
Abstract. The three-dimensional dynamics of the propagation
of a short intense laser pulse in an ionising material is
analysed. The modulation of the temporal proéle of the laser
pulse caused by the essentially three-dimensional dynamics of
its propagation is studied using an analytic model proposed.
The criterion for realisation of various scenarios of the pulse
propagation in an ionising gas is suggested. The numerical
self-consistent analysis of the nonlinear propagation of the
pulse in the ionising material showed the correctness of
conclusions of the simplest analytic model.

Keywords: ionisation refraction, space ë time modulation, short
laser pulse.

1. Introduction

Great interest in the study of the propagation of short
intense laser pulses in ionising materials is caused by a
broad scope of applications of these pulses. This is, in
particular, the generation of a wake plasma wave accele-
rating electrons at the ionisation front [1, 2], the generation
of the high laser frequency harmonics upon ionisation of
the matter [3], and the development of sources of highly
charged low-temperature ions [4]. The space ë time evolu-
tion of a laser pulse is one of the most important factors
determining the eféciency of the use of laser pulses in these
applications.

The propagation of short intense laser pulses in ionising
media has been studied in many papers. In particular, the
authors of paper [5] studied the propagation of a laser pulse
in a partially ionised medium and the inêuence of the
motion of different electrons (bound and free electrons) on
the propagation process; ionisation and a substantial change
in the conditions of the pulse propagation in the substance
ionised by the pulse were neglected in [5]. In paper [5], the
modiécation of the increments of well-known parametric
instabilities and the appearance of new types of instabilities
in the presence of bound electrons were discussed (see also
paper [6]). However, the theory presented in these papers is

similar to a linear analysis of the stability of propagation of
an electromagnetic radiation in an ionised medium used in
paper [7], a plane wave being considered as the main state of
the laser éeld being studied for stability.

The results of the numerical analysis of the one-dimen-
sional propagation of a laser pulse in an ionising gas (see,
for example, Fig. 1 in paper [8]) demonstrate the appearance
and development of the modulation of the temporal proéle
of the pulse during its propagation in the gas. In paper [8]
(for the one-dimensional formulation of the problem), this
modulation is caused by absorption of radiation when
bound electrons acquire the residual energy upon ionisation.
Note that such energy losses do not describe total ionisation
losses, which include losses related to the overcoming of the
ionisation potential by an electron [9], which were neglected
in paper [8]. Under the conditions considered in paper [8],
the losses related to the residual energy and the ionisation
potential are close. The combined action of these losses
results in the formation of a hole in the temporal proéle of
the laser pulse. In this case, after a suféciently deep
penetration into gas with many-electron atoms, the laser
pulse acquires the shape modulated in time [9].

The necessity of the three-dimensional formulation of
the problem for analysing the propagation of the laser pulse
in an ionising gas was demonstrated both theoretically and
experimentally in paper [10]. It was shown that the
ionisation of the gas changes the focusing, resulting in
the displacement of the focus. However, the effect of
ionisation on the space ë time shape of the pulse was not
considered.

In this paper, we study the modulation of the temporal
proéle of the laser pulse caused by the three-dimensional
diffraction of radiation by plasma bunches (ionisation
refraction [11]). Such modulation appears already at small
penetration depths of the pulse into substance, when the
effect of ionisation losses [9] on the pulse shape can be
neglected. A low power of the laser pulse compared to the
threshold power of self-focusing makes the mechanism of
space ë time modulation of the pulse studied in this paper
different from mechanisms discussed in papers [8, 12, 13].
The pulse power in paper [8] (for non-one-dimensional
formulation of the problem) exceeded the threshold power
of relativistic self-focusing, while in papers [12, 13] the
radius of the laser beam was so large that the pulse power
exceeded the threshold power of self-focusing in a neutral
gas. The propagation of short intense laser pulses in ionising
gases was also studied numerically in paper [14], where the
formation of circular structures was demonstrated in the
laser radiation transmitted through the gas.
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2. Basic equations

Assuming that the electromagnetic éeld of a laser pulse
propagating along the z axis is transverse, the equation for
the electric éeld ~e(z; r?; t) of laser radiation has the form

1

c 2
q2~e
qt 2
ÿ q2~e

qz 2
ÿ D?~e�

4p
c 2

qJ
qt
� 0.

Here, c is the speed of light; D? � q 2=qx 2 � q 2=qy 2;
r?� exx� eyy; ex and ey are the unit vectors along axes
x and y, respectively; and J is the electron current density.
Below, we will neglect nonlinearities during the motion of
electrons in the laser-wave éeld. Such an approximation is
applicable for comparatively small e, when the inequality
e 2e 2=m 2o 2

0 5 c 2 is fulélled, where e and m are the electron
charge and mass, respectively, and o0 is the laser radiation
frequency. In addition, by studying the effect of ionisation
on the propagation of laser radiation, we will neglect the
ionisation current [2]. This is possible because the
amplitudes of harmonics excited by this current are compa-
ratively small, and the ionisation losses have a substantial
effect on the ionising laser pulse only after comparatively
long propagation of the laser pulse in matter [9].

Then, the equation for the density of free electrons
appearing due to tunnel ionisation will take the form

qJ
qt
� e 2ne

m
~e,

where ne(z; r?; t) is the free-electron density. Note that the
right-hand side of this equation is a nonlinear function of
the laser-éeld strength because the free-electron density
increasing with time due to ionisation is a strongly
nonlinear function of e.

To describe the space ë time evolution of the electric éeld
of laser radiation polarised along ex, we represent ~e(z; r?; t)
in the form

~e�z; r?; x� �
1

2
exE�z; r?; x� exp�ÿio0x�� c.c.

and will use the parabolic equation for the éeld amplitude
E(z; r?; x) slowly varying over the laser period 2p=o0 and
the wavelength l0 � 2pc=o0:

qE
qz
ÿ i

c

2o0

D?E� i
o 2

p

2o0c
E � 0, (1)

where o 2
p � 4pe 2ne(z; r?; t)=m; and x � tÿ z=c is the time

in the coordinate system coupled to the momentum. We
neglected in equation (1), in particular, the dispersion of the
electromagnetic wave assuming that the electron density is
low: ne 5 nc � mo 2

0 =4pe
2.

We will describe the dynamics of the electron density
using the system of equations

qne
qx
� G �

X
a

XZaÿ1

k�0
Wak�E�nak,

qna0
qx
� ÿWa0na0,

qnak
qx
� ÿWaknak �Wakÿ1nakÿ1, (2)

qnaZa

qx
�WaZaÿ1naZaÿ1, k � 1; ::: ;Za ÿ 1,

where Za is the nuclear charge of an atom of matter a; nak is
the ion density of matter a with the ionisation degree k
(k � 0 corresponds to a neutral atom); Wak(E ) is the
probability of ionisation of an ion with the ionisation
degree k to an ion with the ionisation degree k� 1, which is
determined by the Ammosov ëKrainov formula [15]

Wak�E� � oat

���
3
p � e

p

�3=2 �k� 1�2
n 4:5�

�
4e
�k� 1�3

n 4�

Eat

jE j
�2n�ÿ1:5

� exp

�
ÿ 2

3

�k� 1�3
n 3�

Eat

jE j
�
; (3)

n� � (k� 1)(UH=Uak)
1=2; UH is the potential of ionisation

of a hydrogen atom from the ground state; Eat � 5:1� 109

V cmÿ1 is the atomic éeld strength; Uak is the potential of
ionisation of an ion of matter a with the ionisation degree k
to an ion with the ionisation degree k� 1; oat � 4:1� 1016

sÿ1 is the atomic frequency; e � 2:72 is the base of natural
logarithms.

We will write the boundary condition for equation (1) in
the form

E�z � 0; r?; x� � E0 exp

�
ÿ r 2?

r 20
ÿ x 2

t 2

�
, (4)

which corresponds to the focusing with the radius r0 of a
Gaussian pulse with the characteristic duration t at the
boundary z � 0. As the initial condition for equations (2),
we take the condition

na0�z; r?; x � ÿ1� � n �0�a � const,
(5)

nak�z; r?; x � ÿ1� � 0, k � 1, 2, ... , Za ÿ 1,

which corresponds to the ionised gas in the absence of the
laser pulse.

3. The simplest model

Upon tunnel ionisation, the free-electron density ne quite
strongly depends on space ë time variables. The ionisation
of ions of matter a with the ionisation degree k to ions with
the ionisation degree k� 1 lasts in time for several laser
periods and occurs in space in the region of several laser
wavelengths (Fig. 1). Because the ionisation is strongly
localised in the vicinity of some intensity of laser radiation,
it is characterised by the threshold intensity I th

ak , which can
be quite accurately estimated from the relation I th

ak �
cU 4

ak=�128pe6(k� 1)2� [9]. This allows us to consider as the
simplest model of ionisation at the leading edge of the pulse
(x4 0) the following model

ne �
X
a

n �0�a

XZaÿ1

k�0
y
ÿ
Iÿ I th

ak

�
, (6)

where y( p) � 0 for p < 0 and 1 for p5 0. For small depths
of penetration of a laser pulse in matter z < zR
(zR � o0r

2
0 =2c is the Rayleigh length), the spatial shape

of the pulse (4) is weakly transformed. In this case, the
distribution of the electron density (6) in coordinates r?; x
for the leading edge of the pulse (x4 0) has the form of
embedded ellipsoids
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r 2?
r 20
� x 2

t 2
� 1

2
ln

�
I0
I th
ak

�
, (7)

where I0 � cjE0j2=8p. Because we neglect recombination
processes due to the low gas density, the distribution of the
electron density ne for x > 0 has the form of embedded
cylinders with radii

Rak�x > 0� � Rak�0� � r0

�
1

2
ln

�
I0
I th
ak

��1=2
, (8)

the electron density increasing on passing from a cylinder
with a greater radius to a cylinder with a smaller radius (see
Fig. 2). Because the boundaries of the electron density in
the radial direction are comparatively distinct, we can say
that a plasma waveguide is formed due to ionisation of the
gas by laser pulses. From the point of view of expression
(8), the equality (7) can be interpreted as follows: an
arbitrary cross section of the pulse x � const4 0 propa-
gates in a medium in which the electron density produced in
ionisation is distributed along a cylinder with the axis z and

the characteristic dependence on the transverse radius r?
shown in Fig. 2, where radii Rak depend on the given
position x on the temporal proéle:

Rak�x� � r0

�
1

2
ln

�
I0
I th
ak

�
ÿ x 2

t 2

�1=2
. (9)

Therefore, each cross section x � const of the temporal
proéle of the pulse in an ionising matter propagates in a
plasma waveguide with the transverse distribution of the
electron density, which is close to a step distribution (see
Fig. 2), whose radii depend on the position x and are
determined in our case by expression (9).

We will solve within the framework of this model the
equation (1) with the boundary condition (4). The proéle of
the electron density perpendicular to the laser pulse propa-
gation appearing in equation (1) has a characteristic form
shown in Fig. 2, where the radii Rak at the leading edge of
the laser pulse (x4 0) depend on x and are determined by
expression (9). Because the propagation lengths are small
within the framework of our model: z=zR � s < 1, we énd
the solution of (1) in the érst order of the expansion in the
parameter ne=nc 5 1:

E�s; r?; x� � E �0��s; r?; x� ÿ
o 2

0

4pc 2

� s

0

ds 0

sÿ s 0

�
d2r 0?

ne�r 0?; x�
nc

�E �0��s; r 0?; x� exp
�
i
1

r 20

�r? ÿ r 0?�2
sÿ s 0

�
, (10)

where

E �0��s; r?; x� �
E0

1� is
exp

�
ÿ r 2?=r

2
0

1� is
ÿ x 2

t 2

�
is the freely diffracting solution of equation (1) with the
boundary condition (4).

Let us study the behaviour of the intensity of éeld (10) at
the axis r? � 0 of the beam. To do this, we calculate the
integral over the transverse cross section in (10) taking into
account (6):

E�s; r? � 0; x� � E �0��s; r? � 0; x�

�
�
1� i

�o0r0
2c

�2X
a

n�0�a

nc

XZaÿ1

k�0
y�xÿ x th

ak�

�
� s

0

�
exp

�
i
R 2

ak�x�
r 20

1� is

�sÿ s 0��1� is 0�
�
ÿ 1

�
ds 0
�
, x4 0,

E�s; r? � 0; x� � E �0��s; r? � 0; x�

�
�
1� i

�o0r0
2c

�2X
a

n�0�a

nc

XZaÿ1

k�0
y�I0 ÿ I th

ak ��

�
� s

0

�
exp

�
i
R 2

ak�0�
r 20

1� is

�sÿ s 0��1� is 0�
�
ÿ 1

�
ds 0
�
, x > 0,

where x th
ak corresponds to the position of the threshold

intensity on the leading edge (x4 0) of the temporal proéle
of the pulse for r? � 0. By taking the square of modulus
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Figure 1. Level lines of the electron density ne=n
�0�
H in hydrogen with the

density n�0�H � 1018 cmÿ3 in the pulse frame of reference x, r? for z � 0
and the following parameters of a Gaussian pulse: I0 � 1016 W cmÿ2, the
HWHM duration of the electric éeld modulus T � 40 fs [t �
T=(2 ln 2)1=2 � 34 fs], the wavelength l0 � 0:8 mm, and the radius
r0 � 53 mm.

0 0.5 1.0 1.5 r?=r0

0.5

1.0

1.5

2.0

ne=n
�0�
a

Ra0=r0

Ra1=r0

Figure 2. Distribution of the electron density perpendicular to the z axis
in the model (6).
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from this expression, we obtain in the approximation linear
in ne=nc

jE�s; r? � 0; x�j2 � jE �0��s; r? � 0; x�j2

�
�
1ÿ 1

2

�o0r0
c

�2X
a

n�0�a

nc

XZaÿ1

k�0
y�xÿx th

ak�
� s

0
exp

�
ÿ R 2

ak�x�=r 20
1� s 0 2

�

� sin

�
R 2

ak�x�
r 20

1� ss 0

�sÿ s 0��1� s 0 2�
�
ds 0
�
, x4 0,

jE�s; r? � 0; x�j2 � jE �0��s; r? � 0; x�j2
(11)

�
�
1ÿ 1

2

�o0r0
c

�2X
a

n�0�a

nc

XZaÿ1

k�0
y�I0ÿI thak�

� s

0
exp

�
ÿR

2
ak�0�=r 20
1� s 0 2

�

� sin

�
R 2

ak�0�
r 20

1� ss 0

�sÿ s 0��1� s 0 2�
�
ds 0
�
, x > 0,

For small penetration depths (s 2R 2
ak(x)=r

2
0 < 1), expres-

sion (11) can be simpléed:

jE�s; r? � 0; x�j2 � jE �0��s; r? � 0; x�j2

�
�
1ÿ s

2

�o0r0
c

�2X
a

n�0�a

nc

XZaÿ1

k�0
y�xÿ x th

ak� exp�ÿsuak�s; x��

�F�uak�s; x��
�
, x4 0,

(12)

jE�s; r? � 0; x�j2 � jE �0��s; r? � 0; x�j2

�
�
1ÿ s

2

�o0r0
c

�2X
a

n�0�a

nc

XZaÿ1

k�0
y�I0 ÿ I thak� exp�ÿsuak�s; 0��

�F�uak�s; 0��
�
, x > 0

Here, uak(s; x) � R 2
ak(x)=(r

2
0 s); F(x) � sin (x)ÿ xCi(x);

Ci�x� � ÿ
�1
x

cos t

t
dt

is the integral cosine [16]. If the laser pulse propagated in a
preliminary prepared plasma waveguide with a éxed radius
(R � const), then the temporal proéle of the pulse would be
only determined by the temporal proéle of a freely
diffracting pulse and thereby by the time dependence of
the éeld at the boundary [see (4)].

However, the radius R in an ionising material is a
function of the position x on the leading edge of the pulse
[see (9)]. For this reason, the leading edge of the pulse
becomes modulated upon the pulse propagation into an
ionised material. Note that, within the framework of our
model, the trailing edge of the pulse propagates in a
preliminary formed plasma waveguide (x > 0). This results
in the absence of modulation of the trailing edge of the pulse
[see (11), (12) for x > 0].

Fig. 3 shows the dependence (12) on x for the leading
edge of the pulse with the maximum intensity I0 � 1016

W cmÿ2, the HWHM duration of the electric éeld modulus

T � 40 fs, the wavelength l0 � 0:8 mm, and the radius
r0 � 53 mm penetrated to the depth z � 0:1zR in hydrogen
(UH0 � 13:6 eV, I th

H0 � 3:1� 1014 W cmÿ2) with the initial
density of atoms n

�0�
H � 1018 cmÿ3. The chosen threshold

intensity I th
H0 takes into account the ionisation dynamics

in the pulse éeld and differs from the intensity 1:4� 1014

W cmÿ2 predicted by the above-mentioned formula of the
stationary theory (cf. [9]).

Note a number of features of the dependence of the
intensity at the beam axis on x. They are mainly determined
by the behaviour of the function F(x) presented in Fig. 4.
Near the threshold intensity of ionisation [in the vicinity x th

ak

(x > x th
ak) in Fig. 3], the ionisation intensity rapidly falls.

Away from the threshold intensity, with increasing x, the
pulse éeld oscillates with respect to its initial shape, the
oscillation period in x increasing, while their amplitude
decreases.

A rapid decrease in the éeld intensity in the vicinity of
x th
ak means that the laser pulse diffracts eféciently from a

plasma waveguide with a small radius. Because in this case
the éeld intensity I � cjE j2=8p becomes lower than the
threshold intensity I th

ak [ I th
ak � I(x th

ak) � I(xNL
ak )] in the region

x th
ak < x < xNL

ak , the simplest model presented here proves to
be too crude for the description of the nonlinear self-
consistent balance of ionisation and diffraction in plasma
bunches of small radius in the region (x th

ak, x
NL
ak ). The point

jEj2=jE0j2

ÿ1:4 ÿ1:2 ÿ1:0 ÿ0:8 ÿ0:6 x=t

0

0.2

0.4

0.6

x th
H0

Figure 3. Dependence (12) (solid curve) and the dependence of the initial
proéle of the pulse (dashed curve) on x. The parameters of the pulse and
gas are as in Fig. 1; the time x is measured from the maximum of the
initial proéle of the pulse; the penetration depth of the pulse inside the
gas is z � 0:1zR.

0 5 10 15 20 25 x

ÿ0:2

0

0.2

0.4

F�x�

Figure 4. Function F(x) � sin xÿ xCi(x).
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xNL
ak is found from the condition I � I th

ak . Nevertheless, we
will see below from the numerical self-consistent analysis of
the nonlinear propagation of a laser pulse in an ionising gas
that the model correctly describes the tendency to rapid
diffraction at the leading edge of the ionisation front in the
vicinity of x th

ak. In the case of a weak penetration into a
material (s < 1), the quantity xNL

ak can be approximately
found from the equation

F�uak�s; x�� � 0, (13)

as the érst nonzero root uak(s; x
NL
ak ) � uNL � 2:156 (see

Fig. 4). This gives

xNL
ak

t
� ÿ

�
1

2
ln

�
I0
I th
ak

�
ÿ suNL

�1=2
� ÿ

��
x th
ak

t

�2
ÿ suNL

�1=2
, (14)

so that the region of efécient diffraction at the leading edge
in the vicinity of the ionisation threshold increases during
the pulse penetration into the matter (i.e., with increasing
s).

For x > xNL
ak , the laser-éeld intensity is sufécient for

ionisation. The positions of the maxima of the deviation of
jEj2 from jE �0�j2 on the axis x are close to the extrema of the
function F(uak(s; x)). The latter coincide with the zeroes of
the function Ci(uak). Because u

�1� � 0:617 ë the érst nonzero
root of the equation Ci(u) � 0 ë corresponds to x < xNL

ak , it
should be excluded. The second root u�2� � 3:384 corre-
sponds to x > xNL

ak ; the next roots are determined by the
relation u�n� � (nÿ 1)p with an error better than 2%, where
n � 3, 4, ... , the error decreasing with n. Then, the coor-
dinates x�n�ak of maximum deviations from the initial pulse
shape on its temporal proéle are determined approximately
by the expression

x�n�ak

t
� ÿ

�
1

2
ln

�
I0
I th
ak

�
ÿ su�n�

�1=2
� ÿ

��
x th
ak

t

�2
ÿ su�n�

�1=2
. (15)

The distances between the coordinates x�n�ak and x�n�1�ak of the
adjacent maximum deviations increase upon approaching
to the peak pulse intensity (with increasing number n). The
relative amplitude of deviations at these points is

e�n�ak �s� �
jE�s; r? � 0; x�n�ak �j2 ÿ jE �0��s; r? � 0; x�n�ak �j2

jE �0��s; r? � 0; x �n�ak �j2

� ÿ s

2

�o0r0
c

�2 n�0�a

nc
exp�ÿsu�n��F�u�n��. (16)

In particular, we have F(u�2�) � ÿ0:24 and F(u�3�) � 0:143.
It follows from expression (15) that the spatial scale of

modulation increases upon the penetration of the laser pulse
into a material (with increasing s), while the maxima and
minima of the relative deviation e�n�ak (s) shift to the pulse
centre x � 0. The modulation amplitude changes nonuni-
formly with increasing s according to (16). For the numbers
n at which u�n� > 1=s, the quantities e�n�ak (s) decrease with
increasing s. Therefore, the region of ionisation modulation
on the temporal proéle of the laser pulse decreases upon the
penetration of the laser pulse into the matter and concen-
trates near the threshold intensity of ionisation. In this case,
the modulation scale increases. This tendency in the
development of ionisation modulation means the formation
of a step proéle of the pulse, with steps in the vicinity of
points xNL

ak [see expression (14)].

We estimate the characteristic length of the step proéle
as the penetration depth zst � zR=u

�2� � 0:3zR at which the
maximum of e�2�ak (s) nearest to xNL

ak is located [see (16)]:

e�2�ak

�
1

u�2�

�
� 0:013

�
o0r0
c

�2
n�0�a

nc
� d. (17)

The rest of the extrema (with n5 3) prove to be suppressed
at this penetration depth because of the exponential
dependence on s in (16). The lowest level of the step is
equal approximately to I th

ak at the point xNL
ak , while the

highest level I st
ak is achieved at the point x�2�ak . According to

(17), the relative height of the step can be estimated from
the expression

I st
ak ÿ I th

ak

I th
ak

� 0:013

�
o0r0
c

�2
n�0�a

nc
. (18)

Note that the step height can be rather large because
o0r0=c � 2pr0=l0 4 1. Remaining within the framework of
the simplest model used here, we should require that the
value of e�2�ak (1=u

�2�) � d would be smaller than or at least of
the order of unity.

Therefore, if d4 1, upon the propagation of the pulse by
the distance z < zst � 0:3zR, the ionisation modulation
should be manifested as the modulation of the temporal
proéle of the pulse with the relative amplitude that is smaller
than or equal to d. Upon approaching to z � zst, a step
temporal proéle of the pulse with a steep leading edge is
formed. The positions x st

ak of the leading edge (k � 0) and
steps on the temporal proéle of the pulse at s � 1=u�2� are
determined by the relation (14)

x st
ak

t
�ÿ

�
1

2
ln

�
I0
I th
ak

�
ÿ uNL

u�2�

�1=2
�ÿ

�
1

2
ln

�
I0
I th
ak

�
ÿ 0:637

�1=2
. (19)

Then, up to the distances z � zR (when the condition z < zR
of a comparatively weak diffraction accepted in the model
is violated), we can expect that the space ë time proéle of
the pulse will change weakly. The latter is caused by the fact
that the ionisation refraction of the pulse at the distance
z � zst near the ionisation threshold x < xNL

ak results in the
formation of both steps and more êat ionisation fronts of
the electron density.

For d4 1, the modulation of the temporal proéle of the
pulse proves to be signiécant already at z < zst, before the
formation of the step proéle. Under these conditions, the
ionisation modulation initiates a substantial nonlinear
change in the space ë time proéle of the pulse.

4. Numerical analysis

We solved the system of equations (1) ë (3) numerically by
the methods of networks, equation (1) being solved by
using the conservative symmetric scheme. The accuracy of
calculations was controlled by the integral of conservation
of the laser power êux at each cross section x. Fig. 5 shows
the dependences of jE(s; r? � 0; x)j2=jE0j2 and ne(s; r? �
0; x)=n�0�H on x for the leading edge of the pulse with the
peak intensity I0 � 1016 W cmÿ2, the FWHM duration of
the electric éeld modulus T � 40 fs, the wavelength l0 �
0:8 mm and the radius r0 � 0:53 mm penetrated to the depth
z � 0:1zR in hydrogen with the initial density of atoms
n
�0�
H � 1018 cmÿ3. One can see the oscillating deviations of
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jE j2 from the initial temporal proéle. A comparison of
Figs 3 and 5 shows that the simplest model used in the
previous section correctly qualitatively predicts a change in
the pulse shape on the axis r? � 0. In this case, the spatial
scales of the modulation are close to each other. However,
the model modulation amplitudes are approximately two
times greater than the amplitudes obtained by solving a
nonlinear self-consistent problem of the pulse propagation
taking diffraction into account.

To understand the reason for such a difference, we
consider the behaviour of the laser éeld and the electron
density in the cross sections x � const perpendicular to the
laser beam propagation. Fig. 6 shows the dependences
ne(r?) and jE(r?)j2=jE0j2 for z � 0:1zR and different x:
x1=t � ÿ1:124, x2=t � ÿ1:03, x3=t � ÿ0:87, x1 and x3
corresponding to the regions where jE j2 increases upon
modulation, while x2 corresponds to the region where jE j2
decrease upon modulation (Fig. 5). One can see from
Fig. 6b that the modulation decrease in jE j2 is caused by
the refraction of laser radiation from the beam axis r? � 0.
Because refraction occurs in a plasma channel whose walls
prevent the free propagation of radiation from the axis
r? � 0, a distinct maximum is formed away from r? � 0. In
turn, the presence of the plasma channel results in the
focusing of radiation in the vicinity of x1 and x3 on the
temporal proéle of the pulse (Figs 6a, c).

The size of the region of variable electron density over
the radius r? in Fig. 6 is comparable with the radius of the
constant-density region near r? � 0. This explains a more
smoothed intensity modulation over x on the beam axis
compared to that predicted by a model with sharp bounda-
ries of ne over the radius (see Fig. 2).

The rapid diffraction from a plasma bunch with a small
transverse size at the leading edge of the pulse near the
threshold intensity results in the appearance of a plateau
with a comparatively low intensity. The latter decelerates
ionisation and prevents the achievement of complete ionisa-
tion of gas at the leading edge of the laser pulse. The regions
of the temporal proéle of the pulse with a high intensity
produce plasma channels with large transverse radii, result-
ing in the deceleration of diffraction from the electron
density in these regions. As a result (see Fig. 5), the
ionisation front of the electron density consists of two

regions: the region of slowly increasing ne(x), which is
controlled by strong diffraction, and the region of rapid
ionisation, where the radius of the beam with the intensity
above the threshold is quite large.

jEj2=jE0j2, ne=n�0�H
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x2=t

x3=t
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Figure 5. Dependences of jE(s; r? � 0; x)j2=jE0j2 (solid curve), the initial
proéle of the pulse (dot-and-dash curve), and ne(s; r? � 0; x)=n�0�H (dashed
curve) on x. The parameters of the pulse and gas are as in Fig. 1; the time
x is measured from the maximum of the initial proéle of the pulse; the
penetration depth of the pulse inside the gas is z � 0:1zR.
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Figure 6. Dependences 10jE(r?)j2=jE0j2 (solid curve) and ne(r?)=n
�0�
H

(dashed curve) for z � 0:1zR and x1=t � ÿ1:124 (a), x2=t � ÿ1:03 (b)
and x3=t � ÿ0:87 (c). The parameters of the pulse and gas are as in
Fig. 1.
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Figure 7. Dependences of jE(s; r? � 0; x)j2=jE0j2 (solid curve) and ne(s;
r? � 0; x)=n�0�H (dashed curve) on x. The parameters of the pulse and gas
are as in Fig. 1; the time x is measured from the maximum of the initial
proéle of the pulse; the penetration depth of the pulse inside the gas is
z � 0:3zR.
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Note that the parameters used in Figs 5 and 6 corres-
pond to d � 1:3 [see (17)], so that the formation of a step
proéle can be expected under these conditions. Indeed, one
can see from Fig. 7 that the proéle with a steep leading edge
is formed upon propagation of the pulse inside the matter.
For I th

H0 � 3:1� 1014 W cmÿ2 and I0 � 1016 W cmÿ2, expres-
sion (19) predicts the coordinate of this front x st

H0=t �ÿ1:05,
in accordance with the front position for z � 0:3zR in Fig. 7.
Fig. 8a shows the space ë time distribution of the pulse
intensity normalised to I0 for a deeper penetration of the
pulse into the matter, i.e., for z � zR. For comparison,
Fig. 8b shows the distribution of the pulse intensity for
z � 0:3zR. One can easily see that the space ë time proéles of
the pulse at these distances are very close to each other.

According to expression (12), the amplitude of ionisation
modulation is determined by the dimensionless parameter
A � (o0r0=c)

2n�0�a =nc [see also (18)]. For the examples
considered above, A � 100. This quantity also determines
the ratio of the laser pulse power P to the threshold power
Pc of relativistic self-focusing. For the above examples, this
ratio is comparatively small: P=Pc � 0:015. Such a small
ratio allows one to vary the parameter A in a broad range,
the effect of relativistic self-focusing on the propagation of
the laser pulse remaining negligible. As A is increased by a
factor of nine, which corresponds, for example, to an
increase in the gas density n

�0�
H from the value 1018 cmÿ3

considered above to the value 9� 1018 cmÿ3 (in this case,
P=Pc � 0:13), the ionisation modulation proves to be consi-
derably more distinct already at the distance z � 0:1zR
(Fig. 9) than the modulation under conditions in Fig. 5.
As a result, the space ë time distribution of the laser pulse
intensity exhibits strong oscillations upon the pulse prop-
agation inside the matter (Fig. 10), and the shape of the
distribution at z � 0:3zR becomes close to that obtained in
paper [14] (see Fig. 10c). Note that the parameters used in
Figs 9 and 10 correspond to d � 124 1 [see (17)]. Under
these conditions, one cannot expect the formation of a step
proéle and its subsequent propagation deep into the ionising
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Figure 8. Level lines of jE(s; r?; x)j2=jE0j2 in the pulse frame of reference
x, r? for z � zR (a) and 0:3zR (b). The parameters of the pulse and gas
are as in Fig. 1.
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matter, in complete accordance with the predictions of the
model proposed above.

5. Conclusions

Upon propagation of a laser pulse into an ionising matter,
the temporal proéle of the pulse becomes modulated. The
modulation is excited upon ionisation of neutral particles or
ions with different ionisation degrees and is caused by the
refraction of an electromagnetic radiation from inhomoge-
neous plasma bunches produced during the ionisation of
the matter by the spatially inhomogeneous pulse. In gases
with many-electron atoms, the successive ionisation occurs
at different intensities of laser radiation and, hence, the
modulation is initiated in different regions of the temporal
proéle of the pulse.

The modulation amplitudes in different regions of the
temporal proéle of the laser pulse érst increase and then
decrease upon the pulse penetration deep into the matter.
The maxima of the relative modulation amplitudes are
achieved at the penetration depth zst � zR=u

�2� � 0:3zR.
The maximum relative modulation amplitude is determined
by expression (17) and increases with the radius of the laser
beam and the free-electron density. The position of the
modulation maximum on the laser-pulse proéle is deter-
mined by expression (15) for n � 2 and s � 1=u�2�. If this
position coincides with the initial position of the peak
intensity I0 [i.e., x�2�ak � 0 in (15)], then the maximum
intensity of the pulse increases. The relative increase in
the maximum intensity compared to the initial intensity I0
can be estimated from expression (17) and can be signiécant.
Such a `resonance' at the penetration depth zst is possible
when x�2�ak � 0 and, hence, I th

ak � I0 exp (ÿ 2) [see (15)]. This
relation can be satiséed for a particular gas by a proper
choice of the peak intensity I0.
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