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Interaction of whispering-gallery electromagnetic waves
with acoustic waves in tapered quartz rods

V A Sychugov, L N Magdich, V P Torchigin

Abstract. The propagation of whispering-gallery waves in a
dynamic cavity formed by a tapered quartz rod and the plane
interface between two regions of the rod with different refrac-
tive indices moving along the axis of the rod is analysed. It is
shown that the limiting frequency shift of light in such a
cavity is determined by its Q factor and the attainable re-
fractive index discontinuity. The possibility of using acoustic
waves for obtaining a dynamic cavity is considered.
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1. Introduction

In practice, it is often necessary to increase strongly the
frequency shift of an optical signal. The simplest way to do
this is to use the Raman—Nath acousto-optical diffraction
in which the rays diffracted to higher orders are displaced
by the frequency kf, k being the diffraction order and f the
frequency of sound. However, the efficiency of this method
of increasing the frequency shift is quite low. A higher
efficiency can be attained in the Bragg diffraction regime.
There are several ways of solving this problem [1-3].

For example, the fivefold increase in the frequency shift
in the Bragg diffraction regime using a single acousto-
optical (AO) cell was reported in paper [3]. According to the
esti-mates presented in paper [4], the frequency shift in the
AO cell proposed in this work may exceed 10°/. A tapered
quartz rod along whose axis an acoustic wave and a whis-
pering-gallery optical wave propagate is an example of such
a cell.

Because the construction of such a cell requires the
understanding of all finer details of the AO interaction, this
work is devoted to a detailed description of this process
assuming that the frequency shift is caused by the Doppler
effect and the total internal reflection of light from a moving
discontinuity of the refractive index.
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2. Propagation of whispering-gallery waves
in a tapered rod

Whispering-gallery waves in a dielectric rod are analogous
to the waveguide modes in a dielectric waveguide [5, 6] and
are characterised, like the waveguide modes, by the effective
refractive index n* and the specific transverse distribution
of the electromagnetic field. The effective refractive index
n* of the mode is expressed in terms of the angle of in-
cidence 0 of the light beam from inside on the cylindrical
surface of the rod (Fig. 1):

n*:nsin(g—%):ncos%, (1)

where N is the number of reflections experienced by the
light beam during a round trip in the rod, and n is the
refractive index of the material of the rod. Fig. 1b shows
the dependence of n* on the number N. For a large number
of reflections, this dependence can be approximated quite
well by the expression
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Figure 1. Trajectory of a light beam in the form of a whispering-gallery
wave in a cylindrical quartz rod (a); and the dependence of n* for a
whispering-gallery wave on the number of light beam reflections from the
surface of the rod (b).
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2
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The parameter /i is connected with N through the
relation

Rr’?

h:R(l—cos£> ~ N 3)

N

where R is the radius of the rod at the point where the light
beam enters it.

Whispering-gallery waves can be excited in a rod by
using a prism whose refractive index is higher than the
refractive index n of the material of the rod. When a light
wave is introduced into a cylindrical quartz rod at a certain
angle ¢ to the generatrix of the cylinder, a whispering-
gallery wave propagates in the rod along a helical trajectory
with a constant pitch of the spiral. Light also propagates
along a helical trajectory in a tapered rod, with the pitch of
the spiral decreasing with each turn until the light beam
reaches the point of inversion (turning point) and reverses
the direction of its propagation (Fig. 2). The turning point is
separated from the point of entry of light into the rod by a
distance

| —si
H:Rﬂ, 4)
tanvy

where 2y is the apex angle of the cone. Expression (4) was
obtained for whispering-gallery waves with n* close to the
limiting value, i.e., for N > 10%.

H

Figure 2. Excitation of the ‘multi-turn’ mode in a conical cavity.

Note here that we observed the helical trajectories of a
whispering-gallery wave in experiments with cylindrical and
tapered quartz rods of diameter between 10 and 1.5 mm,
and the cone apex angle 2y varying between 0 and 2°. The
whispering-gallery waves were excited by a He—Ne laser
(4 =10.63 um). For an appropriate choice of the angle ¢, the
backward propagation of the beam was also reliably ob-
served in tapered rods.

Our experiments confirm the validity of the geometrical
optics approach (approximation) for describing the process
under study. At the turning point, the whispering-gallery
wave moves along the normal to the generatrix of the cone.
The backward wave intersects the plane perpendicular to the

cone axis and passing through the point at which the light
beam enters the rod. If this plane is the boundary between
two regions of the rod with different refractive indices and
the beam is in the region with the higher refractive index, it
becomes localised under the condition that the angle ¢ is
larger than the critical angle associated with the refractive
index discontinuity An at the interface. In fact, a cavity is
formed for the whispering-gallery wave.

The type of the cavity mode is determined by the number
W of turns of the spiral, which a light beam must cross
during a single round trip in the cavity, as well as by the
number m of reflections experienced by the light beam from
the plane interface (discontinuity An). For example, Fig. 2
shows the trajectory of a light beam representing a mode
with four turns [W = (t — 2¢)/(2nsin )], while Fig. 3 shows
a mode with a single turn, but with six reflections from the
plane interface between media with different refractive
indices. The minimum possible angle of incidence ¢ of a
light beam for the cavity mode is defined by the disconti-
nuity An:

sin(pzl—g. (5)
n
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Figure 3. Trajectory of a beam representing a ‘single turn’ mode in a
conical cavity.

This relation allows us to present H in terms of An:

e RAn ©)

" ntany’

This expression can be used to estimate H from the para-
meters of the AO cell. For example, for An=107"*%, y =
1072, n=1.5,and R = 10° pm, we have H = 6.6 pm. If the
parameters of the AO cell are such that the relation y <
rr_l(ZAn/n)l/2 is satisfied, the cavity mode is a ‘single-turn’
mode. Otherwise, a multiple turn trajectory of the beam
corresponds to the mode. In the case of a ‘single-turn’
mode, the number m of reflections of the beam from the
plane boundary of the cavity can be estimated from the
equation

™y
= 7
" (2An/n)'? @

An important factor in the above analysis of conical
cavity modes is the ratio of the refractive index discontinuity
required for confining the ‘multiple turn’ mode in the cavity,
to the discontinuity required for confining the ‘single turn’
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mode:

An,,
An,,

= Wm?, ®)

from which it follows that An, is much larger than An,,.
For example, the ratio An,/An, =576 for the modes
presented in Figs 2 and 3 for identical y and n.

3. Dynamic conical cavity

Let us now assume that the interface between the regions of
a tapered rod with different » moves with a velocity v into
the cone, i.e., towards the turning point of the light beam.
Consider the behaviour of a whispering-gallery wave exci-
ted in such a cavity. First of all, the frequency v of light will
increase according to the Doppler effect when light is ref-
lected from the moving interface:

v:v0<1+@c0s¢>, )
¢

where ¢ is the velocity of light in the quartz rod.

Let us estimate the frequency shift of the whispering-
gallery wave during its lifetime in a dynamic cavity. Let us
assume that this time is 7= 1 ps [7], while the velocity
v=6x10"cm s

We will first estimate the frequency shift for a ‘single
turn’ mode during its motion into the cone due to reflection
of light from the moving plane interface between the media.
The angle of incidence of light on this interface is ¢ = n/2—
ny/m, where m is the number of reflections from the plane
boundary during a round trip in the cavity. After each ref-
lection, the relative frequency shift is

Av 2
— =—cosS R
c cm

= &ﬂ (10)

while for one circumvention (one turn) of light, we obtain
Av/v = 2umy/c. The number of such turns in time ¢ is W =
tc/(2mR).

Therefore, the total shift is

vty

Ay =
v vR,

)

where 2R = Ry + R,, Ry and R, being respectively the radii
of the rod at the points where the beam enters and leaves it.
For the case mentioned above (R=0.1 cm, y =102, t =
107% s, and v =6 x 10° cm s~ '), this estimate gives Av/v =
6x 1072

Note that an explicit dependence of the frequency shift
on the angle y can be obtained in this case. It follows from
this dependence that for a fixed lifetime ¢ of photons in the
cavity, an increase in the frequency shift of whispering-gal-
lery waves can be attained by increasing the cone apex angle
2y of the rod. One should remember, however, that such a
variation in the angle y leads to a corresponding increase
(~7?) in the value of An.

During the analysis of the frequency shift of the
whispering-gallery waves in a dynamic cavity, the possibility
of the steady-state propagation of light beyond the turning
point for the light beam was not considered. How is such a
process possible? In the first place, it is possible because light
is reflected from a moving mirror in a different manner than

from a stationary mirror. For a stationary mirror, the angle
of reflection of light is equal to the angle of its incidence on
the mirror. For a moving mirror, these angles are not equal:
the angle of reflection of light from the mirror moving
towards the beam is smaller than the angle of incidence of
light on this mirror [8]. Fig. 4a shows the pattern of ref-
lection and the angles corresponding to this process. The
angles @;, are defined in the reference frame of the mirror
and are connected with each other through the equality
®; = ¢,. The angles ¢; ; are defined in the reference frame of
the observer and are connected with ¢;, through the fol-
lowing relations:

o sin ¢;
1+ (v/c)cos ¢’

o sin @,
1 —(v/c)cosop,’
(12)

sin @, =

sin @; =

Figure 4. Diagram of reflection of light from (a) a moving mirror and (b)
a moving discontinuity An.

Consider how these relations can be used to describe the
propagation of a light beam beyond the turning point.

Fig. 4b shows the diagram of two successive reflections
of a light beam in a dynamic conical cavity. The arcs in
Fig. 4b indicate the position of the discontinuity An at two
different instants of time #; and ¢, (¢; — ¢, = 7). The broken
line shows the beam trajectory. The path of the beam from
one reflection to the next is given by

H H

AF +FB =
tan @,

=cT. 13
tan ¢; “ (13

The path length of the discontinuity An (of the moving
mirror of the cavity) is

L L " a v
— = — — — = vurT.
! 2" sin @, sing;

(14)

Expressions (13) and (14) give the relation between the
angles ¢; and ¢

v sin@; — sin @,
- =" (15)
¢ sin(g;+¢,)

Obviously, the relation obtained here must conform to
the laws of reflection of light. Indeed, it can be easily verified
using expression (12) that relation (15) describing the pro-
cess of penetration of a light beam into a cone (beyond the
turning point) becomes an identity. This means that the be-
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haviour of the light beam beyond the turning point can be
described as follows: for a uniform motion of the disconti-
nuity An, the light beam propagates in a dynamic conical
cavity along a helical trajectory into the cone, the pitch of
the spiral being constant and determined by the velocity v of
motion of the discontinuity An. An illustrative representa-
tion of the process described here is the motion of a surfer
over the sea waves—slow towards the beach and fast along
the crest of the wave.

In conclusion of this section, note that a mode in a
conical cavity occupies a space of volume

R%h An
tany n

V=2n , (16)

where /1 is the transverse size of the mode (along the radius).
If ¢ is the time of AO interaction, the change in the mode
volume during this time is

ttany I
Vo—V, = AV =2V," dn’zzvo‘%, (17)
which gives
AV AS
Ay — — 1
Y7 TN (18)

Here S = V/h is the area of the conical surface confining
the cavity mode. The form of expression (18) suggests that
it also remains valid for the ‘multiple turn’ mode of the
cavity.

4. Realisation of a dynamic cavity

The possibility of generating a powerful shock wave inside
cylindrical rods made of various metals was demonstrated
earlier in paper [9]. The shock wave is generated upon irra-
diation of the end of the rod by 10—20-ns laser pulses at a
wavelength which is absorbed strongly in the material of
the rod. A rapid surface heating of the rod generates a com-
pression—dilatation wave propagating along the rod at the
sound velocity. The motion of the wave front is accom-
panied by a refractive index discontinuity determined by the
laser pulse energy and, in the limiting case, by the strength
of the material of the rod.

Such a refractive index discontinuity can be created ea-
sily in a tapered quartz rod, and it is quite possible to realise
a dynamic cavity in it. Note here that in actual practice the
duration of the discontinuity An is not infinitely small,
hence, it is very important to find out its effect on the total
internal reflection of light at this discontinuity. We assume
that the refractive index in the cone varies linearly along its
axis. This dependence can be described approximately by
two equal refractive index discontinuities. Let d be the thick-
ness of the layer with the refractive index n — An/2. Con-
sider now Fig. 5 showing the development of the surface of
a cone into a plane. The trajectory of a whispering-gallery
wave is shown in this development with a broken line with
kinks at the boundaries of the layer of thickness d. One can
easily see that the angle y of reflection of the wave from the
outer boundary of this layer depends on its thickness d. For
a sufficiently large thickness d, the angle  may become smal-
ler than the total internal reflection angle ., = arcsin|[(n —
An)/(n — An/2)]. Our estimates show that the limiting thick-

ness of the intermediate layer is given by

4RAn
lim ~ ; = 4H (19)
ntany
@
¥
n ’;) d |e X
An AN
\
\ An/2
) -
I X

Figure 5. Total internal reflection of light in a tapered rod with an
intermediate insulating layer.

This means that the length of the discontinuity An
should not differ significantly from the mode size in a
conical cavity with an instantaneous discontinuity of the
refractive index. For An= 1074 y = 10’2, n=1.5 and
R =10 pm, the thickness o is found to be only 27 pm.
The duration of this discontinuity is Az = d/v, i.e., has the
value 4.5 ns in the example considered.

Because of the use of high-power laser radiation for
obtaining the discontinuity An, a finite-sized region with a
higher refractive index moves inside the cone. We have
estimated above the admissible thickness d of the inter-
mediate part of this region. However, the existence of the
mode in the dynamic cavity is ensured not only by the
reflection of light from the intermediate (or discontinuity)
part of the region with a higher refractive index, but also by
the reflection of light from the conical surface of the rod,
i.e., by the passage of light through the turning points.

If the turning points of the whispering-gallery wave lie
outside the higher refractive index region, light will be
reflected at the second intermediate region, i.e., in the mo-
ving region of decrease of the refractive index. In this case,
the whispering-gallery waves will not shift. This means that
the length of the moving ‘steady-state’ part of the region
with the higher refractive index should exceed the size of the
mode that has already been defined [see formula (3)]. The
following estimate seems to be quite reasonable for the
parameter D, i.e., the length of the ‘steady-state’ part of the
discontinuity region An:

D >=2H. (20)

If this relation is satisfied, the length of the region of
decrease in the refractive index will have no effect what-
soever on the frequency shift of the whispering-gallery wave.

In connection with estimates presented above, the que-
stion arises of whether the frequency shift of the whispering-
gallery waves can be obtained by using acoustic waves that
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cause a periodic variation in the density of the medium and,
hence, its refractive index. The above analysis of the re-
quired spatial and temporal dependences of the discontinui-
ty An can be used to estimate the acoustic wavelength re-
quired for obtaining the frequency shift of whispering-gal-
lery waves. This estimate is expressed by the relation

A~ 10H. @

It follows from (21) that in our case (An = 1074, y = 1072,
n=15, R=10°pm), the acoustic frequency is f= 90
MHz.

As an acoustic wave propagates along a cylindrical
quartz rod, a set of layers with a higher refractive index is
formed inside the rod, alternating with an identical set of
layers with a lower refractive index. The thickness of these
layers is equal to half the acoustic wavelength. The cylin-
drical layer with a higher refractive index for whispering-
gallery waves is a channel waveguide, while the set of such
layers constitutes a family of channel waveguides.

If a whispering-gallery wave is excited in one of the
waveguide channels, the light propagating along this wave-
guide will spread along all other channel waveguides. Such a
spreading of light is caused by the tunnel coupling of the
waveguides with one another. The intensity of light in the
initially excited waveguide depends on the coordinate as:

1(z) = J§(2Kz)e ™, (22)
where Jy(z) is a zeroth-order Bessel function; K is the
coupling coefficient between two adjacent waveguides; and
o is the light attenuation coefficient in the waveguide.
Assuming that « = 0, we find that the intensity of light in
the waveguide decreases by a factor of 20 for 2Kz = 13.2.
This is equivalent to a decrease in the lifetime of light in the
cavity, which determines the frequency shift of the
whispering-gallery waves (see above).

Let us estimate the quantity K in our case (An = 107%,
y=10"%,n=15R=10° ym, f= 90 MHz, and A = 1 pm).
Because the field of a whispering-gallery wave is localised at
the surface of the quartz rod (in a layer of thickness /& =
//n), a good approximation of the system of channel wave-
guides formed by the acoustic wave is a system of rectan-
gular channel waveguides in a quartz layer of thickness / in
contact with air. Let us assume that the width of channel
waveguides and the interval between them are equal to A/2.
In this case, we obtain according to [10], K = 0.05 em L.

If the signal at the shifted frequency with the intensity
lowered by a factor of 20 can be detected experimentally, the
attainable frequency shift Av/v will be equal to 4 x 1074,
This frequency shift is more than 1000 times larger than the
shift caused by the single Bragg diffraction of light from an
acoustic wave. Note here that the coupling coefficient
decreases significantly with increasing An. For An = 1077,
for example, the coefficient K = 1.6 x 1073 em™', and this
corresponds to a threefold decrease in the loss of light in the
cavity as compared to the initial losses (when 7 =1 ps).

In our first experiments on the measurement of the
discontinuity An produced by an acoustic wave, we used
cylindrical quartz rods of diameter 2 mm and sound sources
(f=40 MHz) based on LiNbO; plates operating in the
pulse mode. It was shown that for an electric power of
60 W, a change in the refractive index at the level An ~ 10~*
was detected in the rod at a distance of 40 mm from the
sound source.

To demonstrate the interaction between the whispering-
gallery waves and acoustic waves, we carried out an
experiment whose schematic diagram is shown in Fig. 6.
A cylindrical quartz rod of diameter 10 mm and length
60 mm was used in the experiment. An annular piezoelectric
sound source, which was fixed to one of the ends of this rod,
generated an acoustic wave adjoining the side surface of the
rod. The opposite end of the rod was skewed for eliminating
the reflected acoustic waves. The central acoustic frequency
was 40 MHz, while the bandwidth of the piezoelectric
transducer was up to 20 MHz. A whispering-gallery wave
was excited with the help of a prism (n = 1.75) in such a
way that the light beam was directed towards the acoustic
wave front at the Bragg angle 6. Light diffracted from the
acoustic wave was extracted with the help of the same
prism. The frequency dependence of the intensity of the
diffracted light was measured and a sharp resonance depen-
dence of the efficiency & of the Bragg diffraction was ob-
served. This efficiency at the peak of the resonance curve
was estimated as ¢ = 50 % for an electric power of 1 W at
the transducer.

-
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Figure 6. Experimental setup for the Bragg diffraction of a whispering-
gallery wave in a cylindrical rod.

Note that a quite high efficiency of the Bragg diffraction
of light in our experiment is determined first of all by the
concentration of the acoustic energy near the surface of the
rod. An extremely high concentration of energy near the
surface and, hence, an extremely high efficiency of the AO
interaction can be expected by producing the frequency shift
of whispering-gallery waves with the help of surface acoustic
waves (SAW) whose penetration depth into the substrate is
close to the wavelength of sound in it.

For the acoustic frequency f'= 90 MHz, the wavelength
A in quartz rods is 67 um. Because it is rather difficult to
create a piezoelectric transducer for SAW on the conical
surface of a quartz rod another approach is preferable for
increasing the efficiency of the AO interaction. This
approach is based on the use of quartz rods of a small
diameter (~ 24). In this case, the efficiency of interaction
using SAW and bulk acoustic waves is virtually identical.
The problem of exciting bulk waves of quite high power in a
quartz fibre of diameter ~ 300 pm can be solved by using
different types of concentrators. For example, focusing of a
plane acoustic beam of diameter 10 mm at the end of a
tapered optical fibre (0.3 mm) not only increases the
efficiency of AO interaction significantly (by a factor of
~10%), but also the range of frequency shift due to an
increase in the discontinuity An.
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Thus, the above analysis of the propagation and confine-
ment of light in a dynamic cavity formed by a moving dis-
continuity of the refractive index in a tapered quartz rod,
and obtaining of the Bragg diffraction of light in a quartz
rod show that a considerable frequency shift of the whispe-
ring-gallery waves is possible and is determined by the life-
time of photons in this cavity and the maximum possible
refractive index discontinuity.
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