
Abstract. The transient double resonance excited in a
common-upper-level scheme is studied theoretically in a
medium whose spectral inhomogeneity is caused by the
Doppler effect. The formation of the 0p, 2p- and 4p-pulses in
the pump channel is considered. Studies of the pulse
formation dynamics have revealed, in particular, that the
exponential gain of a signal pulse is possible only if the pump
channel contains at least one 2p-pulse. If there are more than
one 2p-pulses in the pump channel, each pump pulse generates
its own signal pulse whose characteristics are determined by
the parameters of the pump pulse.

Keywords: double resonance, self-induced transparency, inhomoge-
neous broadening

1. Introduction

Double resonance has been the subject of theoretical
investigation and practical application for a long time
[1]. Transient double resonance emerges for pulse durations
that are comparable with the irreversible relaxation times
for quantum transitions or are much shorter than these.
The theory of the linear regime of the transient double
resonance (when the effect of a weak éeld on a strong éeld
is negligible) shows that a strong pulse can trap a weak
pulse and exponentially amplify it [2 ë 5]. Investigations of
this phenomenon [3, 6, 7] provided a rigorous justiécation
for the possibility of formation of simultons and the
complete transfer of energy from a strong pulse to a weak
pulse. The theory of transient double resonance under the
conditions when both interacting pulses satisfy the adia-
baticity criterion was proposed in paper [8]. The transient
double resonance was considered in paper [9] using a
scheme with a common upper level during the formation of
a lower frequency pulse from spontaneous noise radiation.

The results of the analytical theory of the nonlinear stage
of transient double resonance obtained so far pertain to a
spectrally homogeneous medium. Real media like rareéed
gases or impurity centres in crystals have inhomogeneously
broadened spectral transitions.

In this paper, we simulate numerically transient double
resonance (including its linear and nonlinear stages) taking
into account the spectral inhomogeneity of the medium. The
latter is required if the spectral widths of the interacting
pulses are not much broader than inhomogeneous widths of
resonance transitions. According to the theory of self-
induced transparency (SIT) [10], the distance over which
an input pulse splits into solitons is directly proportional to
the inhomogeneous width of the resonance transition.
Therefore, the consideration of inhomogeneous broadening
is signiécant in the case of two-frequency interaction also
for determining the distances at which the input pulses are
transformed. Note that the numerical simulation taking into
account the spectral inhomogeneity of the medium was
performed in paper [11] for the case of double resonance in a
scheme with a common middle level.

2. Mathematical model

We will simulate a gaseous medium by an ensemble of
three-level objects, hereafter called atoms, with simple levels
labelled as 1, 2, 3 in increasing order of energy. The
symbols p13 and p23 denote the z components of the electric
dipole moments of the transitions 1 ë 3 and 2 ë 3, respec-
tively, while the frequencies of these transitions for atoms at
rest are denoted by op and os, respectively. The 1 ë 2
transition is assumed to be forbidden in the electric-dipole
approximation. We will describe [4] the spectral inhomo-
geneity of all quantum transitions involved in the process
caused by the thermal motion of atoms by the only para-
meter ë the time Tp of polarisation decay at the 1 ë 3 transi-
tion caused by the Doppler effect: Tp � c(M=2kT )1=2=op,
where M is the mass of an atom and T is the absolute
temperature.

An electric éeld polarised along the z axis and propagat-
ing along the x axis is represented in the form

E�x; t� � 1

2
mpEp�x; t� exp� i�kpxÿ opt��

� 1

2
msEs�x; t� exp� i�ksxÿ ost��� c.c., (1)

Here, op;s and kp;s � op;s=c are respectively the carrier
frequencies and wave numbers of the quasiharmonics at the
entrance (x � 0) to the resonance medium; mp � �h=(Tpjp13j);
and ms � �h=(Tpjp23j).

Below, we will call the quasi-harmonics with frequencies
op and os (op > os) as a pump and a signal, respectively.
We described the evolution of pulses using a system of
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truncated Maxwell equations and of the equations of
motion for the density matrix elements of the medium.
The irreversible relaxation processes were neglected. The
resulting system of equations has the form:

qEp

qs
� i���

p
p
��1
ÿ1

exp�ÿe2�s31de,

qEs

qs
� i���

p
p a

��1
ÿ1

exp�ÿe2�s32de,

qs31
qw
� ÿies31 ÿ iEp�s33 ÿ s11� � iEss21,

qs21
qw
� ÿi�1ÿ b�es21 �
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where

w � 1

Tp

�
tÿ x

c

�
, s � x

xp
(3)

are independent dimensionless variables; N is the concentra-
tion of atoms; and xp � c�h=(2popjp13j2NTp) is the distance
over which the amplitude of the weak steady-state pump
radiation decreases by a factor of e due to inhomogeneous
broadening [10]. The parameters a and b are deéned as
follows:

a � osjp23j2
opjp13j2

, b � os

op
,

the parameter b appearing due to the difference in
inhomogeneous broadening of the 1 ë 3 and 2 ë 3 transi-
tions.

The system of equations (2) was supplemented by the
boundary conditions (s � 0):

Ep�w; s � 0� � Apsech�wÿ w0�, Es�w; s � 0� � As,

04w <1, (4)

where Ap and As are constants. Expressions (4) describe the
input pump pulse of duration 2Tp (at the level sech x � 1)
and correspond to the case when the input signal pulse is
much longer than the input pump pulse. It was also
assumed that all the atoms are at the lowest energy level at
the initial instant (w � 0).

The boundary value problem formulated for the system
(2) was solved numerically with the help of a predictor ë
corrector algorithm [12] with a checking of the accuracy of
computations by the Runge method [13] and a veriécation

of the condition s11 � s22 � s33 � 1. The programme was
veriéed by comparing the results of computations with the
known analytical results from the SIT theory [10] (the
discrepancy was less than one percent) and, wherever
possible, with the analytical results presented in paper [5].

The results of computations are presented in the form of
dependences of Ep and Es on w for éxed values of s. The
dependences of the characteristics of the pump and signal
pulses, such as the area under the envelope (Yp and Ys), the
peak value of the envelope (Epm and Esm), and the temporal
position of these peak values (wpm and wsm) are presented,
as well as the dependences of the local gain G of the signal
pulse on s, where

Yi �
� ÿ1
�1

Ei�w; s�dw �i � p; s�, G � d

ds
lnEsm.

In this case, the area Yp(0) of the input pump pulse (4) is
pAp.

3. Parameters

Let us make estimates for saturated indium vapours by
identifying the levels 1, 2, 3 with the levels 5P1=2 and 5P3=2

and 6S1=2, respectively (lp � 4101:8 AÊ and ls � 4511:3 AÊ ,
where lp;s � 2p=op;s). It was shown in Ref. [4] that the level
degeneracy in the quantum number M of the projection of
the total angular momentum on the z axis can be taken into
account by assuming that all the atoms may occupy only
states with M � 1=2.

Using the experimental values of the oscillator strengths,
transition frequencies [14], and the data on the saturated
vapour pressure of indium [15], we obtain a � 2:25, b �
0:91, xp � 4:9� 1010

����
T
p

=N, Tp � 5:4� 10ÿ9=
����
T
p

, and N �
7:2� 10�32:3ÿ12019:2=T �=T, Tp � 5:4� 10ÿ9=

����
T
p

. In addition,
we have Ip � 1:1� TE 2

p and Is � 0:45� TE 2
p for the inten-

sities of the pumping and signal pulses, respectively. Here,
xp is measured in centimetres, Tp is measured in seconds, N
is in cmÿ3 and T is in Kelvins.

An important characteristic of the pump and signal
pulses is the velocity of their propagation (Vp and Vs,
respectively) in the stationary reference frame x, t. Because
of a possible deformation of the pulse envelope, we treat the
propagation velocity as the rate of displacement of a
characteristic point on the pulse, for example, its maximum.
Using (3), we can show easily that

c

Vs;p
� 1� Tpc

xpvs;p
, (5)

where vs;p is the velocity of the characteristic point moving
in the s, w reference frame.

4. Results of computations

According to the SIT theory, the evolution of a pulse in a
resonance medium is determined by its initial area, the
areas that are odd multiples of p being critical for the
soliton formation process. For this reason, the speciéc
values of Ap for computations in (4) were chosen in such a
way that the area Yp(0) of the input pump pulse was within
the characteristic intervals deéned by the SIT theory. It was
assumed in the computations that w0 � 7, which provided
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the absence of a pump pulse at the input (s � 0) at the
initial instant w � 0.

4.1 The case Hp�0� < p

Let us put Ap � 0:5 and As � 0:1 in (4). Then, Yp(0) �
0:5p, and according to the SIT theory, the pump pulse
should be transformed into a 0p-pulse in the absence of
signal radiation. The functions Ep(w; s) and Es(w; s) are
presented in Fig. 1, while Fig. 2 shows the peak values Epm

and Esm of the pulse envelopes as functions of s. One can
see from Fig. 1 that at distances s5 0:8, the pump pulse
assumes an oscillating shape characteristic of a 0p-pulse,
and its peak value decreases with increasing s (Fig. 2). One
can see from Figs 1b and 2 that the signal pulse passes
through the formation stage at distances s between 0 and 2,
and propagates further almost without any change in its
shape and peak value. An analysis of the dependence of the
gain G on s shows that the region of exponential signal gain
is absent in this case.
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Figure 1. Pump (a) and signal (b) pulse envelopes for various distances during the formation of a 0p-pulse in the pump channel.
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Figure 2. Dependences of the peak values of the pump and signal pulse
envelopes on the distance during the formation of a 0p-pulse in the pump
channel.
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Figure 3. Pump (a) and signal (b) pulse envelopes for various distances during the formation of a solitary 2p-pulse in the pump channel.
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4.2 The case p < Hp�0� < 3p

Let us put Ap � 1:5 and As � 10ÿ10 in (4). Then, Yp(0) �
1:5p, and according to [10], the pump pulse should be
transformed into a solitary 2p-pulse in the absence of the
signal. The functions Ep and Es are presented in Fig. 3.

Fig. 4 shows the dependences of Ys;p, Esm;pm, and wsm;pm

on s. It follows from Fig. 4a that for values of s between 0
and 3, the input pump pulse is transformed into a steady-
state 2p-pulse. The transformation is accompanied by a
decrease in its peak value to � 1 (Fig. 4b). The pump pulse
propagates in this form up to distances s � 8. On the time
scale w, the pulse duration is found to be 4.1. According to
the SIT theory, the propagation velocity of a 2p-pulse of
such a duration in the s, w reference frame should be equal
to 0.442. An analysis of the wpm curve (Fig. 4c) shows that
the pump pulse peak moves with a velocity 0.452. This value
is close to that predicted by the SIT theory, which serves as a
further conérmation of the propagation of a pump pulse in
the form of an isolated soliton. One can see from Fig. 3a
that a small precursor pulse precedes the 2p-pulse.

At distances s > 8, the area Yp and the peak value Epm

of the pump pulse begin to decrease (see Figs 3a and 4a, b).
This is due to the disintegration of the 2p-pulse after the
transfer of its energy to the signal pulse. We can conclude
easily from Figs 4b, c and expression (5) that the pump
pulse propagates with a velocity c at large distances (s > 8)
and loses its energy almost entirely.

Let us now describe the signal pulse. One can see from
Fig. 4b that its peak value becomes comparable with the
peak value of the pump pulse for s > 8. The slope of the
curves in Fig. 4c shows that the signal pulse propagates with
the velocity of the pump pulse, while a comparison of curves
in Figs 3a and 3b shows that the signal pulse is localised in
the region of the pump pulse.

Fig. 5 shows the dependence of the local gain G of the
signal pulse on s. The constant value of G for s � 2:5ÿ 8
indicates that the signal pulse grows exponentially with
distance in this region with a gain G � 2:8. Note that the
possibility of an exponential signal ampliécation in the éeld
of a steady-state 2p-pump pulse was predicted during an
analysis of the linear stage of the double resonance [5].

According to Ref. [5], the signal gain in this case is
described by the expression

G � 2
���
a
p ÿ 1

2
���
p
p tp

� �1
ÿ1

exp�ÿe 2�
1� t 2p e 2=4

de, (6)

where tp is the duration of the 2p-pump pulse. For the

value of the parameter a chosen by us and for tp � 4:1,
which corresponds to a 2p-pulse formed at the pump
frequency, expression (6) gives G � 2:7. The difference
between the values of the gain obtained by numerical and
analytical methods of description is explained by the fact
that, strictly speaking, the analytical theory is valid in the
limit b! 1. At distances s > 12, the signal ampliécation
virtually stops and its propagation velocity becomes equal
to c in x, t coordinates.

4.3 The case 3p< Hp�0� < 5p

Let us put Ap � 4 and As � 10ÿ10 in (4). Then, Yp(0) � 4p,
and two steady-state 2p-pulses should be formed in the
pump channel in the absence of signal radiation [10]. The
functions Ep and Es are presented in Fig. 6.

It follows from Fig. 6 that during its propagation, the
pump pulse is transformed into two individual pulses
marked as 1 and 2 in the order of their emergence, and
called érst and second pulse in the following. Accordingly,
we mark by Y �1;2�p , E �1;2�pm , w �1;2�pm in Fig. 7 the quantities Yp,
Epm, wpm deéned for pulses 1 and 2. In accordance with
Fig. 7a, Y �1�p � 2p at distances s � 4ÿ 25, and Y �2�p � 2p at
distances s � 4ÿ 12. This means that each of the two pump
pulses is a steady state 2p-pulse at such distances.

The durations of the érst and second pump pulses at the
regions where they have an area equal to 2p are 0.7 and 2.1,
respectively. According to the predictions of the SIT theory,
the velocities of 2p-pulses of such durations should be 8.6
and 1.2 in the s, w reference frame. This is conérmed by the
slopes of the dependences w �1�pm and w �2�pm on s (Fig. 7c). For
the érst 2p-pulse, E �1�pm is about three times as large as E �2�pm
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during the formation of a 2p-pulse in the pump channel.
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for the second pulse. The energy carried by a 2p-pulse
through a unit cross-sectional area is proportional to the
peak value of its envelope. Therefore, the érst 2p-pulse
transports about three times more energy per unit area than
the second pulse. At large distances, both 2p-pulses dis-
integrate after transfer of energy to the signal radiation. One
can see from Fig. 7 that the érst 2p-pulse is preserved right
up to distances s � 25, while the second pulse exists in a
region about half as long.

Computations show that each 2p-pump pulse generates
its own signal pulse in the region of its localisation. These
pulses are marked in Fig. 6b as 1 and 2 according to the
order of their emergence and are called érst and second
pulse, respectively. Accordingly, the notation Y �1;2�s , E �1;2�sm ,
w �1;2�sm has been used in Fig. 7 to denote Ys, Esm, wsm deéned
for the érst and second pulses. Note that the envelopes of
the érst and second signal pulses have opposite signs, i.e.,
these pulses have a phase difference equal to p.

Fig. 8 shows the dependences of the local gains G �1� and
G �2� of the érst and second signal pulses on s. The constant
values of G �1� and G �2� (the plateaus in the curves) over a
certain interval of s indicate that the signal pulse grows
exponentially with s over this interval. This is in accord with

the results of the analytical theory of the linear stage of the
transient double resonance [5]. For tp � 0:7 and 2.1
(a � 2:25), expression (6) gives G �1� � 1:0 and G �2� � 2:3,
while the numerical experiment gives the values G �1� � 0:9
and G �2� � 2:0. These small discrepancies are due to the
difference of the parameter b from unity. An interesting
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feature of the process under study is that the second 2p-
pump pulse, being much weaker than the érst one, ensures a
larger gain for the signal pulse at the initial stage than the
érst pump pulse (G �1� > G �2�).

However, the second 2p-pulse disintegrates for s > 12
after transfer of its energy to the second signal pulse (see
Fig. 7b), which in turn leads to a stabilisation of the peak
value of the second signal pulse. However, the érst 2p-pump
pulse continues to amplify its signal pulse exponentially up
to s � 25 (see Fig. 8). Consequently, the steady-state peak
value of E

�1�
sm for s > 30 is almost three times larger (in

magnitude) than the steady-state value of E �2�sm (see curves 3
and 4 in Fig. 7b). Thus, the large energy of the first 2p-
pump pulse ensures a high peak value of the signal radiation
pulse at suféciently large distances.

5. Estimates

We will perform the dimensional estimates for the case of
formation of two 2p-pump pulses in the saturated indium
vapour at T � 1020 K. The condition Ap � 4 indicates that
there is a pump pulse with an envelope in the form of a
hyperbolic secant at the entrance to the resonance medium,
the duration and the maximum intensity of this pulse being
3:4� 10ÿ10 s and 17.6 kW cmÿ2, respectively. The input
pump pulse is transformed into two individual 2p-pulses at
a distance of about 3 cm from the input surface, The érst
2p-pulse has a maximum intensity of 36 kW cmÿ2, which is
about double the intensity of the input pump pulse, and a
duration 1:2� 10ÿ10 s. The maximum intensity of the
second 2p-pulse is 4 kW cmÿ2, and its duration is
3:6� 10ÿ10 s. Using Eqn (5), we énd from Fig. 7c that
the propagation velocities of the érst and second 2p-pulses
are 0.55 and 0.15 c, respectively. Before disinitegrating, the
érst and the second 2p-pulses traverse distances equal to 16
and 9 cm respectively in the medium.

It is convenient to start the description of signal
radiation from the second signal pulse, which is at the
stage of ampliécation right up to distances � 11 cm and
whose intensity attains the value 10 kW cmÿ2 at the end of
this path. At distances exceeding 11cm, the peak value of the
envelope of this pulse remains unchanged. The second signal
pulse undergoes exponential ampliécation at distances
between 2 and 8 cm for a dimensional gain factor
2.6 cmÿ1. The érst signal pulse is ampliéed to distances
right up to 30 cm from the input surface. The maximum
energy êux density attained at the end of this path is
66 kW cmÿ2, which is about four times the corresponding
value for the input pump pulse. The duration of this pulse is
less than one-éfth of the duration of the pump pulse at the
entrance to the resonance medium. At distances between 4
and 16 cm, the érst signal pulse is at the stage of exponential
growth with a gain coefécient 1.3 cmÿ1.

6. Conclusions

Our investigations have shown that in all the cases
considered by us, the pump pulse energy is transformed
almost entirely into the signal radiation energy. However,
the exponential signal ampliécation is due to the presence
of signal 2p-pulses in the pump channel. The 2p-pulse with
the lower energy ensures a larger gain for the signal pulse at
the stage of exponential growth of the latter. Having
absorbed a signiécant part of the pump pulse energy, the

signal pulse may have a much higher peak value of the
energy êux density than the input pump pulse, but its
duration may be much shorter.

Dimensional estimates indicate that the characteristics of
laser radiation and of the resonance medium required for an
experimental observation of the effects under study are
attainable in actual practice. The proposed theory is
conéned to the case of strict equality of the carrier frequency
of each pulse to the central frequency of the corresponding
quantum transition. Note that the absence of resonance at
the linear stage substantially modiées the interaction of
pulses. In particular, the signal radiation experiences the
additional amplitude and frequency modulation [4, 5].
Further investigations will be aimed at an abandoning of
the strict resonance condition.
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