
Abstract. Fast approximate statistical nonlinear algorithms
(capable of real-time operation) for solving direct and inverse
problems in the diffusion optical tomography are described.
These algorithms were tested by reconstructing a rather com-
plicated internal structure (containing up to three strongly
absorbing inclusions no smaller than 5 mm in size) of strongly
scattering and weakly absorbing large (up to 140 mm) model
objects (with scattering and absorption coefécients equal to
1.4 and 0.005 ë 0.015 mmÿ1, respectively). Experiments were
performed using cw radiation of low-power diode lasers (with
input power below 20 mW) in the near IR range (between 770
and 820 nm).
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1. Introduction

Optical tomography (OT) has been developed quite actively
in recent years as a new trend in diagnostics. In the OT
technique, the object to be diagnosed (henceforth, referred
to as the object) is `illuminated' repeatedly (for various
positions of the radiation source and the detector, labelled
by the subscripts i and j, respectively) by the input near-IR
radiation with known characteristics. These characteristics
are the power or energy of the input pulse (from a cw or
pulsed source), the duration and the instant of `incidence' of
the pulse on the object, etc. The characteristics of the out-
put radiation such as the power or energy of the output
pulse, its shape and its delay relative to the pulse at the input
to the object, etc., are measured for all values of i and j.

Measurements for different values of i and j are per-
formed either successively (`scanning') or simultaneously
(using multichannel photodetectors and/or radiation sour-
ces). The resulting two- or four-dimensional matrix of the
output data describes discretely the output radiation char-
acteristics in terms of one (xi; xj) or two (xi; yi and xj; yj)
independent coordinates x, y at the surface of the object.
The total number of elements of this matrix (N 2 or N 4) is
determined by the total number of the positions i; j � 0;

1; ::: ;Nÿ 1 used for the radiation source and the detector.
The output data matrix is then used to reconstruct the inter-
nal structure of the object, i.e., the so-called inverse problem
is solved. The role of the physical parameters whose spatial
distributions are determined (reconstructed) at this stage is
played by the absorption and scattering coefécients ma and
m 0s, the shape of the scattering indicatrix (the anisotropy
parameter g), etc.

It is extremely difécult to solve the inverse problem un-
der the conditions of multiple scattering (the average num-
ber of scattering events for photons passing through an
object of size � 120 ë 150 mm may be as large as 103 or
more). However, in the case of small-angle scattering [1 ë 5],
some of the detected photons have propagated from the
point i to the point j almost along rectilinear trajectories [6,
7]. The algorithm for solving the inverse OT problem for
such photons can be reduced to the well-studied algorithms
used for solving the inverse problem of projection X-ray
tomography [8, 9].

For this purpose, we must use certain criteria to select
out of the total êux of the photons being detected only a
small (`useful') part associated with photons that have
passed through the objects along a quite deénite type of
trajectories (usually, the shortest ones or trajectories of a
given length). The existing modiécations of the OT techni-
que differ just in the methods used for such a selection,
which are realised in the so-called time-domain [10 ë 12],
coherent [13 ë 16] and the frequency-domain [17 ë 20] OT.

Note that the use of only a small part of the total êux of
photons passing through an object inevitably leads to a
sharp decrease in the useful signal and to an increase in the
errors. This connects the minimum required power of the
input laser radiation (minimum input photon êux), max-
imum possible size of the object being diagnosed, the
minimum time for measurements, and the limiting spatial
resolution.

The development of the so-called diffusion OT, in which
the entire photon êux passing through the object is detected,
allows a considerable simpliécation and cost-reduction of
the tomography equipment. An increase in the output signal
results in a drastic decrease in the time of measurements and
an increase in the maximum admissible size of the objects
being diagnosed. However, the main `responsibility' of
recovering information about the internal structure of the
object in this case lies on the algorithms for solving the
inverse problem, which should be applicable under con-
ditions of multiple scattering.

In the currently available methods of solving the inverse
problem (the diffusion equation method [21, 22], the Bayes
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method [23, 24], the gradient iterative techniques [25, 26],
the `mean trajectories' method [27 ë 29], etc.), the time of
reconstruction of the internal structure of the object in-
creases drastically for objects of size � 150 mm, when the
number of scattering events attains the value � 103 or more.
Because the equipment used for tomography allows the
necessary measurements to be completed in just a few
minutes [30 ë 32], it is necessary to develope approximate
algorithms allowing the reconstruction of the internal struc-
ture of the object for nearly the same time.

In this work, we consider one of the fast approximate
nonlinear statistical algorithms for solving direct and inverse
problems of diffusion OT, and present the érst results of its
experimental veriécation.

2. First iteration of the algorithm
for fast solution of the inverse problem

For a fast reconstruction of the internal structure of an
object, an approximate nonlinear statistical algorithm was
proposed in Refs. [30 ë 32] for solving the inverse OT
problem. In this algorithm, it is assumed that the difference
in the photon êuxes of the output radiation F�1�i;j in the
absence of spatial inhomogeneities (absorbing and/or scat-
tering `inclusions') and Fi;j in the presence of such inhomo-
geneities is due just to their emergence. It is assumed that
the probability P

�1�
i;j of énding inclusions in an object from

the results of the i, j measurements is proportional to
F�1�i;j ÿ Fi;j, while the spatial distribution of P

�1�
i;j is deter-

mined by the three-dimensional probability density p
1� �
i;j (r) /

P
1� �

i;j f
1� �

i;j r� �, where f
1� �

i;j (r) is the three-dimensional distribu-
tion of the probability of passing through a point with
coordinate r in the object for photons detected in the i, j
measurements. The reconstructed internal structure is de-
scribed by the complete three-dimensional distribution of
the probability p

�1�
S (r) of énding the inclusions at various

points in the object, which is deéned in terms of the productQ
i;j P

�1�
i;j f

�1�
i;j (r) from the results of N 2 or N 4 (see above)

independent measurements (`realisations'). The information
required a priori for the working of the algorithm [F�1�i;j and
f
�1�
i;j (r)] is also calculated approximately by using the fol-
lowing empirical (in real or numerical experiments) depen-
dence for `spatially homogeneous' objects (in the absence of
inclusions, for ma; m

0
s � const):

F�1�i;j !PLÿ2i;j exp�ÿmaxLi;j� (1)

and by taking into account the possibility of scaling of the
unique `standard' three-dimensional distribution fL(r) by
varying the separation Li;j between the radiation source and
the detector. Here, P is the power of the input radiation,
x � x(ma; m

0
s) is a parameter describing the `average

elongation' of the trajectories of the photons being detected
relative to Li;j; and fL(r) is the three-dimensional distribu-
tion of the probability of passage of photons through a
homogeneous object, L being the separation between the
radiation source and the detector. For spherical and cylin-
drical objects subjected to diagnosis, Li;j � 2R� sin (ai;j=2),
where R is the radius of the object and ai;j is the central
angle between the positions of the radiation source and the
detector.

Fig. 1 shows the schematic diagram of the algorithm for
a fast approximate computation of f �1�i;j (r). The three-dimen-
sional distribution fL(r) is calculated by the Monte Carlo

method and is approximated by the three-dimensional
distribution with Gaussian cross sections (`standard
three-dimensional distribution approximation' block). The
`scaling' and `rotation' blocks execute the necessary geo-
metrical transformations of the results of approximation,
recalculating fL(r)! fLi;j

(r) for L! Li;j and `connecting' the
beginning and the end of each of the obtained three-
dimensional distributions f

�1�
i;j (r) with the points i and j.

Because the Monte Carlo simulation carried out by us
showed that for ai;j 6� 1808, the axes (`generatrices') of the
three-dimensional distributions f

�1�
i;j (r) deviated from

straight lines connecting the points i and j due to the
boundary conditions, such deviations were taken into
account by the `generatrix shape correction' block, which
performed the required `bending' of the three-dimensional
distributions f

�1�
i;j (r). The shape of their generatrices is

deéned by parabolas whose `deêection' depends on ai;j.

Finally, the `three-dimensional distribution normalisa-
tion' block performs the énal transformations of f �1�i;j (r) by
normalising the photon êux detected in each cross section
(perpendicular to the genereatrix) of f

�1�
i;j (r) to a constant

deéned by formula (1). The results of the algorithm ope-
ration, which requires not more than 30 s for obtaining an
array of 1024 three-dimensional distributions (04 i; j4 31)
on a PIII-800 PC, are presented in Fig. 2 showing the results
of `exact' (Monte Carlo) and approximate calculation of
f
�1�
i;j (r) for a � 1808 and 908.

3. Second iteration of the algorithm
for fast solution of the inverse problem

The experimental veriécation of the fast approximate
statistical algorithm described above was reported earlier
in Refs [30 ë 32] by reconstructing the position and shape of
a strongly absorbing inclusion of diameter down to 5 mm
in a strongly scattering model object of diameter up to
140 mm. This algorithm is found to be equally `successful'
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Figure 1. Algorithm for approximate calculation of three-dimensional
distributions f �1�i;j (r) for a strongly scattering `spatially homogeneous'
object.
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in solving the problem of reconstructing the internal
structure of an object containing two or three strongly
absorbing inclusions of the same size (Fig. 3). However, our
subsequent experiments showed that the above algorithm
was no longer efécient even in the simplest case when the
model object contained two strongly absorbing inclusions
of different sizes. This is due to the nonlinearity associated
with the description of the reconstructed internal structure
of the object by the three-dimensional probability density
p
�1�
S (r) /Qi;j P

�1�
i;j f

�1�
i;j (r) of énding the inclusions for diffe-

rent values of r. It is this nonlinearity that leads to the
classical `impasse' situation for nonlinear problems in which
the `winner takes all', and only the most `salient' features of
the internal structure of the object are reconstructed.

The above diféculty can be removed by introducing the
second iteration in the algorithm proposed in Refs. [30 ë 32]
for solving the inverse problem. The internal structure of the
object p�1�S (r) reconstructed at the érst iteration (obtained in
accordance with the algorithm described above) is used for
the fast approximate computation of a priori information
F �2�i;j and f

�2�
i;j (r) for the second iteration. It is assumed that

the difference in the photon êuxes of the output radiation in
the presence of the reconstructed parts p

�1�
S (r) (F �2�i;j ) of the

internal structure and (Fi;j) in the real experiment is due only
to the reconstruction errors, and the total probability of
énding such errors in the i, j measurements is P

�2�
i;j /

F�2�i;j ÿ Fi;j.
It is assumed that the spatial distribution of P

�2�
i;j is

determined by the three-dimensional probability density
p
�2�
i;j (r) / P

�2�
i;j f

�2�
i;j (r), where f

�2�
i;j (r) is the three-dimensional

distribution of the probability of the passage of photons
detected in the i, j measurement through a `spatially inho-
mogeneous' (ma; m

0
s 6� const) object with an internal struc-

ture deéned by the three-dimensional distribution of p�1�S (r).
The details of the internal structure reconstructed at the

second iteration are described by the total three-dimensional
probability density p

�2�
S (r), which is also determined from all

the N 2 or N 4 (see above) measurements through the pro-
duct

Q
i;j P

�2�
i;j f

�2�
i;j (r). In the iterative algorithm for the recon-

struction of the internal structure of an object, the structure
is described by a linear superposition pS(r) � p

�1�
S (r)�p�2�S (r),

while the solution of the inverse problem is transformed
only insigniécantly (Fig. 4). Further iterations can be in-
cluded in the above-mentioned algorithm if required.

4. Algorithm for fast solution
of the direct problem

However, the realisation of the iterative algorithm for
solving the inverse problem according to the scheme
described in Fig. 4 requires a fast computation of a priori
information F�2�i;j and f

�2�
i;j (r) for the second iteration. In

other words, we should `learn' to solve the direct OT pro-
blem quickly. It turns out that the possibility of scaling of
the three-dimensional distributions in a homogeneous ob-
ject allows the construction of a fast algorithm for appro-
ximate solution of this problem also in the case when the
strongly scattering object subjected to diagnosis contains
absorbing inclusions. Fig. 5 illustrates the scheme of such
an algorithm, which is a natural extension of the `excision'
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Figure 2. Results of the exact Monte Carlo (a, c) and approximate (b, d)
calculations of three-dimensional distributions f �1�i;j (r) for a strongly
scattering `homogeneous' object. The depth of darkening is proportional
to the probability of passage of the detected phonons; the central angle
ai;j between the positions of the radiation source and the detector is 180
(a, b) and 908 (c, d).

a

24

c

b

8

14

160

25 24

y
�
cm

6

3

0

ÿ3

ÿ6

y
�
cm

6

3

0

ÿ3

ÿ6

y
�
cm

6

3

0

ÿ3

ÿ6
ÿ6 ÿ3 0 3 x

�
cm

8
10

160

22

8
10

0 16

24

Figure 3. Reconstructed inner structure p�1�S (r) of a model object of
diameter 140 mm (left) and the corresponding experimental geometry
(right) for two (a, c) and three (b) strongly absorbing inclusions of
identical (a, b) and different (c) diameters. The depth of darkening is
proportional to the logarithm of the absorption coefécient, and the
numbers on the circles correspond to the values of i or j.
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method proposed in Refs [30 ë 32] and is based on the
linearity of the initial problem.

The probability for the detected photons to pass through
any cross section of any three-dimensional distribution fi;j(r)
is always the same because these photons were obviously not
absorbed. Therefore, the appearance of a strongly absorbing
inclusion in a homogeneous object will result in the
absorption of a certain part DF�1�i;j;1 of the photon êux
F�1�i;j , which therefore, will not be detected in the i, j mea-
surement. In the érst approximation, the relative fraction of
the `vanishing' part DF�1�i;j;1=F

�1�
i;j of the êux F�1�i;j in each di-

mension can be determined by `excising' the appropriate
part (three-dimensional distribution of the `shadow') f �1�i;j;1(r)
of the corresponding cross sections f

�1�
i;j (r).

If the object contains n > 1 absorbing inclusions, the
computational algorithm becomes somewhat more compli-
cated and acquires an iterative form. While calculating the
relative fraction DF�1�i;j;k=F

�1�
i;j;kÿ1 of the part excised by the kth

inclusion from the êux F�1�i;j , which should arrive at the
photodetector in the i, j measurement, we use the êux

F�1�i;j;kÿ1 � F�1�i;j ÿ
Xkÿ1
m�1

DF�1�i;j;m

and the three-dimensional distribution

f
�1�
i;j;kÿ1(r) � f

�1�
i;j (r)ÿ

Xkÿ1
m�1

Df �1�i;j;m(r),

corresponding to the same measurement in the case of a

homogeneous object for the (kÿ 1)th inclusion. For the
sake of uniécation of the system of notation, it was
assumed above that F �1�i;j;0 � F �1�i;j and f

�1�
i;j;0(r) � f

�1�
i;j (r).

While employing the above-mentioned iterative algo-
rithm for an approximate solution of the direct problem, we
must determine for each set of i, j the sequential order of all
n > 1 inclusions and carry out successive approximate com-
putations of the three-dimensional distributions D f

�1�
i;j;k(r)

(14 k4 n) of the `shadows' corresponding to these inclu-
sions. The diffusive nature of photon propagation in the
object is taken into account in the calculation of D f

�1�
i;j;k(r).

As a matter of fact, the above-mentioned possibility of
geometrical scaling of the same `standard' distribution fL(r)
is used in this case. For each iteration during all the
transformations, the photon êux F �1�i;j;k being detected is
maintained constant in all cross sections of the correspond-
ing three-dimensional distributions f

�1�
i;j;k(r).

Fig. 6 shows the result of the algorithm operation, which
takes less than two minutes on a PIII-800 PC for the
formation of arrays of 1024 (04 i; j4 31) êuxes F �2�i;j �
F �1�i;j;3 and three-dimensional distributions f �2�i;j (r) � f

�1�
i;j;3(r) in

an object with three inclusions. One can see that the results
of `exact' (Monte Carlo) and approximate computations of
the three-dimensional distributions f �2�i;j (r) for an object with
a strongly absorbing inclusion are in fairly good agreement
for ai;j � 1808. The êux distribution F �2�i;j for the detected
photons obtained in a real experiment for an object with
three strongly absorbing inclusions is consistent with the
results of approximate calculations.

5. Reconstruction of the `éne' details
of the internal structure of an object

The reconstruction of the internal structure of a strongly
scattering homogeneous object (i.e., the three-dimensional

Computation of pS�r� � p
�1�
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�2�
S �r�

Processing of the experimental data

matrix Fi;j

Reconstruction of the internal structure

of the object p�1�S �r�

Processing of the reconstructed
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Computation of a priori information

F�2�i;j and f
�2�
i;j �r�

Evaluation of the matrix of deviations

F�2�i;j ÿ Fi;j

Reconstruction of the internal structure

of the object p�2�S �r�

Figure 4. Iterative algorithm for solving the inverse problem for a
strongly scattering object with a complex internal structure.
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Figure 5. Algorithm of approximate computation of three-dimensional
distributions f �1�i;j;k(r) for a strongly scattering `inhomogeneous' object
with a complicated internal structure (i and j correspond to the input and
output points for the radiation; k is the inclusion number).
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distribution pS(r) of the probability of énding inclusions)
with two strongly absorbing inclusions of noticeably
different sizes from an array of 1024 (04 i; j4 31)
measurement of êuxes Fi;j takes less than two minutes
on a PIII-800 PC with the help of the above-mentioned
iterative algorithm. Fig. 7 shows the results of such a
reconstruction based on the data obtained in real experi-
ments. One can easily verify that only the `image' of the
larger inclusion is observed in the reconstructed three-
dimensional distribution of p�1�S (r) at the érst iterative stage
of the algorithm. However, the image of the smaller
inclusion also appears in the reconstructed three-dimen-
sional distribution of p

�2�
S (r) at the second iteration. The

image of the larger inclusion is almost completely `sub-
tracted' at this stage, which indirectly conérms the high
degree of accuracy of the approximate computational tech-
nique employed by us.

6. Conclusions

We are certainly not in a position to provide a rigorous
substantiation of the fast approximate statistical nonlinear
algorithms (capable of real-time operation) described above
for solving the direct and inverse problems of diffusion OT.
However, we believe that the schematic construction and
the structure of these algorithms reêects quite clearly the
probabilistic nature of the propagation of photons through
strongly scattering objects of size larger than the so-called
transport scattering length (m 0s)

ÿ1.
The above results of testing these algorithms by con-

sidering the reconstruction of rather complicated internal
structures (as compared to those considered in Refs [30 ë
32]) (up to three strongly absorbing inclusions of size at least
5 mm) of strongly scattering and weakly absorbing objects
(the scattering coefécient m 0s � 1:4 mmÿ1 and the absorp-

tion coefécient ma � 0:005ÿ 0:015 mmÿ1) of quite a large
size (140 mm) also conérm the eféciency of these algo-
rithms. It is important from the practical point of view that
we used in all experiments inexpensive low-power (input
power below 20 mW) cw diode lasers emitting in the near IR
range between 770 and 820 nm.
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