
Abstract. The operating of a two-frequency Nd 3� : YAG
laser with a phase-anisotropic cavity upon intracavity SHG
(ICSHG) is considered theoretically and experimentally. It is
shown that for an appropriate choice of the cavity
conéguration, an intensity-stabilised two-frequency lasing
mode may be obtained at the érst (1.064 lm) and second
(0.532 lm) harmonics, with the mode interval changing
continuously over a broad range.

Keywords: two-frequency laser, stable two-frequency lasing, mode
interval.

1. Introduction

Intensity-stabilised two-frequency lasers with controlled
lasing frequencies are being used at present for carrying
out a number of fundamental physical experiments and for
solving some applied problems [1 ë 3]. Semiconductor-pum-
ped Nd 3� : YAG lasers with intracavity SHG (ICSHG) can
occupy a special place among such lasers. In particular,
such lasers can be used for developing two-wave laser
diagnostic systems, laser communication systems, laser
interferometers, and optical frequency standards.

In the general case, when a nonlinear crystal (frequency
doubler), which is made of a birefringent material and is
therefore a phase-anisotropic element, is inserted in a cavity,
the spectrum of the initially phase-isotropic cavity is split
into two spectra of modes with mutually orthogonal pola-
risations. For an appropriate choice of the optical length of
the cavity, when the gain dominates over the loss, the érst-
harmonic generation at l1 � 1:064 mm can be obtained at
two adjacent modes with frequencies o1 and o2 with
mutually orthogonal polarisations. In this case, the second
harmonic generation at l2 � 0:532 mm will occur at three
components with frequencies 2o1, 2o2, and o1 � o2 with
parallel polarisations.

According to the results of previous investigations [4 ë 8],
the presence of a component with the sum frequency
o1 � o2 gives rise to irregular pulsations in the output

laser beam at the érst and second harmonics. This is due to
uncorrelated intensity êuctuations of individual modes. In
order to suppress êuctuations, some authors (see, for
example, [5 ë 7]) proposed to place a quarter-wave plate
in the cavity whose optical axes are oriented at 458 relative
to the optical axes of the frequency-doubler crystal. In this
case, however, intensity-stabilised lasing at the two har-
monics can be obtained for an arbitrary phase anisotropy of
the frequency-doubler crystal only for éxed mode intervals:
c=4L0 at the érst harmonic and c=2L0 at the second
harmonic (c is the velocity of light in vacuum and L0 is
the optical length of the cavity).

This work aims at the development and creation of a
semiconductor-pumped intensity-stabilised two-wave
Nd 3� : YAG laser with ICSHG and the frequency difference
between the érst and second harmonics varied over a broad
range (almost, from zero to the maximum possible mode
intervals c=2L0 and c=L0). The stability of such a lasing
mode upon the variation of the cavity parameters is also
estimated.

2. Basic concepts

To solve the above-formulated problem, we propose a
conéguration for the cavity whose optical scheme is shown
in Fig. 1. Two mirrors ( 1 ) and ( 5 ) highly reêecting the
érst-harmonic radiation, form the cavity. An isotropic
active element ( 2 ), a frequency-doubler crystal ( 3 ) with the
phase incursion difference j2 between the ordinary and
extraordinary rays, and a phase-anisotropic element ( 4 )
with the phase incursion difference j2 between the ordinary
and extraordinary rays are placed between the mirrors
along the optical axis. The construction of the cavity
envisages the possibility of changing the phase incursion
difference j2 and the mutual orientation of the optical axes
of elements ( 3 ) and ( 4 ), which is speciéed by angle y.

To énd the beam intensities at the érst and second
harmonics and mode interval, we should consider the Jones
polarisation matrix for a round trip over the cavity and énd
the eigenvectors and eigenvalues of this matrix [10].

For the cavity under study, the round-trip matrix in the
region between the left mirror and the frequency-doubler
crystal has the form

A � RF1S�y�F2RF2S�y�F1, (1)

where R is the matrix of reêection from the mirror; S(y) is
the matrix of rotation through angle y; and F1 and F2 are
the matrices of the frequency-doubler crystal and the phase-
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anisotropic element with the phase difference j1 and j2,
respectively. The speciéc form of the matrices appearing in
Eqn (1) can be found, for example, in paper [9].

Having solved the problem of the eigenvectors and
eigenvalues of the matrix A, we can énd the vectors of
electromagnetic éelds of two orthogonally polarised modes
E1 and E2, the frequency difference between adjacent
modes, and the second-harmonic radiation intensity.

In the general case, the mode spectrum for a phase-
anisotropic cavity consists of equidistant pairs of modes
with different polarisations with the mode interval o12 and
period c=2L0. In this paper, we are interested only in the
two-frequency lasing and, hence, we will consider the lasing
parameters for two adjacent modes in the following.

According to [6, 10], the expressions for E1 and E2 can
be written in the form

E1�o1� �
jE1j
N1

exp�i�o1t� a1�� B1

C1

� �
,

E2�o2� �
jE2j
N2

exp�i�o2t� a2�� B2

C2

� �
,

(2)

where a1 and a2 are the initial phase shifts;

B1 � cos2 y sin�j1 � j2� � sin2 y sin�j1 ÿ j2�

�
n�

cos2 y sin�j1 � j2� � sin2 y sin�j1 ÿ j2�
�2

� sin2 2y sin2 j2

o1=2

; C1 � sin 2y sinj2;

B2 �
1

sin 2y sinj2

�
cos2 y sin�j1 � j2� (3)

� sin2 y sin�j1 ÿ j2� ÿ
n�

cos2 y sin�j1 � j2�

� sin2 y sin�j1 ÿ j2�
�2 � sin2 2y sin2 j2

o1=2
�
;

C2 � 1; N1 �
�
B 2
1 � C 2

1

�1=2
; N2 �

�
B 2
2 � C 2

2

�1=2
.

According to [6], the total intensity of lasing at the second
harmonic is

J � d 2
eff

4

�
g
ÿ
I 21 � I 22

�� 4�1ÿ g�I1I2
�
, (4)

where I 21 and I 22 are the lasing intensities at the second
harmonic at doubled frequencies 2o1 and 2o2; I1I2
corresponds to the SHG intensity at the sum frequency
o1 � o2; deff is the effective coefécient of conversion into
the second harmonic; and

g � 4

�
B1C1

N 2
1

�2
(5)

is the doubling coefécient.
The eigenvalues of matrix A can also be used to énd the

frequency difference between the modes:

o12 �
c

2pL0

arccos
�
cos2 y cos 2j� sin2 y cos�2dj��, (6)

where j � (j1 � j2)=2; dj � (j1 ÿ j2)=2.

3. SHG at doubled frequencies 2x1 and 2x2

only

It was shown in papers [4 ë 8] that in the general case, the
second harmonic emission spectrum of a laser operating in
the ICSHG mode in a nonlinear crystal in which type II
wave matching is realised with two orthogonally polarised
modes generated at the fundamental harmonic, consists of
three components. The intensities of the components at the
doubled frequencies 2o1 and 2o2 and at the sum frequency
o1 � o2 are given by expression (4).

The investigations carried out in papers [5 ë 8] showed
that the sum-frequency component is responsible for the
emergence of considerable intensity instabilities in an
ICSHG laser. The authors of these papers explain this
by the fact that, for g 6� 1, modes with different polar-
isations are coupled through the generation of the sum
frequency in the nonlinear crystal; the changes in their
intensity are anticorrelated, i.e., occur in antiphase, and the
intensity of the sum-frequency component is � (1ÿ g)I1I2,
which explains the dominating contribution of this compo-
nent to large instabilities of the total second-harmonic
intensity under this condition.

On the other hand, if the condition g � 1 is satiséed, the
modes with different polarisations are not coupled with each
other through the sum-frequency generation in the non-
linear crystal because the intensity of the sum-frequency
component is zero and, hence, the main cause of signiécant
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Figure 1. Optical diagram of a phase-anisotropic cavity: ( 1 ) highly reêecting mirror, ( 2 ) active element, ( 3 ) frequency doubler, ( 4 ) phase-anisotropic
element, ( 5 ) output mirror.
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instabilities in an ICSHG laser operating in the double-
frequency mode vanishes.

A similar conclusion can also be drawn concerning the
behaviour of the érst-harmonic radiation intensity upon
ICSHG. It was noted in [7] that the loss in each mode
associated with the coupling of modes with different polar-
isations amounts to � (1ÿ g)I1I2, while the loss associated
with the coupling of modes with identical polarisations is
�gI 2

1;2. This means that as in the case of SHG, the main
source of large intensity instabilities at the érst harmonic for
g 6� 1 is the existence of a strong coupling between modes
with different polarisations though the sum-frequency
generation.

In accordance with Eqn (5), the condition g � 1 corre-
sponds to the relation B1 � �C1. An analysis of this relation
taking into account expressions (3) for the coefécients B1

and C1 makes it possible to énd the relation between the
parameters y, j1, and j2 for g � 1:

j2 � arccot �ÿ cos 2y cotj1�, (7)

where y 6� 0, p=2.
Thus, for a éxed phase incursion difference j1 in the

frequency-doubler crystal, the condition g � 1 can be
satiséed by varying the phase incursion j2 of the phase-
anisotropic element and by choosing an appropriate angle y
in accordance with expression (7). It was noted above that,
in this case, the second harmonic generation can be realised
only at components with frequencies 2o1 and 2o2 for
intensity-stabilised output radiation both at érst and second
harmonics.

Consider now the behaviour of the mode interval at the
fundamental frequency upon a variation of the cavity
parameters under the condition that relation g � 1 holds.
Expression (6) for the mode interval at the fundamental
frequency under condition (7) is a function of only one
independent variable whose role can be played either by j2

or by y. The corresponding expressions for o12 have the
form

o12�j2� �
c

2pL0

arccos

�
cosj2

cosj1

�
, for j1 6�

p
2
,

o12�y� �

(8)

�

c

2pL0

arccos

�
cos�arccot�ÿ cos 2y cotj1��

cosj1

�
;

for j1 6�
p
2
;

c

2pL0

arccos�ÿ cos 2y�; for j1 � j2 �
p
2
:

8>>>>><>>>>>:
For a given difference j1 in phase incursions in the

frequency-doubler crystal, one of expressions (8) [either the
dependence o12(y) or the dependence o12(j2)] can be used
upon stable lasing, when j2 and y are interrelated.

When lasers with a controlled mode interval are used, it
is important to have information on the behaviour of mode
interval and the range of its variation upon a change in the
cavity parameters. In this section, these questions are
considered under the condition that the relation g � 1
holds. Fig. 2a shows the curves j2(y) plotted by using
expression (7), while Fig. 2b shows the normalised curves
o12(y) plotted for three phase incursion differences j1 in the

frequency-doubler crystal: p=18, p=4, p=2. One can see from
Fig. 2 that the dependences j2(y) and o12(y) are nonlinear
in the general case.

For small j1 (j1 � p=18 in Fig. 2b), the dependence
o12(y) is essentially nonlinear and has a plateau for angles y
close to 0 and p/2. As j1 increases to j1 � p=2, the
dependences o12(y) approach a linear dependence. In the
vicinity of point y � p=4, the curvature of the curves o12(y)
changes, and these dependences become close to linear for
any value of j1. At point y � p=4, the mode interval is
independent of the phase incursion difference j1:

o12

� p
4

�
� c

2pL0

arccos

�
cos�arccot�0��

cosj1

�
� c

4L0

.

The situation when j1 � j2 � p=2 must be considered
separately. In this case, according to Eqns (8), the depen-
dence o12(y) takes the form

o12�y� �
c

2pL0

arccos�ÿ cos 2y� � c

2pL0

�pÿ 2y�,

for 0 < y <
p
2
,

o12�y� �
c

2pL0

�2yÿ p�, for
p
2
< y < p,

i.e., for given parameters of the frequency-doubler crystal
and the phase-anisotropic element, the dependence o12(y) is
linear in the entire range of angles y.

Consider now the question associated with the range of
variation in the mode interval D � omax

12 ÿ omin
12 (where omax

12

and omin
12 are the maximum and minimum mode intervals)

a

b

p=4

j1 � p=18

p=2

0

p=4

p=2

3p=4

p

j2

0 45 90 y/8

0.2

0.4

0.6

0.8

o12

c=2L0

p=18
p=4p=2

Figure 2. Dependences of (a) the phase incursion j2 and (b) mode
interval o12 on the angle y upon stable lasing for different values of j1

and for the cavity conéguration described in [5 ë 8] (solid curve).
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under stable lasing conditions. To derive the dependence
D(y;j2), we should consider the limits of functions (8) for
y! 0 and y! p=2 at a éxed phase incursion difference j1

in the frequency-doubler crystal. An analysis of relations (8)
proved that

lim
y!0

o12�y� �
c

2L0

, lim
y!p=2

o12�y� � 0;

irrespective of j1.
Thus, for any phase incursion difference j1 in the

frequency-doubler crystal upon stable lasing, the maximum
possible ranges Dmax

1 � c=2L0 and Dmax
2 � c=2L0 of varia-

tion in the mode interval o12 can be realised at the érst and
second harmonics, respectively.

For comparison of the results obtained for different
conégurations of a phase-anisotropic cavity, Fig. 2b shows
the solid curve plotted for the cavity conéguration proposed
in papers [5 ë 8] and j1 � p=4. One can see that the range of
variation in the mode interval in this case is noticeably
narrower that in the cavity conéguration proposed by us
here. In addition, as noted above, the intensity-stabilised
lasing can be realised only for the éxed mode interval c=4L0.

4. Estimate of the tuning accuracy for elements
of a phase-anisotropic cavity upon stable
two-frequency lasing

It was noted above that under the conditions of stable two-
frequency lasing ( g � 1), the parameters j1, j2 of a phase-
anisotropic cavity and the angle y characterising the mutual
orientation of phase-anisotropic elements are connected
through relation (6). The deviation of even one of these
parameters from the values satisfying relation (6) destabil-
ises the lasing.

In the general case, the coefécient g is a complex
function of parameters j1, j2, y; for this reason, several
typical values of angles y were taken for an analysis of the
tuning accuracy for the elements of a phase-anisotropic
cavity upon stable double-frequency lasing in order to énd
the required accuracy of setting j2.

Fig. 3 shows the dependences g(j2) for different values
of y from the interval 0 < y < 908. The phase incursion
differences j1 are chosen in the interval 0 < j1 4 p=2. The
maxima of these two dependences correspond to the stable
lasing case considered above. Let us compare the behaviour
of the functions g(j2) for different angles y, but for identical
values of j1. One can see that for small angles y, the

dependences g(j2) are sharper near the maxima, which
indicates that it is difécult to tune a phase anisotropic cavity
and to maintain stable lasing. As the angle y between the
optical axes of phase-anisotropic elements increases, the
conditions for exact tuning of the phase-anisotropic cavity
over the parameter j2 become less stringent. The least
stringent requirements for maintaining a stable two-fre-
quency lasing over the parameter j2 are imposed for an
angle y � 458. As the angle y increases further (from 45 to
908), the behaviour of parameter g becomes mirror sym-
metric (relative to the straight line j2 � p=2) to that
considered above on the half-open interval 0 < y4 458.

5. Experimental investigation of a two-frequency
ICSHG Nd 3� : YAG laser

We developed and constructed a combined Nd 3� : YAG
laser emitting simultaneously at wavelengths l1 � 1:064 mm
and l2 � 0:532 mm. A Nd 3� : YAG crystal of diameter
5 mm and length 5 mm was used as the active element.
Longitudinal pumping was carried out by two 500-mW cw
semiconductor lasers with mutually orthogonal polarisa-
tions. Radiation beams emitted by the pump lasers were
aligned and focused by a telescopic system at the centre of
the active element. A 20-mm-long laser cavity was formed
by two interference mirrors; the input mirror was mounted
on a piezoelectric corrector.

A frequency doubler and a phase anisotropic element
were placed between the active element and the output
mirror along the optical axis of the cavity. A KTP crystal of
length 7 mm was chosen for frequency doubling. The
frequency-doubler crystal was cut in such a way as to
ensure type II phase matching during SHG. It was mounted
into a special frame permitting a variation of the mutual
orientation of the optical axes (angle y) of the frequency-
doubler crystal and the phase-anisotropic element. Prelimi-
nary experiments with the laser showed that the phase
incursion difference introduced by the frequency-doubler
crystal for ordinary and extraordinary rays was j1 � 0:42p.

A quartz crystal wedge was used as the phase-aniso-
tropic element. Such an element made it possible to change
the phase shift j2 smoothly by linearly displacing the phase-
anisotropic wedge at right angles to the cavity axis. The
position of the axial modes on the gain line proéle was
varied by applying a controlled dc voltage across the
piezoelectric corrector on which the input mirror was
mounted. The optical length L0 of the cavity taking into
account the refractive indices of the active element, fre-

yy �� 110088 yy �� 330088 yy �� 445588 yy �� 660088 yy �� 880088
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00..55
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jj11 �� pp==1188

jj11 �� pp==22
jj11 �� pp==44
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jj11 �� pp==22
jj11 �� pp==44
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Figure 3. Dependences of the coefécient g on the parameter j2 for different values of j1 and y.
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quency-doubler crystal, and the phase-anisotropic wedge
was � 30 mm. This length corresponds to the frequency
difference � 5 GHz between two adjacent unsplit axial
modes.

The predominance of the gain over the loss could be
varied smoothly by controlling the current of the semi-
conductor pump lasers. It was chosen so that the active part
of the gain line proéle (the frequency range in which the gain
exceeds the loss) approximately corresponded to the fre-
quency difference between the unsplit axial modes of the
Nd 3� : YAG laser.

In the experiments, the mode interval and the emission
spectra of the érst and second harmonics were controlled
continuously. The mode intervals in the range 0:14o12 4
1:5 GHz were recorded by a spectrum analyser, while mode
intervals o12 > 1:5 GHz were measured by using the cali-
brated wedge method [2].

The emission spectra of the érst and second harmonics
were monitored with the help of scanning interferometers.
The interferometer used for studying the spectrum of the
érst harmonic had a free spectral range (FSR) of 5 GHz and
a resolution of � 100 MHz. The interferometer used for
studying the spectrum of the second harmonic had a FSR of
10 GHz and a resolution of � 100 MHz.

6. Experimental results

We studied the time dependences of the érst and second
harmonic intensities for various mutual orientations (deter-
mined by the angle y) of the frequency-doubler crystal and
the phase-anisotropic element and for different phase
anisotropies j2 of the wedge; the behaviour of the mode
interval o12 and the range D of its variation upon stable
lasing were also investigated.

The experiments showed that, in the general case, the

laser generated two linear orthogonally polarised axial
modes at the érst harmonic frequencies o1 and o2. This
radiation was partially converted into the second harmonic
radiation with spectral components at frequencies 2o1, 2o2,
and o1 � o2; all components of the second harmonic
radiation had parallel polarisations. To achieve stable
lasing, we speciéed the angle y, and then the angle j2

was varied by linear displacement of the wedge until the
condition g � 1 was satiséed.

We found that stable lasing both at the érst (see Fig. 4c)
and at the second harmonic (Fig. 4f ) could be obtained by
an appropriate choice of parameters y and j2. The unstable
lasing (Figs 4a, d) was érst replaced by lasing with regular
instabilities (Figs 4b, e) and then became stable upon a
further displacement of the wedge. In Fig. 4, the angle
y � 358, and the range of variation of the mode interval o12

varied from 760 MHz to 1100 MHz upon a transition from
the regime shown in Fig. 4a to that in Fig. 4c.

Our experiments also conérmed the possibility of
controlling the mode interval at the érst and second
harmonics upon stable lasing in the ranges from � 0 to
� c=2L0 and from � 0 to � c=L0, respectively.
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