
Abstract. The dynamics of interaction of an electromagnetic
éeld with a two-level atom uniformly moving in an open
resonator is analysed. The probability of the radiative
transition of an excited atom to a lower state is studied as a
function of the slope of its trajectory relative to the resonator
axis and of the detuning of the atomic transition frequency
from the resonator mode frequency. The study was performed
in the case of strong coupling by the method of dressed states.
The complicated dependences of the transition probability on
the detuning and the slope of the atomic trajectory are
analysed for small angles (� 18) for typical experimental
conditions. It is shown that under certain conditions, a éeld
can be eféciently excited in the resonator by atoms whose
transition frequency considerably differs from the éeld-mode
frequency when the detuning is not close to the Doppler shift.

Keywords: Rabi frequency, interaction of a two-level atom with a
éeld, transition probability.

1. Introduction

The simplest model of the interaction of matter with an
electromagnetic éeld is a two-level atom interacting with
monochromatic radiation. Despite its obvious simplicity,
this model can explain and predict a number of effects
studied by quantum electronics, both qualitatively and
quantitatively. In this model, the interaction of an electro-
magnetic éeld with an atom in a resonator is characterised
by the coupling constant

g0 � d

�
2poa

�hV

�1=2
,

where d is the projection of a transition dipole moment of
an atom on the direction of polarisation of the éeld mode
under study; oa is the transition frequency for a two-level
atom; and V is the resonator volume.

The model of interaction with a monochromatic éeld
(single-mode approximation) can be applied when the
interaction of the atom with the continuous spectrum of

the electromagnetic éeld of free space surrounding the
resonator can be neglected under some physical conditions,
because this éeld causes spontaneous radiation of the atom.
If we assume that the rate of spontaneous emission of the
atom is g and the emission loss rate in the resonator is k, the
atom will emit in two regimes, when g0 4 g, k (strong
coupling) or g0 5 g, k (weak coupling). The strong coupling
regime is characterised by the oscillatory dynamics of the
éeld in the resonator and of the atomic state, whereas the
weak coupling regime features the exponential decay. In this
paper, the strong coupling of an atom with the single-mode
resonator éeld is considered.

It is known that the transition frequency of a moving
atom increases or decreases, depending on the mutual
orientation of the velocity vector of the atom and the
wave vector of the éeld. In paper [1], the movement of
an atom was analysed in the éeld of a standing wave of a
resonator with êat mirrors, as well as a particular case of its
movement transverse to the fundamental mode of a reso-
nator with spherical mirrors. The dependence of the type of
oscillations of the atom on its velocity (in the case of the
resonator with plane-parallel mirrors, on the Doppler shift),
the coupling constant, and the detuning of the transition
frequency from the mode frequency was studied.

A series of recent experiments with micromasers [2 ë 9]
have demonstrated the possibility of obtaining the strong
coupling regime by using a cylindrical resonator and the
Rydberg atoms. The strong coupling regime was observed in
a number of experiments when Rydberg atoms propagated
through an open resonator [10 ë 14] in which the TEMn00

mode was excited. The theory that was used so far for the
interpretation of such experiments neglects the effects
related to the movement of atoms, which, in our opinion,
can result in a substantial discrepancy with experiments
under certain conditions.

In this paper, the dynamics of the interaction of an atom
with the éeld in an open resonator is analysed in the case
when the atom propagates through the resonator at an
arbitrary angle to its axis. The calculations performed within
the framework of the theory developed in this paper
demonstrate an extremely high sensitivity of the dynamics
of the éeld and atomic state to the relation between the
parameters of the atomic movement (the velocity and
direction of the movement) and the coupling parameter,
as well as to the detuning of the atomic transition frequency
from the resonator frequency.

It is shown that the motion of atoms should be taken
into account in the analysis of current experimental studies
[9 ë 15].
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2. Transition probability

We represent the Hamiltonian of a nonconservative system
consisting of a two-level uniformly moving atom and a
mode of the quantisied electromagnetic éeld of a resonator
with frequency oc in the form

H�t� � �hoca
�a� 1

2
�hoas

z � �hg�t�B, (1)

where the operator

B � a�b� b�a (2)

of interaction of the éeld with the atom is written in the
rotating wave approximation in terms of the operators of
transitions between the upper j"i and the lower j#i states of
the atom: b � j#ih" j, b� � j"ih# j; s z � b�bÿ bb� is the
inversion operator.

Consider the case when a moving atom intersects an
open resonator with spherical mirrors through its centre at
an angle of f to the transverse axis x of the resonator.
Assuming that the movement of the atom along this axis
passing through the resonator centre is described by the
expression x(t) � vxt, we place the origin of coordinates
(x � 0) at the distance L=2 from the resonator centre. In this
case, the dependence of the coupling parameter (1) on time
has the form

g�t� � g0 cos

�
kc

�
vztÿ

L

2

vx
vz

��
exp

�
ÿ
�
vxtÿ L=2

w0

�2 �
,

g0 � d

�
2poa

�hV

�1=2
, (3)

where kc � oc=c is the wave vector of the resonator mode
and w0 is the radius of the waist of the Gaussian
distribution of the fundamental resonator mode. One can
see that the coupling parameter depends on the spatial
distribution of the éeld in the resonator and the velocity
vector v � vfsinf, 0, cosfg.

In the case of the uniform movement of atoms consi-
dered here, the coupling parameter can be written in the
form

g�t� � g0 cos�ODt� DOtÿ j� exp
�
ÿ
�
vxtÿ L=2

w0

�2 �
, (4)

OD �
vz
c
Oa, DO � vz

c
Do, j � L

2

vx
vz

, (5)

where OD is the Doppler shift of the atomic transition
frequency and Do � oc ÿ oa is the detuning of the atomic
transition frequency from the resonator-mode frequency. It
is also assumed that the éeld mode is not degenerate
because the distance between the resonator mirrors does
not equal exactly to the radius of curvature of the mirrors,
which have in turn weak ellipticity.

The time evolution of the atom interacting with the éeld
is described in the Schr�odinger representation by the
propagator (the evolution operator)

U�t; t0� � 1ÿ i

�h

� t

t0

H�t 0�U�t 0; t0�dt 0; (6)

and the state vector at the instant of time t has the form

jc�t�i � U�t; t0�jc�t0�i. (7)

Let us divide a énite time interval �t0, t � into a great
number M4 1 of small segments Dt and assume that the
time dependence of the Hamiltonian of the system can be
neglected. Then, the time evolution of the system in each of
the segments is described by the propagator

jc�tj�i � exp

�
ÿ i

�h
H�tj�Dt

�
c�tjÿ1�i,

tj � tjÿ1 � Dt, j � 1,... ,M, (8)

and the state vector of the system at the instant of time t is

jc�t�i � exp

�
ÿ i

�h
H�tM�Dt

�
exp

�
ÿ i

�h
H�tMÿ1�Dt

�

::: exp

�
ÿ i

�h
H�t1�Dt

�
jc�t0�i, Dt � t

M
. (9)

Below, we will consider the case when the atom is in an
excited state at the initial instant of time t0 � 0, while the
éeld is in a vacuum state, i.e., jc(t0 � 0)i � j0,"i.

By using (1), (2), (4), (8), and (9), we obtain the recurrent
expression [1]

jc�t � tM�i � A�;Mj�; 0it�tM � Aÿ;Mjÿ; 0it�tM , (10)

for the state vector of the system at the instant of time t,
where A�;M are calculated using the recurrent relations

A�;tj � exp
�ÿ iO�;0�tj�Dt

��
cos�Dy0; j�A�;tjÿ1

� sin�Dy0; j�Aÿ;tjÿ1
�
,

Aÿ;tj � exp
�ÿ iOÿ;0�tj�Dt

��ÿ sin�Dy0; j�A�;tjÿ1 (11)

� cos�Dy0; j�Aÿ;tjÿ1
�
,

Dy0; j � y0�tj� ÿ y0�tjÿ1�

for any 0 < j4M and

A�;t1 � sin
�
y0�Dt�

�
exp

�ÿ iO�;0�Dt�Dt
�
,

(12)

Aÿ;t1 � cos
�
y0�Dt�

�
exp

�ÿ iOÿ;0�Dt�Dt
�
.

The function y0(t) appearing in (11) and (12) has the form

y0�t� �
1

2
arctan

�
2g�t�
Do

�
. (13)

The dynamic Rabi frequency in vacuum is described by the
expression [1]
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O�;0�t� � �
��

Do
2

�2
� g 2�t�

�1=2
. (14)

The probability of the atomic transition to a lower state
accompanied by emission of a photon into the resonator
mode is

P#�t� � jh1# jc�t�ij2� j cos�y0�t��A�;t ÿ sin�y0�t��Aÿ;tj2. (15)

We assume in our calculations that the de Broglie
wavelength l � h=(mv) (where m is the atom mass) is far
shorter than the wavelength of the resonator mode
lc � 2p=kc, i.e., the mass of the atom and (or) its velocity
is high. The assumption about the uniformity of the
movement of the atom, i.e., the neglect of the recoil
momentum upon emission of the photon requires that
the binding energy �hg0 should be small compared to the
kinetic energy mv 2=2 of the atom. The applicability of the
classical approximation to the problem of the interaction of
an atom moving in a resonator is analysed in detail, for
example, in paper [16].

We also assume that the Q factor of the resonator is high
enough for the time of interaction of the atom with the éeld
to be much shorter than kÿ1, where k is the rate of éeld
dissipation due to losses at the resonator mirrors. The
conditions considered here were realised, in particular, in
papers [3, 4, 6, 14], where the authors used the usual
Jaynes ëCummings model.

The iteration formula for the evolution operator (6) has,
in the interaction representation, the form

U�t; t0� �
X1
n�0

�ÿi�n
n!

� t

t0

dtn

� t

t0

dtnÿ1:::
� t

t0

dt1

�T �V�tn�V�tnÿ1�:::V�t1��, (16)

U�t; t0� � T

�
exp

�
ÿ i

� t

t0

V�t 0�dt 0
��

, (17)

where

V�t� � ÿDo
2

s z � g�t�B. (18)

The symbol T in (16) and (17) denotes the time ordering of
the operators in the integrands. Because the operator V(t)
commutes with itself for any t1 6� t2, there is no need to
perform the time ordering in (17) in our case.

As follows from (17), the wave function of the system
can be found for any instant of time t using the relation

jc�t�i �
�
1�

X1
n�0
�ÿi�n 1

n!

� � t

0

dt 0V�t 0�
�n�
j0; "i. (19)

We énd from (19) that the transition probability can be
written as a series

P#�t� �
����I�t�X1

n�0
�ÿ1�n

�
I 2�t� � d 2�t��n
�2n� 1�!

����2, (20)

where

I�t� � g0
kcv sinf

� b�t�

a
exp�ÿct 2� cos tdt; (21)

a � ÿ kcL

2
tanf; tanf � vz

vx
; b�t� � kc

�
vt sinfÿ L

2
tanf

�
;

c �
�
cotf
kcw0

�2
; d�t� � ÿDo

2
t .

In the case of the exact resonance Do � 0, we obtain from
(20) and (21)

P#�t� � sin2�I�t��. (22)

Expression (20), which allows one to calculate easily the
transition probability in the case of a small detuning of the
atomic transition frequency from the mode frequency,
becomes inconvenient at large detunings when the alter-
nating series in (20) converges very slowly. In this case, the
transition probability can be easily calculated from
expression (15).

Let us énd now from (22) the probability of emission of
a photon by an atom moving through a resonator, i.e., the
value of P#(t) for t � L=v under the condition that L4 2w0.
We will consider the case of small detunings Do5 g0. One
can easily see that

P#�t � 1��sin2
� ���

p
p g0w0

v cosf
exp

�
ÿ
�
w0oc

2cL
tanf

�2 ��
, (23)

where cL is the velocity of light.
It follows from (23) that for

g0w0

v cosf
���
p
p

5 1, v4
g0w0

cosf

���
p
p

the energy exchange between the excited atom and the
resonator is impossible, and the states of the atom and éeld
remain unchanged during the entire transit time of the atom
in the resonator. The angle between the direction of the
velocity vector of the atom and the transverse axis z of the
resonator during the passage of the atom through the
resonator centre is 04f < fmax, where fmax �
arctanfm�vÿ 1� �1ÿ mÿ 2�1=2�g; m � R=A; R is the radius
of curvature of resonator mirrors; 2A is the diameter of the
mirrors; v � D=(2R); and D is the distance between the
mirrors. The radius of the waist of the Gaussian mode of
the resonator with the geometry close to the confocal one
can be found from the expression

w0 �
�
2R

kc

�
D

2RÿD

�1=2 �1=2
.

3. Rabi oscillations of a moving atom

The parameters of an almost confocal resonator used in the
calculations performed within the framework of the theory
presented above were similar to those used in paper [10],
where Rabi oscillations of a Rydberg atom leaving the
resonator were directly observed by varying the time of
interaction (the atom velocity) between the atom and éeld.
The radius of curvature of almost spherical mirrors was
R � 4 cm, the distance between them was D � 2:75 cm, and
the diameter of the mirrors was 2A � 4 cm (see also [11,
12]). The degeneration of the TEM900 mode used in the
experiment was removed by making the resonator mirrors
weakly elliptic. The fundamental-mode frequency was oc �
3:21� 1011 sÿ1 and the radius of the waist of the Gaussian
distribution of the éeld was w0 � 0:596 cm.
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Consider the atoms passing through the resonator centre
at an arbitrary angle of their rectilinear trajectories to the x
axis (04f < fmax). Note that the trajectories of the atom
inside the resonator passing through its centre do not
exhaust all the possible trajectories of the rectilinear motion.
However, taking into account that under our conditions,
fmax � p=16 � 11:258, which is a small value, the trajecto-
ries that do not pass through the resonator centre have
much smaller slopes relative to the resonator axis because a
source of atoms is removed from the resonator by the
distance that greatly exceeds the resonator size. For this
reason, no calculations for such trajectories were performed.

Fig. 1 shows the time dependence of the transition
probability P#(t) for f � 68 for the initially excited atom
and the vacuum state of the resonator. As follows from (23),
for f � 0, the absorption resonance (P#(1) � 1) is possible
for g0w0=(v

���
p
p

) � n� 1=2 and the transmission resonance
(P#(1) � 0) for g0w0=(v

���
p
p

) � n, where n is an integer. In
the érst case, a photon is captured by the resonator, while
the atom in the lower state leaves the resonator. In the
second case, the state of the atom passing through the
resonator does not change (the resonator is transparent).
The parameters v, g0, and Do given in Fig. 1 correspond to
the capture (absorption) resonance for f � 0 (i.e.,
P#(1) � 1). It follows from Fig. 1 that the probability of
the photon capture sharply decreases even at the small slope
f � 68:

In the case of a énite detuning Do! g0, the resonator
becomes transparent for f � 0 at any velocity. The shape of
oscillations of the probability or of the average number of
photons proves to be very sensitive to the magnitude of
detuning Do � g0 even at its small, but comparable with the
coupling constant g0, values.

Fig. 2 shows the dynamics of the transition probability
for the nonzero slope of the velocity vector of the atom
relative to the resonator axis for the detuning Do � 0:2g0.
One can see from Fig. 2 that the probability of the escape of
the atom in the lower state from the resonator depends
strongly and nonmonotonically on the angle f. Fig. 3 shows
the dependence of P#(1) on the angle f, which was

obtained from expression (23) for three velocities of the
atom. One can see that this dependence becomes very strong
with decreasing velocity. At the same time, when the
trajectory of the atom is not parallel to the x axis, the
transition probability strongly changes even at high veloc-
ities. Note that at some angles the probability of emission of
a photon into the resonator proves to be independent of the
atom velocity. Such separated directions of the movement of
the atom inside the resonator under study correspond to
angles f � 38 and f � 8:48.
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P# v � 8:122� 103 cm sÿ1, g0 � 1:57� 105 sÿ1, Do5 g0, f � 68

Figure 1. Probability P(# ) of the radiative transition in the excited atom
to the lower state during its movement in an almost confocal resonator
as a function of the dimensionless time tR �ORt=p (solid curve). The
dashed curve shows the dependence cosfkc�v cosftR ÿ (l=2) cotf�g
� expfÿ�(v sinftRÿ(L=2))=w0�2g, and the dotted curve shows Rabi
oscillations of an atom at rest.

a

0 5 10 15 20 tR

0

0.2

0.4

0.6

0.8

1.0

P# v � 8:122� 103 cm sÿ1, g0 � 1:57� 105 sÿ1, Do � 0:2g0
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Figure 2. Same as in Fig. 1 for the angles between the atom trajectory
and the resonator axis f � 68 (a) and f � 11:258 (b) but for Do � 0:2g0.
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v � 5� 103 cm sÿ1
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v � 1:2� 104 cm sÿ1

Figure 3. Dependences of P#(1) on the angle f between the trajectory of
the atom and the resonator axis for Do � 0:01g0 and different velocities v.
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Fig. 4 shows the dependence of P#(1) on the detuning
Do for different angles f. One can see that for f 6� 0, the
oscillations of the probability P#(1) exhibit the dependence
on Do that is typical for the Rabi oscillations of the moving
atom [1]. As the Doppler shift OD increases with increasing
angle f, the compensation of the detuning of the transition
frequency from the resonator-mode frequency occurs, and
the transition probability increases at Do � OD. Note that
the maximum of the curve corresponding to f � 118 is
observed when 2:3OD � Do, whereas for the resonance
condition Do � OD [1] and a smaller detuning, the tran-
sition probability becomes substantially lower.

The property found in this calculation leads to the
following conclusion. When an excited atom with the
transition frequency that substantially differs from the
mode frequency moves at a certain angle to the resonator
axis, the energy of the atom can eféciently transfer to the
resonator mode at jDoj 6� OD. Note that an atom with the
transition frequency detuned from the mode frequency
cannot excite the éeld in the resonator when it moves along
the resonator axis [1], i.e., in the case of a common
conéguration used, for example, in the Ramsey spectro-
scopy [12] and in microlaser experiments [15].

4. Conclusions

The calculations performed in this paper showed that the
movement of an atom plays an important role in the
theoretical interpretation of experiments with atoms mov-
ing in a resonator (in particular, in micromaser and
microlaser conégurations), as well as in spectroscopic
Ramsey measurements.

In the case of a small detuning of the atomic transition
frequency from the mode frequency jDoj5 g0, the average
number of photons in the resonator after the propagation of
the atom through the centre of the open resonator with
spherical mirrors exhibits oscillations depending on the
atom velocity. When g0w0=(v

���
p
p

) � n� 1=2, the atom
transfers a resonance photon to the resonator with the
unit probability. If g0w0=(v

���
p
p

) � n, the atom leaves the
resonator in the initial excited state, whereas the resonator
éeld remains unchanged. For jDoj � g0, the average number
of photons in the resonator decreases with increasing
detuning, and the probability of the éeld excitation in

the resonator is close to zero already at jDoj � g0. When
the atom moves in the resonator at an angle to its axis, the
probability of excitation of the resonator by the non-
resonance atom exhibits the nonmonotonic dependence
on the slope even at small values of the slope.

As the slope f and the atom velocity v increase, i.e.,
when the Doppler shift OD increases, the eféciency of
excitation of the éeld in the resonator by the atom with
the detuning Do strongly increases. In this case, the
detuning can be large (jDoj � OD). Depending on the
parameters of the system, the excitation probability proves
to be maximal for jDoj > OD, i.e., in the absence of a
complete compensation for the detuning by the Doppler
shift. Therefore, the efécient compensation for the detuning
is achieved in the given conéguration under special con-
ditions (for a certain angle between the atom trajectory and
the resonator axis). The excitation probability is high at a
certain detuning for each value of the angle f.

For small detunings (jDo�5 g0), the probability of
deexcitation of the atom and excitation of the resonator
mode after the propagation of the atom is extremely
sensitive to the value of the angle f, especially, at low
velocities of the atom. It has been also found that the
transition probability is independent of the atom velocity for
some angles f. These angles are determined by the resonator
geometry and the coupling parameter of the atom with the
éeld.
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