
Abstract. It is shown that a quartz crystal, which is placed
inside a telescope and whose optic axis is parallel to a light
beam, can reduce the depolarisation of radiation caused by
thermally induced birefringence in a Faraday isolator. The
isolation ratio was experimentally increased by a factor of
eight. An important advantage of this method over previous
methods is that standard commercial Faraday rotators can be
used.
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induced birefringence, depolarisation.

1. Introduction

Thermal effects caused by absorption of laser radiation in
Faraday isolators [1 ë 6] are one of the factors preventing
the development and use of high-power single-mode solid-
state lasers. Many applications (see, for example, [7, 8])
require a combination of the high average radiation power
with a low non-isolation of a Faraday isolator, i.e., with a
high isolation ratio. Thermal effects resulting in the
depolarisation of laser radiation and, hence, reducing the
isolation ratio, namely, the temperature dependence of the
Verdet constant and the photoelasticity have been studied
for the érst time in papers [9 ë 12]. In paper [10], it was
predicted theoretically that the photoelasticity effect limits
the isolation ratio at high average powers, whereas the
temperature dependence of the Verdet constant can be
neglected. This conclusion was conérmed experimentally in
papers [11, 13, 14].

In paper [10], the quality parameter was determined
which characterises a magnetically active medium from the
point of view of minimisation of the non-isolation at high
average radiation powers. This parameter was measured for
a terbium gallium garnet (TGG) crystal and some magneti-
cally active glasses in papers [15, 16]. The dependence of the

Faraday-isolator non-isolation on the orientation of a mag-
netically active crystal was studied in detail in paper [15].

In paper [12], two new schemes of a Faraday isolator
were proposed and theoretically studied which provide a
partial compensation for self-induced depolarisation in a
magnetically active medium. The schemes contain three
optical elements: two Faraday rotators, each of them
rotating the polarisation plane through 22.58, and a recip-
rocal optical element placed between them. The experiments
[13, 14] conérmed the high eféciency of these schemes.

However, the use of two Faraday rotators is not always
convenient and results in an increase in the Faraday-isolator
size. In addition, it is virtually impossible to employ
standard commercial Faraday isolators in this case because
the magnetic system and optical elements should be sub-
stantially rearranged. In this paper, we proposed and
experimentally implemented a new method of compensating
for depolarisation in a Faraday isolator, which allows the
use of standard 458 Faraday rotators in high-power laser
systems.

2. Increasing the isolation ratio with the help of
a quartz rotator

Our method of compensation for depolarisation in a
Faraday isolator is based on the use of a phase plate
capable of subtracting all phase incursions acquired by a
light beam in the Faraday element. Such a phase plate
should have the same transverse distribution of eigen
polarisations as the Faraday rotator and should have the
same transverse distribution of the phase difference, but
only with the opposite sign. In this case, radiation
propagated successively through two such phase plates
will retain its initial polarisation. The nonreciprocal
properties of the Faraday isolator (rotation of polarisation
through 908 after two transits) are also retained.

In the presence of the temperature gradient, a super-
position of two types of birefringence takes place in the
Faraday element: circular birefringence (Faraday effect) and
linear birefringence (photoelastic effect). Circular birefrin-
gence is characterised by the phase incursion dc, which is
independent of polar coordinates r and j because we neglect
the temperature dependence of the Verdet constant. Linear
birefringence is characterised by the phase incursion dlin and
by the tilt angle of eigen polarisations. In a cylindrical
element made of glass or a cubic crystal with the orientation
[111], the value of dlin is independent of j and is propor-
tional to r 2 near the beam axis, while eigen polarisations are
directed along the radial and tangential directions, i.e., their
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tilt angle equals j. (This is not the case when crystals with
other orientations are used [15, 17]; however, we will not
consider these cases.) Due to the superposition of the two
types of birefringence, the eigen polarisations of the Fara-
day element become elliptical, the tilt angle of the axis of the
ellipse being j, while the ellipticity and the phase difference
being dependent only on r.

It is known that the superposition of linear and circular
birefringence also takes place upon the propagation of a
plane wave in crystalline quarts at an angle of y to the optic
axis. The phase incursion dq lin for linear birefringence
depends quadratically on y for y5 1, whereas the phase
difference for dq c circular birefringence weakly depends on y
for y5 1.

Upon the propagation of a converging or diverging
beam (Fig. 1), the tilt angle of the eigen polarisation of
linear birefringence equals j, while the angle y is propor-
tional to r, i.e., dq lin � r 2. Therefore, the distributions of the
ellipticity of eigen polarisations and of the phase shift bet-
ween them in the Faraday element and a quartz crystal are
close to each other, while the tilt angles of the ellipse exactly
coincide. If the directions of polarisation rotation in the
Faraday element and quartz are opposite (i.e., dc and dq c
have opposite signs), depolarisation can be compensated
after the successive propagation of the light beam through
the Faraday element and the quartz crystal.

Let us énd conditions for the most efécient compensa-
tion. Because the laser beam simultaneously records
distortions (being a thermal source) and reads them, the
self-action depends on the transverse intensity distribution,
in particular, on the rate of its decrease from the centre to
periphery [18]. The compensation eféciency also can depend
substantially on the beam shape because the dependence
dlin(r) is completely determined by the intensity distribution.

Consider a super-Gaussian beam with the radius r0:

Ein � E0x0 exp

�
ÿ r 2m

2r 2m0

�
, (1)

where x0 is the unit vector along the x axis and the
parameter m characterises the rate of the intensity fall. For
m � 1, the intensity falls rather slowly (a Gaussian beam).
As m increases, the rate of the intensity fall increases, and
for m!1 the beam shape tends to rectangular.

The Jones matrices for the Faraday rotator (F ) and
quartz (Rq ) have the form [10, 19, 20]
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Here, L, (1=L)dL=dT, v, k, n, pij are the length, the thermal
expansion coefécient, Poisson's ratio, the thermal conduc-
tivity, the refractive index, and the photoelasticity
coefécients for a magnetically active medium in the two-
index notation [21], respectively; T is the temperature; l is
the wavelength in vacuum; P0 is the radiation power; no
and ne are the refractive indices for the ordinary and
extraordinary waves in quartz; n � (no � ne)=2; Dnc is the
difference of refractive indices for the right-hand and left-
hand polarised waves in quartz for y � 0; and f is the focal
length of lens ( 3 ). We neglected the temperature depen-
dence of the Verdet constant and took into account that dc
and dq c have opposite signs (see above). In addition, we
took into account that y � r=(nf ) in the paraxial approx-
imation.

If the beam that has passed through polariser ( 1 ) (see
Fig. 1) is described by expression (1), then the beam incident
on polariser ( 6 ) is determined by the expression

Eout � FRqEin. (4)

Hereafter, we assume that the transit from polariser ( 1 ) to
polariser ( 6 ) is a backward transit of radiation through the
Faraday isolator, for example, from ampliéers to a master
oscillator. Therefore, in the case of an ideal isolation, all
radiation should be reêected by polariser ( 6 ) and no
radiation should pass through polariser ( 6 ) to the master
oscillator.

The non-isolation g (the ratio of the radiation power
transmitted by polariser ( 6 ) to the output power) is
determined by the expression

g �

� 2p

0

�1
0

jEouty0j2rdrdj� 2p

0

�1
0

jEoutj2rdrdj
. (5)
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Figure 1. Scheme for compensation for depolarisation in a Faraday
isolator: ( 1, 6 ) crossed polarisers; ( 2 ) 458 Faraday rotator; ( 3, 5 )
telescope lenses; ( 4 ) 458 quartz rotator; (y ) angle between the wave
vector and the optic axis of a quartz crystal; (r) polar radius.
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Hereafter, we will neglect the aperture losses and will
integrate over r in (5) up to inénity.

Consider érst the case of weak linear birefringence in a
Faraday element

dlin 5 1. (6)

Because dq lin should be close to dlin to obtain the efécient
compensation, we will assume that dq lin 5 1. In this case, by
substituting (1) ë (4) into (5) and integrating, taking into
account (6), we obtain
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For pq � 0, we obtain from (7) the known expression for
the non-isolation gold in the traditional scheme of a Faraday
isolator [12, 18]

gold �
�
1� 2x

3

�2
p 2

p 2
A1�m�. (8)

One can see from (7) that g depends on two dimension-
less parameters: the normalised radiation power p and the
normalised birefringence pq in quartz. Note that pq depends
quadratically on the beam convergence angle ro=f.

One can see from (7) and (8) that the compensation of
depolarisation is possible only when pq and p have opposite
signs because otherwise g > gold for any pq. Physically, this is
explained by the fact that the phase incursions in Faraday
rotator dlin and quartz dq lin should have opposite signs.
Because no > ne in quartz, we have pq > 0. The sign of p is
determined by the sign of Q. We determined the signs of Q
for a magnetically active MOS-115-35 glass and a TGG
crystal using the method described in paper [22]. In both
cases, Q < 0, which shows that the compensation can be
achieved by the method proposed. Note that when Q > 0,
this method also can be used by placing an additional 908
polarisation rotator between Faraday rotator ( 2 ) and lens
( 3 ). The calculation shows that this will result in a change
of the sign plus to minus in front of the second term in
expression (7).

By differentiating g with respect to pq and equating the
derivative to zero, we obtain the optimal value of pqopt and
the minimal non-isolation

gmin �
�
1� 2x

3

�2
p 2

p 2
�A1�m� ÿ A0�m��. (9)

3. Experimental results and discussion

We used in the experiment (Fig. 1) linearly polarised
radiation from a cw Nd :YLF laser (Photonics Industries)
with the transverse intensity distribution close to Gaussian,
which corresponds to m � 1. Iceland calcite wedges were
used as polarisers. We also used a commercial Faraday
rotator (with the rotation angle 458) based on a TGG

crystal. The non-isolation was determined using power-
meters. By changing the distance between telescope lenses,
we could compensate the thermal lens of the Faraday
rotator. Note also that we can use a telescope consisting of
the positive and negative lenses, which allows us to reduce
its length down to 1 cm. The experiments were performed
in two geometries with the focal lengths of lenses f � 88 and
125 mm. For each geometry, the dependence of g on the
radiation power was measured.

Fig. 2 shows the experimental dependences gold(P0) and
g(P0) for the two above values of f. Thermal effects are weak
at low powers, and gold is determined by `cold' birefringence
in the medium, while g is determined only by the value of pq.
In this case, g(P0 ! 0) > gold(P0 ! 0), i.e., the traditional
scheme provides a better isolation at low powers. Note that
the Faraday isolator proposed in papers [10 ë 12] does not
have this drawback. When power is increased up to the
optimal value Popt, depolarisation g decreases and reaches
the minimum. As P0 is further increased, the non-isolation g
begins to grow.

Fig. 2 also shows the theoretical dependences gold(P0)
and g(P0) plotted by expressions (7) and (8). The product Qa
for a TGG crystal was measured by the method described in
papers [15, 16]. Without compensation (curve 1, Fig. 2), the
theory well agrees with the experiment at high powers when
the thermally induced non-isolation is far greater than the
`cold' non-isolation gcool � 2:5� 10ÿ4. For f � 125 mm, the
experimental value of gmin is substantially greater than the
theoretical value. This is explained by the inêuence of the
`cold' non-isolation, which exceeds the theoretical value of
gmin by a factor of 2.5 in this case.

The excess of the experimental value of Popt over its
theoretical value is probably explained by the same reason.
At high powers, the inêuence of `cold' depolarisation is
negligible (gcool 5 g), and the theoretical and experimental
values of g coincide. For f � 88 mm (curve 3 ), the exper-
imental value of Popt well agrees with the theoretical value.
The experimental values of g are somewhat greater than
theoretical values, but the difference is not great.

The ratio Gmax � gold=gmin is the most important from
the practical point of view. It shows how much the isolation
ratio can be increased by using the method proposed here.
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Figure 2. Non-isolation gold(P0) of the traditional Faraday-isolator
scheme ( 1, circles) and non-isolation g(P0) with a quartz compensator
for f � 125 ( 2, rhombs) and 88 mm ( 3, squares). Theoretical dependen-
ces are plotted by expressions ( 7 ) and ( 8 ).
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We obtain from (8) and (9)

Gmax�m� �
A1�m�

A1�m� ÿ A0�m�
. (10)

Table 1 presents the values of A0, A1 and Gmax for different
m. One can see that the compensation eféciency increases
substantially with increasing m, which can be simply
explained as follows. The higher m, the closer the beam
proéle to the rectangular one and, hence, the closer the
temperature distribution to a parabolic distribution. The
quantity dlin is proportional to r 2 only for a parabolic
distribution of temperature [18]. In this case, for the
optimal value of pq, we have dlin � ÿdq lin at any point of
the beam cross section and depolarisation is completely
compensated: Gmax !1. We obtained the experimental
value Gmax � 8 instead of the theoretical value
Gmax(m�1)�11:5. This difference is caused by the beam
ellipticity and by the fact that lens ( 3 ) and the laser beam
are not perfectly coaxial.

The value of Gmax is independent of the radiation power
[see expression (10)] only when the condition (6) is satiséed.
In the general case, the numerical integration of (5) taking
into account expressions (1) ë (4) shows that the value of
Gmax decreases with increasing parameter p (Fig. 3). This is
explained by the saturation of the dependence gold(p) for
p � 1 because depolarisation decreases with increasing dlin
from p to 2p [11, 12]. The latter circumstance also concerns
dq lin, but the difference of the dependence dlin(r) from a
parabola increases with increasing p, and, hence, Gmax

decreases. For a rectangular beam proéle (m � 1),
gmin � 0 for any dlin.

4. Conclusions

The eféciency of the method for compensation and
depolarisation of a Faraday isolator substantially depends
on the beam proéle, being maximal for a rectangular beam

and minimal for a Gaussian beam. In the latter case, the
isolation ratio increases by an order of magnitude for p < 2,
which corresponds to the radiation power P0 < 1 kW for a
TGG crystal [15] and P0 < 200 W for glass [16]. An
important advantage of this method over the methods
considered in papers [12 ë 14] is the possibility of using
standard commercial Faraday rotators with the rotation
angle 458.

Note also that the use of a non-gyrotropic uniaxial
crystal instead of a quartz crystal allows the compensation
for depolarisation in active elements of lasers [23].
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Figure 3. Dependence of the increase in the isolation ratio Gmax on the
normalised power p for m � 1.
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