

�hoc

�ho

�ho�hoc

mF � ÿ1

mF � 1

Vint�r� (rel. units)

mF � 0

Bose condensate

Coherent

atoms

`Hot'

incoherent

atoms

6

4

ÿ1 ÿ0:5 0 0.5 r (rel. units)

ÿ4
ÿ6

2

Figure 16. Scheme of a source of a coherent atomic beam ë `an atomic
laser' (o is the radio-frequency used to extract a beam of coherent atoms
from a trap; oc is the radio-frequency used to extract a beam of
incoherent atoms for cooling an ensemble of atoms in the trap; stable
potential with mF � ÿ1; unstable potentials with mF � 0 and 1).
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dA

dt
ÿ �s�A� i�OB exp�id�t�� � �Z��t�,

dB

dt
� ��sÿ ÿ g�Bÿ i�O �A exp�ÿid�t�� � �Z�t�, (67)

dn�
dt
� ÿ2�s�jAj2 ÿ v�n� �Q� ,

where

�s� �
�
S�n��jF�j2d 3r; �O �

�
O�r�F ��Fÿd 3r;

(68)

d�t� � 1

�h

�
�e� ÿ eÿ�tÿ

�
�u��t� ÿ uÿ�t��dt

�
ÿ ot ,



Z���r; t�Z��r; t 0�

� � f �tÿ t 0�

�
� �

W!�p�np�r; t�jF��r�j2
d 3p d 3r

�2p�h�2 . (69)

Despite the simpliécations made above, the basic processes
responsible for the formation of Bose condensate in the
trap are retained in the equations.

For convenience, we will use the notation

A�t� � jA�t�j exp�ij�t��; B�t� � jB�t� exp�ix�t�� (70)

and rewrite equations (67) in the form

djAj
dt
� �s�jAj � �OjBj sin�d� xÿ j�

�Re��Z��t� exp�ÿij��,
(71)

djBj
dt
� ��sÿ ÿ g�jBj ÿ �OjAj sin�d� xÿ j�

�Re��Zÿ�t� exp�ÿix��;
dj
dt
jAj � ÿ�OjBj cos�d� xÿ j� � Im��Z��t� exp�ÿij��,

dx
dt
jBj � ÿ�OjAj cos�d� xÿ j� � Im��Zÿ�t� exp�ÿix��,

(72)

dn�
dt
� ÿ2�s�jAj2 ÿ v�n� �Q� .

By considering the dynamics of atoms in the trap, we
can neglect êuctuations in the érst approximation. Then,
stationary regimes are possible at which all derivatives in
equations (71) and (72) are zero. One can easily see that
cos (d� xÿ j) � 0 in the stationary regime, and the moduli
of amplitudes are

jAstj � jBstj � 0; �n��st �
Q�
v�

(73)

or

jAstj 6� 0; jBstj 6� 0 . (74)

It is obvious that in the case (73), the coherent Bose con-
densate does not exist.

Let us study the stability of the regime (73) by the usual
method of linearisation of the equations with respect to the
stationary values. The linearised equations

djAj
dt
� �s�jAj � �OjBj; djBj

dt
� ��sÿ ÿ gÿ�jBj ÿ �OjAj (75)

are simple enough in order to describe immediately the
conditions of the instability of the zero state (73):

�s� � �sÿ ÿ g > 0; �s��sÿ ÿ gÿ� � �O 2 < 0 . (76)

Because atoms in the state (ÿ) rapidly leave the trap, �sÿ is
small compared to g. Therefore, to generate the Bose con-
densate in the trap, it is necessary and sufécient that

�s� > min

�
g;

�O 2

g

�
. (77)

The condition (77) for formation of the coherent Bose
condensate is more stringent than condition (14), which
means only that �s� should be positive. Therefore, for

0 < �s� < min

�
g;

�O 2

g

�
(78)

the situation appears in the `atomic laser' when Bose con-
densation will occur only due to spontaneous transitions
[according to Eqns (67), due to êuctuations] even below the
critical temperature. In this case, the Bose condensate will
not be coherent. The inequality (77) is physically equivalent
to the self-excitation condition for a common laser, which,
as mentioned above, is more stringent than the condition
for the population inversion in the laser medium, and
depends on absorption of photons in the laser and emission
of laser photons. If v� is small enough to be neglected, then
a stationary state with the zero amplitudes of the order
parameter can exist only in the absence of the particle
inêow to the trap (Q� � 0). The inêow of particles to the
trap at v� � 0 results in the so-called non-threshold Bose
condensation if the atoms captured by the trap are cool
enough for the total temperature in the system to be below
the critical temperature. The maximum critical temperature
is obviously determined by the maximum number of par-
ticles that can be conéned in the trap. The non-threshold
lasing is also studied in the éeld of laser physics [67, 68].

If we are interested in the dynamics of the order para-
meter rather than in the details of the distribution function
of incoherent particles, we can use a simple approximation
for the functional �s�, because �s� depends érst of all on the
total concentration of incoherent particles in the trap and
does not change substantially upon continuous variations in
the energy distribution of particles. For example, the
approximation

�s� � s0�nÿ n0� (79)

is possible, where s0 is a constant and nc is the equilibrium
density of incoherent quasi-particles for the zero chemical
potential and the speciéed temperature of particles in the
trap. It is determined by expression (10). By using relation
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(79), we can calculate the nonzero values of the stationary
amplitudes jAstj and jBstj of the order parameter and énd
the êux of coherent atoms leaving the trap. By neglecting
�sÿ and g�, we obtain

jAstj �
1

2

�
g

�O 2
�Q� ÿ v�n0� ÿ

v�
s0

�
,

(80)

jBstj �
�O
g
jAstj; I � 2gjBstjV,

where V is the trap volume. The condition of stationary
phases cos (d� xÿ j) � 0 determines the frequency of a
radio-frequency éeld at which the stationary regime is
possible. This frequency should satisfy the relation

d�t� � 1

�h

�
�e� ÿ eÿ�tÿ

�
�u��t� ÿ uÿ�t��dt

�
ÿ ot � 0, (81)

which can be fulélled at constant amplitudes of the order
parameter. If the condition (81) is not satiséed, the regime
with constant amplitude is impossible. Upon continuous
entering of incoherent particles to the trap, the order para-
meter of the Bose condensate will be an oscillating function
of time.

If g exceeds the other parameters having the dimension-
ality of the inverse time, the dynamic variable B can be
excluded from the system of Eqns (67) and this system will
take the form

djAj
dt
�
�

�s� ÿ
�O 2

g

�
jAj ,

(82)

dn�
dt
� ÿ2�s�jAj2 ÿ v�n� �Q� .

After the substitution of expression (79) into (82) instead of
�s�, the system of equations for the `atomic laser' becomes
isomorphous to the system of equations (32) for the class B
laser. Therefore, the theory of relaxation oscillations
[43, 44], which was brieêy described in section 4, can be
applied to the `atomic laser'. In particular, by modulating
the amplitude of a radio-frequency éeld, strong oscillations
of the order parameter of atoms in the trap can be excited,
resulting in the appearance of a beam of coherent atoms
outside the trap in the form of periodically repeated bun-
ches. The `atomic laser' can be also brought to the dynamic
chaos regime, as has been done with a CO2 laser [45]. In
this case, the atomic bunches are no longer periodic in time.
The experimental study of the dynamic chaos in an atomic
trap is a very interesting problem.

The `atomic laser' can be used as a source of a single
pulse of coherent atoms. For this purpose, in the absence of
a radio-frequency éeld, which transfers atoms in the Bose
condensate from a stable potential to an unstable potential,
the Bose condensate should be created in the trap and then a
radio-frequency éeld should be rapidly switched on.

As mentioned above, using the system of Eqns (67), we
can describe both the dynamics of the Bose condensate and
the process of its formation upon cooling atoms in the trap.
In the simplest form, this can be fulélled upon slow cooling,
when the formation of the quasi-equilibrium distribution

function occurs faster than a change in the mean energy of
atoms in the trap. In this case, the mean energy of the gas
can be expressed in terms of its temperature, which can be
treated as an additional dynamic variable. This approach is
used in the theory of a semiconductor laser, when the
temperature of carriers is considered separately from the
lattice temperature as an additional dynamic variable
[69, 70].

Note in conclusion that the dynamics of Bose con-
densate of atoms in a trap has been described by different
methods [71 ë 81]. The approach presented above is physi-
cally clear and reêects many important features of the
dynamics of Bose condensate.

8. Superconducting Bose condensate

Similarly to an electromagnetic éeld and atomic Bose
condensate, we can introduce the creation (Â�) and
annihilation (Â ) operators for a Cooper pair and deéne
a coherent state as the eigenfunction of the equation

ÂjCi � CjCi. (83)

Then, in the limit of a great number of particles, the func-
tion C can be identiéed with the order parameter of a
superconductor, which was érst introduced in paper [82]
where the stationary equation

ÿ
aÿ bjC�r�j2�C�r� � �Hÿ i

2e

�hc
A�r�

�2
C�r� � 0 (84)

was proposed for the order parameter. Here, A(r) is the
vector potential of a magnetic éeld; and a and b are
parameters describing the properties of the material, the
parameter a being temperature-dependent:

a�T� � a
Tc ÿ T

Tc
. (85)

To construct the theory of a superconducting state based on
Eqn (84), this equation should be supplemented with the
expression for the superconducting current

j�r� � i
e�h

2m
�C�r�HC ��r� ÿC ��r�HC�r��

ÿ 2e 2

mc
jC�r�j2A�r� (86)

and with boundary conditions.
Equation (84), which was initially obtained by minimis-

ing the free-energy functional [82], was then substantiated
using the microscopic approach [83]. This equation is
assumed to be valid near the critical temperature. At pre-
sent, equation (84) forms the basis for the macroscopic
theory of superconductivity (the C-theory, according to the
terminology used in [2]), which is discussed in books [1, 84].

The nonstationary equation for the order parameter was
obtained only for the so-called zero-gap superconductors
[85] containing paramagnetic impurities at suféciently high
concentrations. It has the form [84]

qC�r; t�
qt

� D
ÿ
aÿ bjC�r; t�j2�C�r; t�
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�D

�
Hÿ i

2e

�hc
A�r�

�2

C�r; t� ÿ i
2e

�h
w�r; t�C�r; t�. (87)

Here, D is the diffusion coefécient of electrons in the nor-
mal state; w is the electrochemical potential per electron
charge. It follows from this equation that

qjC�r; t�j2
qt

� D
ÿ
aÿ bjC�r; t�j2�jC�r; t�j2

� 2Re
�
C ��r; t�L̂C�r; t��, (88)

L̂ � D

�
Hÿ i

2e

�hc
A�r; t�

�2

.

The term 2Re�C �(r; t)L̂C(r; t)� in the right-hand side of
equation (88) is not the divergence of the current. Equation
(48) does not seemingly satisfy the law of conservation of
the number of particles. However, such a diféculty does not
appear in equation (57) for the atomic Bose condensate.
Formally, this is explained by the fact that the operator H 2

in equation (57) has an imaginary unit factor. A similar
factor is absent in equation (87). How can it be understood?
This question will be elucidated in the next section devoted
to the derivation of equations that combine the order
parameter and free quasi-particles into a uniéed dynamic
system.

9. Dynamic system of equations
for a superconductor

Let us compare equation (87) with dynamic equations for a
laser. Based on this equation, a superconductor would be
assigned to class C lasers. Recall that relaxation processes
in the active medium of class C lasers proceed much faster
than the relaxation of photon in the laser cavity. In
superconductor, free particles play the role of an active
medium, so that we can assume that equation (87) is
obtained from a complete dynamic system of equations for
a superconductor by adiabatically excluding the concen-
tration of particles as a dynamic variable. This is possible
only when the quasi-equilibrium in a subsystem of quasi-
particles is established much faster than in a subsystem of
Cooper pairs. Otherwise a complete dynamic system of
equations is needed to describe the dynamics of a super-
conductor.

The derivation of a complete nonstationary coupled
system of equations for the order parameter and free quasi-
particles, based on a consistent microscopic theory, is a
difécult problem, which has not been solved so far [62]. For
this reason an attempt was made [58] to solve this problem
using simulation based on the energy band diagram of a
superconductor (Fig. 5). According to [58], we will derive
this system of equations using the law of conservation of
particles and consider, as a érst step, the case when the order
parameter is independent of coordinates. Then, the time
dependence of the modulus of the order parameter is com-
pletely determined by the particle exchange with the m and n
electron subsystems, so that

qjC�r; t�j2
qt

� Sm � �Sn , (89)

where Sm is the rate of particle exchange between a
subsystem of Cooper pairs and the m electron subsystem
and Sn is the rate of particle exchange between subsystems
of Cooper pairs and free quasi-particles. In essence, these
are the same recombination integrals that were discussed in
section 6. Dynamically, they are similar to recombination
integrals discussed in the literature [63, 64].

The rate Sm can be divided into two rates describing the
induced and spontaneous transitions, respectively: Sm �
S ind
m � S sp

m . The quantum-mechanical rate of induced tran-
sitions between subsystems is

Sm � jC�r; t�j2
�
Wm�p��mpmÿp ÿ �1ÿmp�

��1ÿmÿp��
d 3p

�2p�h�3 . (90)

The function Wm(p) is a matrix element of the Hamiltonian
of interaction between particles for a transition from a
coherent state of Cooper pairs (the C subsystem) to a state
of the m subsystem. As mentioned above, the electrons with
momenta close to the Fermi momentum pF eféciently inte-
ract with each other in a superconductor. For this reason,
Wm(p) rather rapidly decreases with increasing difference
between p and pF, so that the effective number of electrons
involved in the formation of the Cooper pair condensate
becomes noticeably lower than the total number of elec-
trons in the conduction band. Accordingly, we introduce
the total effective number of electrons involved in super-
conductivity,

Ns �
1

Wm�pF�
�
Wm�p�

d 3p

�2p�h�3 , (91)

and the effective number of electrons in the m subsystem

Nm �
1

Wm�pF�
�
mpWm�p�

d 3p

�2p�h�3 . (92)

According to the law of conservation of particles,

n�Nm � 2jC�r; t�j2 � Ns , (93)

where n is the total number of free quasi-particles in the n
subsystem. By using (93) and excluding Nm from expression
(90), we obtain

S ind
m � 2

tm

�
1ÿ 2

n

Ns
ÿ 4
jC�r; t�j2

Ns

�
jC�r; t�j2,

(94)
2

tm
�Wm�pF�Ns .

Spontaneous transitions from the C subsystem to the m
subsystem are described by the quantity

S sp
m �

�
Wm�p�mpmÿp

d 3p

�2p�h� . (95)

Assuming that mp is described by the Fermi distribution
and using relation (93), we will express (95) in terms of the
total concentration of quasi-particles and Cooper pairs. We
will not perform these calculations explicitly because there
is no need for this below.
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The parameter

Sn �
� �

Wn�p; p 0�
�
npnp 0 �Mq � 1��jcj2 � 1�

ÿ�1ÿ np��1ÿ np 0 �Mqjcj2
�
d 3p 0d 3p (96)

is usually called the recombination integral. It is con-
structed similarly to the exchange integral in an atomic
system between the Bose condensate and incoherent par-
ticles. The only difference is that Bose condensation of
Cooper pairs occurs due to the recombination of two Fermi
particles involving phonons whose spectral concentration is
denoted by Mq, where q � pÿ p 0 due to the law of con-
servation of momentum.

If we now assume that the order parameter and the
magnetic éeld depend on coordinates, the term 2Re�C �(r,
t)L̂C(r; t)� should by included into equation (89), so that

qjC�r; t�j2
qt

� 2

tm

�
1ÿ 2

n

Ns
ÿ 4
jC�r; t�j2

Ns

�
jC�r; t�j2

� 2ReC�r; t�L̂C ��r; t�.
This elucidates the problem of conservation of the number
of particles. One can see that not only free quasi-particles
but also `under-condensate' unpaired electrons are involved
in the dynamics of the superconductor. This circumstance
can be interpreted as follows.

Let us assume that a superconducting sample at the
temperature close to the absolute zero is placed in a mag-
netic éeld, which adiabatically increases with time. As the
magnetic éeld increases, it will penetrate deep in the sample,
decreasing the order parameter. The decrease in the modu-
lus of the order parameter is related to the destruction of
Cooper pairs. The electrons produced in this process cannot
be free quasi-particles because this requires the energy equal
to the width D of the superconducting gap, which can be
borrowed from nowhere at the temperature close to the
absolute zero. These electrons can come only to the system
of under-condensate electrons. Therefore, if we wrote the
explicit equation for the concentration m of particles in the
subsystem, then the expression 2Re�C �(r; t)L̂C(r; t)� should
appear in the left-hand side of this equation but with the
minus sign. This solves the problem of conservation of the
number of particles in equation (87).

As a result, we can pass to the equation for the complex
order parameter C, by including into it the term with the
chemical potential

qC�r; t�
qt

� ÿi 2e
�h

w�r; t�C�r; t� � 1

tm

�
1ÿ 2

n

Ns

ÿ 4
jC�r; t�j2

Ns

�
C�r; t� � D

�
Hÿ i

2e

�hc
A�r; t�

�2
C�r; t�

� 1

2
S recC�r; t� � X�r; t�, (97)

S rec�r; t� �
�
Wn�p; p 0��npnp 0 �Mq � 1�

ÿ�1ÿ np��1ÿ np 0Mq�d 3p 0d 3p . (98)

The quantity Sn contains terms proportional to C(r; t).
These terms correspond to induced transitions and they
appear in Eqn (97) as the coherent term (1=2)S recC(r; t),
which is proportional to the order parameter. The remai-
ning term corresponds to spontaneous transitions. It is
included into Eqn (97) as the êuctuation force X(t). This
êuctuation force contains the term caused by spontaneous
C! m transitions. The correlation function X(t) is des-
cribed by the expression

hX ��t�X�t 0�i� f �tÿt 0�
�
S sp
m �

��
Wn�p; p 0�npnp 0Mqd

3pd 3p 0
�

[see expression (59) and comments to it].
The dynamics of free quasi-particles was considered in

papers [58 ë 60]. It was described by the kinetic equation

q
qt

np�r; t� �
q
qr

np�r; t�
qe
qp
ÿ q
qp

np�r; t�
qe
qr

� S col
p �r; t� ÿ S rec

p �r; t� , (99)

in which the energy of quasi-particles is determined by the
relation

e �
�
D 2 � 1

4m 2

�
p 2
F ÿ

�
pÿ e

c
A

�2 �2�1=2

. (100)

The quantity S col
p (r; t) in equation (99) is a common

collision integral, which describes the momentum and
energy redistributions of quasi-particles in a subsystem.
The recombination integral S rec

p (r; t) describes the exchange
of particles in the subsystem n with particles in the
condensate of Cooper pairs and in the system m. This
recombination integral is presented in review [64] in the
form

S rec
p �r; t� �

�
Ue�p; p 0;D��npnp 0 �Mq � 1�

ÿ�1ÿ np��1ÿ np 0 �Mq�d 3p 0. (101)

It contains, along with the concentration of free particles,
the phonon concentration Mq. The function Ue, as Wn in
expression (98), is nothing but a matrix element of the
interaction Hamiltonian of the particles. The difference
between these functions is that Wn is the matrix element of
the interaction Hamiltonian for the transition between the
subsystem n and the Cooper pair condensate, whereas Ue

corresponds to the transition between the subsystem n and
the combined mÿC system, which was considered in
papers [63, 64] as a speciéc vacuum in which free quasi-
particles are created.

If the phonon concentration is nonequilibrium, is should
be also described by a dynamic equation. This equation is
often written in a simple form [64, 86]

qMq

qt
� ÿ 1

tq
�Mq ÿMq0� � S rec

q � S col
q �Qq , (102)

where Mq0 is the equilibrium phonon concentration at a
given temperature. The érst term in the right-hand side of
Eqn (102) describes the escape of phonons from a super-
conducting sample to a substrate, the second term describes
the creation of phonons upon recombination of free quasi-
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particles, the third term is caused by scattering of quasi-
particles, and the fourth term describes excitation of pho-
nons by an external source. The recombination term is

S rec
q �t� �

1

Vs

�
U�p; pÿ q;D��npnp 0 �Mq � 1�

ÿ�1ÿ np��1ÿ np 0 �Mq�d 3p 0d 3r , (103)

where Vs is the sample volume.
Therefore, the order parameter (97), free quasi-particles

(99) and phonons (102) are uniéed into a dynamic system
due to recombination processes. If necessary, the recombi-
nation integral for photons instead of phonons (or along
with the latter) can be written. Obviously, the system of
equations (97), (99), (102) should be supplemented with the
Maxwell equations, which will be coupled with this system
by the carrier current and the density of photons if the latter
interact with the superconductor. In a nonstationary state,
the current includes the non-superconducting component
along with the superconducting component (86), so that the
total current is

J�r; t� � i
e�h

2m
�C�r; t�HC ��r; t� ÿC ��r; t�HC�r; t��

ÿ 2e 2

mc
jC�r; t�j2A�r; t� ÿ s

�
Hw� 1

c

qA
qt

�
. (104)

10. Stationary state of a superconductor

Let us return to the stationary state when the order para-
meter is time-independent. Strictly speaking, this state takes
place when êuctuations are neglected. It is described by the
equation

1

Dtm

�
1ÿ 2

n

Ns
ÿ 4
jC�r; t�j2

Ns

�
C�r; t�

�
�
Hÿ i

2e

�hc
A�r; t�

�2
C�r; t� � 0 . (105)

Equation (105) differs from equation (84) in that the
coefécient a � (1=Dtm)(1ÿ 2n=Ns) in it acquired the dyna-
mic sense. In the stationary state,

n �
� �

exp
e
kT
� 1

�ÿ1 d 3p

�2p�h�3 , (106)

e being determined by expression (100). Therefore, the
coefécient a depends not only on temperature but also on
a magnetic éeld and, énally, on the spatial coordinates;
although, the dependence on a magnetic éeld is negligible if
(e=c)A5 pF. In the absence of a magnetic éeld, the coefé-
cient a depends only on temperature. To calculate this
dependence, we should know the temperature dependence
of the energy gap, which is determined by the Bardeen ë
Cooper ë Schrieffer equation [1, 17]

g

2�2p�h�3
�

tanh�e=2kT�
e

d 3p � 1. (107)

The function D(T ) can be calculated analytically [1] only in
the limiting cases of low temperatures,

D � D�0�
�
1ÿ

�
2pkT

D�0�

�1=2
exp

�
ÿ D�0�

kT

�1=2 �
(108)

and at temperatures close to the critical temperature,

D � 3:06kTc

�
1ÿ T

Tc

�1=2
. (109)

The critical temperature Tc and the energy gap D�0� at the
absolute zero are related by the expression Tc � 0:57D�0�.

The function a (T ) calculated numerically over the entire
temperature range is shown in Fig. 17. As expected, it
differs from the linear dependence (85), which takes place
only at temperatures close to the critical temperature. If for
D(Tc) � 0, the critical temperature is deéned by the con-
dition a (Tc) � 1, then we obtain

Ns �
0:693mpFkTc

p2�h 3
, (110)

and the coefécient a (T ) can be represented in the form

a�T� � 1

Dtm

�
1ÿ 1:44

T

Tc

�
� �

exp

�
D 2

�kT�2 � x 2

�1=2

� 1

�ÿ1

dx
�
. (111)

Note énally that the coefécient a (T ) can be also nonzero
when the energy gap is zero. Therefore, equation (97) also
describes zero-gap superconductors, which were predicted
in paper [85].

Equation (105) in the absence of a magnetic éeld takes
the form

H 2C�r; t� � 1

Dtm

�
1ÿ 2

n

Ns
ÿ 4
jC�r; t�j2

Ns

�
C�r; t� � 0 . (112)

Except the obvious solutions C � 0 and jCj2 � (Ns ÿ 2n)=4
� Dtma (T), equation (112) has other solutions, which
depends on coordinates and can be either periodic or
`asymptotic' functions, i.e., they can tend to inénity on a
certain surface (at point, in the one-dimensional case). The

1ÿ T=Tc

0.2 0.4 0.6 0.8 T=Tc (rel. units)

a (rel. units)

0

0.2

0.4

0.6

0.8

1.0

Figure 17. Temperature dependence of the parameter a.
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periodic functions exist at positive values of a (T ), while the
asymptotic functions exist at negative values of a (T ) [87].
One of the interesting problems in the physics of the
superconducting state is the problem of the superconduc-
tor ëmetal contact, which was considered earlier using the
microscopic theory [88].

In paper [87], the method was proposed for calculating
the superconductor ëmetal contact using the C theory and
the asymptotic solutions. One of the results of this paper is
the conclusion that the order parameter in a superconduc-
ting layer at the temperature below the critical temperature
initiates the order parameter in another contacting super-
conducting layer whose temperature is higher than the
critical temperature. In calculations in paper [87], a linear
temperature dependence of the coefécient a was used.
However, the dependence a (T ) shown in Fig. 17 is more
favourable for the appearance of this effect because the
coefécient a (T ) achieves the value close to the maximum at
higher temperatures.

11. On nonstationary processes
in superconductors

Let us combine the equations describing the dynamics of a
superconductor in a single system

qC�r; t�
qt

� ÿi 2e
�h

w�r; t�C�r; t� � 1

tm

�
1ÿ 2

n

Ns

ÿ 4
jC�r; t�j2

Ns

�
C�r; t� �D

�
Hÿ i

2e

�hc
A�r; t�

�2
C�r; t�

� 1

2
S recC�r; t� � X�r; t�,

(113)

q
qt

np�r; t� �
q
qr

np�r; t�
qe
qp
ÿ q
qp

np�r; t�
qe
qr

� S col
p �r; t� ÿ S rec

p �r; t� ,

qMq

qt
� ÿ 1

tq
�Mq ÿMq0� � S rec

q � S sc
q �Qq ,

where S sc
q describes the scattering of photons. When a

superconducting sample is irradiated by a high-frequency
electromagnetic éeld (for example, with frequency that is
equal to or higher than D=�h), a family of dynamic equations
should be supplemented with the nonstationary Maxwell
equations. As a result, we obtain the developed dynamic
system with the multidimensional phase space. Because of
this, a variety of dynamic regimes can occur in the super-
conductor, which are of interest both theoretically and for
practice. In particular, it would be interesting to énd and
study the regimes with a deep modulation of the order
parameter caused by a comparatively weak modulation of
an external magnetic éeld of sound.

12. Concluding remarks

Until recently, the phenomena in which the Bose con-
densate of particles with a nonzero mass and laser radiation
would be the components of a single dynamic process have

not been discussed in the literature. Only very recently, the
assumptions were made that such a process can occur. The
studies of stimulated emission from a strongly overexcited
injection GaAs laser [89] revealed a number of interesting
and nontrivial circumstances, which were discussed in detail
at the scientiéc session of the Division of General Physics
and Astronomy of RAS [90]. A circumstance that is most
important for the topic considered here is that the stimu-
lated emission spectrum is shifted to the red compared to
the emission spectrum of a normally excited laser. Such
behaviour of the emission spectrum can be explained by the
fact that carriers in the overexcited semiconductor laser are
`pressed down' to the bottom of the corresponding bands.
Based on this fact and some other facts, which are des-
cribed in detail in papers [89, 90], the author of these papers
assumed that the Bose condensate was formed in the elec-
tron ë hole plasma of a strongly excited semiconductor [90].

The question of the possibility of Bose condensation of
photoexcited electron ë hole pairs in semiconductors has
been the focus of attention for the 20th-century scientists
[91 ë 94]. It has been found in these studies that the electronë
hole liquid produced upon powerful laser excitation is not
superêuid and has little in common with the Bose con-
densate of excitons. When the density of carriers is high and
the mean distance between them is smaller than the exciton
radius, the concept of an exciton as a particle has no sense.
However, when the density of nonequilibrium carriers is
high, we deal with a correlated state of the electron ë hole
plasma. In this case, similarly to a superconductor, the
correlation increases with increasing carrier density and
should appear at higher temperatures. There are two energy
branches in the valence band of GaAs, which correspond to
light and heavy holes with larger and smaller effective
masses. The appearance of the correlated state at nearly
room temperature is quite possible for the electron ë hole
plasma in GaAs consisting of light holes.

Let us emphasise once more that stimulated transitions
play a decisive role in the formation of the coherent Bose
condensate of any nature. We believe that these transitions
underlie the universal mechanism of spontaneous violation of
the symmetry in Nature [20, 21]. To do this requires only the
conditions under which the rate of the spontaneous process
of producing some object with characteristic properties
would exceed the rate of its decay. It is likely that stimulated
processes have played a crucial role in the formation of our
Universe, whose symmetry was violated in favour of elec-
trons and protons. A similar assumption can be made con-
cerning the origin of life with the left chirality of proteins.
Such assumptions have been discussed in the literature.

The self-organisation processes proceeding in nonlinear
systems have been already discussed over about twenty
years [95 ë 101]. A special term, synergetics, was even coined,
which uniées a variety of self-organisation processes. How-
ever, this term combines processes only by their superécial
properties. In our opinion, the mechanism inherent in all
self-organisation processes is stimulated transitions.

The study of global problems of the society development
attracts increasing current interest. One of the main objects
of discussion in paper [101] is the increase in the Earth
population. Based on the long-standing facts, the author
[101] obtained the seemingly paradoxical formula, which
explains a comparatively slow increase in the Earth popu-
lation in ancient times and its rapid increase in the 20th
century, and also predicts a rather strong slowing down of
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this process in the 21st century. It is likely that this and
other processes of the society development can be better
understood if the formal description of their dynamics is
based not on the Earth population as a whole and on its
separate parts but on the corresponding order parameter.
The squared modulus of the order parameter can be related
to the Earth population, while its phase will reêect various
public relations. The stimulated processes of the formation
of the order parameter of the society as whole and of its
separate parts should be undoubtedly taken into account.
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