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Three-frequency thermal light scattering in electrolyte solutions

N.F.Bunkin, V.N.Strel’tsov

Abstract. Frequency-shifted scattering of a monochromatic
electromagnetic wave is considered in the electrolyte solution
upon intermediate absorption (emission) of a quantum of a
longitudinal fluctuation thermal field. The spectrum of
scattered emission is obtained depending on the plasma
parameters of the medium.

Keywords: thermal scattering, electrolyte solutions, Rayleigh scat-
tering.

The study of physical mechanisms of formation of the
Rayleigh scattering line wing has remained a classical
problem of molecular optics for several decades. Even the
compilation of a bibliography on this subject is not a simple
problem. The theoretical and experimental aspects of this
problem are discussed in detail in papers [1-5].

In recent papers [6, 7] of one of the authors of this work,
a new noise mechanism of scattering was proposed and
studied. The mechanism is based on the nonlinear multi-
photon interaction of the electromagnetic field of an
incident wave with the fluctuation thermal longitudinal
and transverse components of the field generated in an
ion subsystem. The parameters of the field of scattered
radiation are determined by the plasma parameters of the
ion component and by the spatial symmetry of the system.

All the fourth-order nonlinear optical susceptibilities of
usual isotropic media vanish in the dipole approximation.
For this reason, the fluctuation part of the scattering tensor
appears in the lowest order when the four-photon inter-
action of the incident, scattered, and thermal fields is taken
into account in the Lagrangian of the system, which
corresponds, in the case of small frequency shifts, to the
Kerr (in the thermal field) nonlinearity in the system. This
physical situation was considered in papers [6, 7].

In this paper, we study scattering of a plane mono-
chromatic wave in the electrolyte solution taking into
account the quadrupole cubic interaction of the incident
and scattered fields with the fluctuation thermal field of a
sample, which results in real or virtual Raman transitions in
a molecular system (Fig. 1).
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Figure 1. Three-photon up-conversion scattering (w., is the incident-
wave frequency, w, is the longitudinal thermal-field frequency, and Q is
scattered photon frequency).

Let us first determine the effective dipole moment
corresponding to the third-order tensor of quadrupole
scattering for an isolated molecule with a set of eigenstates
|n) with energies E,. We will consider only the longitudinal
component of the thermal field, which is described by a
random scalar potential ¢ (r) in the Coulomb gauge used
below. Under ordinary conditions, the correlation radius of
the potential ¢, of the thermal field exceeds the size of
scattering molecules, and the interaction of the thermal field
with molecules can be treated in the dipole approximation.

In the nonrelativistic limit, the interaction of a scatterer
with all the fields under study is described by the Lagrangian

ol
Ly = — ch [Aex(yat) +Aqu(”c€” —dE,, (1)

where d is the total dipole moment of a scattering molecule;
r, are radius vectors of charges ¢, in the molecule; o is the
index of summation over all charges of a scattering
molecule; A (ry), Aqu(r,) are the vector potentials of the
incident plane wave and quantised transverse scattered
field, respectively, taken at the positions of the correspon-
ding charges; and E, = —0¢,/0r. Without changing the
dynamics of the system, we can add the total derivative

d
a

to Lagrangian (1).
Then, Lagrangian (1) takes the form
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The total derivative of the vector potential 4 can be
written in the form

d4 24 n 0A or,

dr ot or, 0t

For r =0, the first term in this expression describes the
dipole interaction of a scatterer with the field, while the
second term describes the quadrupole interaction. Below,
we will consider the quadrupole interaction of a scatterer
with the incident-radiation field 4. taking into account
only the second term in the derivative d4/dz.

Note that at a sufficiently high concentration of ions, the
Debye shielding distance rp determining the correlation
radius for the longitudinal field E; can be comparable to the
wavelength ¢/w., of the scattered optical field: (we/c)
xrp ~ 1. Under such conditions, the quadrupole term
should be taken into account in the interaction of the
molecular system with the fluctuation field. Finally, we have

Liy = —d;Eq; — d;Ey; + ;diEexikjdjx-
CXqLX

Here, k is the wave vector of the incident wave; kE, = 0; i
and j are the subscripts corresponding to the components in
Cartesian coordinates (summation is performed over
repeated subscripts). To avoid cumbersome expressions,
we will assume that the system (1) contains one light
(compared to others) charged particle, which makes a
certain contribution to the electromagnetic interaction, and
omit the number o of this charge. The return to the general
case is obvious.

Consider the transition matrix element

M = {((Q, 4),0]U(0)|0,0).

The initial state corresponds to a vacuum state of the
quantised field and to the ground state of the scatterer. The
final state corresponds to a scattered photon with the
frequency Q and polarisation A; U(z) is the time evolution
operator.
The required matrix element appears in the third order
of smallness in the interaction potential
i

M, <(-QJ~),0|Jjjp[da(tl)Equa(Q)eiQh

- 3!coexq0ﬁ3

X dj(t2) E(12)d)(t3) Eex € " k o, (13)]d1,d12d13]0,0). (2)

Here, P is the time-ordered operator in the interaction
representation. The subscript o denotes now the compo-
nents of vectors d, Ey,, the subscript / — the components of
vectors d, E,, the subscript j — the components of vectors
d,E,, and the subscript p — the components of vectors k, d.

Let us introduce the notation

<r|d/(l)Eexl exp(_iwex t)kpdp(t)|n>

= exp[_it(wn — o, + wex)]kaexIK;lra (3)
for the quadrupole-transition matrix element, where

=3 i, - w)dd

d™ = (n|d|s);w, is the eigenfrequency of the state |n). By
expanding E(7) into the Fourier integral:

E (1) = JEl(w)e_i“”dw, “4)

substituting (3) and (4) into (2), and introducing in a
standard way the intermediate unit operators I =3 |n){n|,
we find, after the integration,

i
M; = _3h3—weququaEexlkatj(Q - wex)

on jnr jro
% Z [ Kpt 4 s
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N d;m K ;}1]) 7)_‘0 (5)
(‘Q - w/)(‘Q — Wex + W, — CO,,)

., &' syid)”

(Cl),) — W, — Q)((’Uex -Q +w, — (’Ur)

on gnr..ro
drx d] Kpi

((’00 — W, — Q)(wa — W, = wex)
d'Ondrll‘KI‘lO
i Yo Rp,
(CU(, — Wy + Q- a)ex)(a)o — W, — wex) .

When resonance transitions exist in the system, we should
introduce to the corresponding vanishing denominators the
imaginary terms describing the decay of excited resonance
levels. The matrix element (5) can be related to the effective
dipole moment d(¢) of the scattering system by considering
the first-order transition with the Hamiltonian H.p =
—d()E,(1).

Let us now calculate the intensity 7 of radiation scattered
at the frequency Q. The spectral component I(Q) is
determined by the expression

Q) ~ [E(t+t")E (1)eds.

The random function E; is stationary, and the spectral
components E(w) satisfy the equality (E;(Q — ey, 1)
XEG(0 — 0e, 1)) = 1//,-j(r,r/, Q)3(Q — w'). Thus, (I(Q)) is
determined by the correlator at the frequency Q — w,,.

The Poynting vector W of the scattered field in the wave
region in the direction of the unit vector w can be
represented in the form

c « C 2
— “EH = S Hw.
o [EH'] w

w
8

In the Fraunhofer zone, we have

H(Q) = (Q/¢)(1/16nR) J(d(Q,r)w)(d*(Q,r/)w)

x exp[(—iQ/c)(r — r')w]drdr’,

where integration is performed over the scattering volume;
R is the distance from the scatterer to the observation
point. By neglecting edge effects in the case of sufficiently
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large scattering volumes, it is convenient to use the Fourier
representation

Ey(w.r) = [Exw,p)e*"’dp. ©)

for the function E(w). The fluctuation field E,(r) can be
considered homogeneous with good accuracy, and we have
for the correlation function of Fourier transforms E(p)

(Ei(p,)Ey(p’, @) = f(p,®)3(p — p").

Therefore, we obtain in the general case the density of
the electromagnetic energy

2 QZ ? *
<H ) = 4cnR e/mre/}t.\-nynxXocij[erqrEexiEexq
X k/kifzm(Q - wexap) eXp[l(k —P— (Q/c)n)r]

x exp[—i(k — p — (Q/c)n)r'18(p — p")drdr'dpdp’. (7)

Here, y are the nonlinear susceptibility tensors determining
the dipole moment of the unit volume; e, are the Levi—
Civita symbols. In deriving (7), we neglected corrections for
the acting field. We also assumed that the scattering
medium is transparent for the incident light. The latter
condition corresponds to the inequality we > w,, where w,,
is the plasma ion frequency. In weak electrolytes under
usual conditions, this inequality is satisfied for the optical
range with a great margin.

In an isotropic medium, the tensor of fourth rank has
three independent base elements [8] 1y, Xpxy» Xapypy- Other
nondiagonal elements are obtained by a replacement of the
corresponding coinciding subscripts in pairs. Diagonal
elements are equal to the sum of the above elements.

We assume that the z axis of the chosen coordinate
system coincides with the direction of the wave vector k of
the incident wave and the x axis is directed along the vector
E.,. Then, the dipole moment d contains only the compo-
nents d,,d., which are determined by the components E;.
and E,,, respectively, of the thermal field. Consider radi-
ation scattered in the direction of the incident wave. Such a
configuration corresponds to the linear polarisation of
radiation with the vector H = {0, H,0}.

For definiteness, we will perform calculations for a
scattering sphere of radius p. After integration of (7)
over spatial coordinates r,r’ and p’, we obtain

o :
<H2> = W |X,\‘z,\'z|2|Eex|2k2 J.f;z(‘Q - wexvp)
sin(|k — k, — plp 2
H — pcos(|k —k, —plp)| dp
p
x|k —k, — p| . (8)

Here, k, = (Q/c)w. One can easily see that the integrand in
(8) has a removable singularity at p = k — k,,.

The correlation function f.. for the strength of the
longitudinal component of an electric field has the form
(see, for example, [9])

Q= p) =i P 7] T
S ex> P) i

Q-0 T) 1 p2/1 1
2n(Q — wyy) 212 p? ’

where

how how

0 T) =5+ oo k) = 1
is the mean energy of a Boson oscillator; T is temperature;
¢p 1is the longitudinal component of the permittivity of the
scattering medium; Dp = ¢ Ep; D is the electric induction
vector.

We will employ, as usual [9], the hydrodynamic model
for describing the ion component of the electrolyte solution.
Such models, corresponding to the zero- and second-order
moments of the velocity distribution function, adequately
describe collective excitations (with wavelengths exceeding
the Debye shielding distance) in systems of charged par-
ticles. Note that, under usual conditions, thermal excitations
at the frequencies corresponding to such wavelengths,
correspond to normal temperatures. We will further assume
that the charged component contains light and heavy ions
(as, for example, ions HY and OH ™ in water). It is obvious
that in this case the excitation in the system will be
determined by the dynamics of light particles against the
neutralising background of immobile heavy ions and neutral
molecules of the solvent.

By specifying the deviation N of the density of light ions
from the equilibrium density N, in terms of the gas-kinetic
pressure p, = (No + N)kgT, the coupled system of equa-
tions for fields and currents can be written in the usual form

0
Noma—l;: —Nomvv + NoeE — Vpg,
on
EJ’_NOVU:O’
10D 10E 4wy
tH=-——=—-——+— 9
ro cd cot ¢’ ®
10H
rotk = ——a—,
¢ Ot
j:N()eU.

Here, m is the mass of a light ion (which is assumed singly
charged); v = 1/1; 7 is the characteristic relaxation time of
the distribution function; and the frequency v determines
the mobility u = mv of ions. We can pass to the diffusion
model by assuming formally in (9) that w/v <1 and
restricting ourselves to the zero-order terms in this
parameter.

By performing the Fourier transform in (9) over spatial
and time variables and solving the obtained algebraic
equations for j(w,p), taking into account the definition
of ¢, we find

a)g 1
eL(w,p) =1 *pm,
where D = kg T/m(u2 determines the spatial dispersion.

By introducing a new variable A= p + k, — k, passing to
a spherical coordinate system with a polar axis coinciding
with the z axis, integrating over the azimuthal angle ¢, and
substituting the obtained expression into the correlation
function f.., we rewrite equation (8) in the form
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1 00 _ 2
(H?) = —2nAJ de . (Ax — Ak)
1 0 A%+ Ak? —2AAkx
x{ 1 —cos(24p)

1, o .
Ve +5p [14 cos(24p)] — Zsm(ZAp)}

1
x [sz — w3 — oA + Ak? — 2AAkx) + ivAw * C'C} A%’
(10)

where A ~ (1/2)vAw; Ak = Aw/c¢; Ao =Q — v, is the
detuning from the incident-wave frequency; o = kg7/m is
the square of the thermal velocity; x = cos0; 0 is the polar
angle. The integral in (10) can be represented as a sum of
two integrals according to the terms in the second factor in
the integrand. Each of these integrals diverges at A = 0 [the
point A =0 in expression (10) is a removable singularity].
To overcome this difficulty, we can make the change of
variables 4> — A% + ¢® and pass to the limit ¢ — 0 in final
expressions. In this case, the contributions from poles
A = +ie will be mutually compensated.

One can easily verify that the ordinary poles of the
1ntegrand in (10) corresponding to the roots A;, =
Ak[x + (x> = 1)!/?] of the equation A> — 2AAkx + Ak’=0
make the contrlbutlon to the integral over x only in the
region x < 1 [see below (11)]. Therefore, for frequency
detunings Awp/c > 1, which are of the main interest for
real scattering macroscopic objects, the imaginary part of
the coordinates of the poles will be ~Ak, and oscillating
terms in (10) can be neglected. Simultaneously, the con-
dition p*> A~ will be fulfilled. In the above range of
frequency detunings, the contribution from the ordinary
poles to the required function (H?) has the form

47128,02
Ak[(Aw? — 0})?

(1), = x?) P

+v2Aw? Jo(l -

= By (11)
Ak[(Aw? — 02)’ +V?Aw?]

For definiteness, the detunings Aw in expression (11) are
chosen positive Q > wg,.

Consider now the contribution to the electromagnetic
radiation from poles corresponding to the zeroes of the
longitudinal component of the permittivity tensor of the
medium. For Aw > 0, an ordinary pole at the point 1/¢
lying in the upper half-plane of the complex plane A (recall
that the subscript L corresponds in this case to the
longitudinal component of the permittivity of the scattering
medium) has the form

1 ) ) 5 vAw 1"
= Akx + | = (Ao” — o)) — Ak (1—x3+i—
o o
Let us estimate the imaginary part of A;. For Aw’—

wg > vAw, we have Im/ll ~v/y/a. When Ao < o, we
Obtdln ImA; ~ (va/oc) By repeating the prev1ous
reasoning, assuming that longitudinal thermal vibrations
quite strongly decay over the characteristic size of the
scattering volume, which is determined by the conditions

v V(Up 1/2
— > 1, — > 1,
v p(cc)

we can still neglect oscillating terms in (10). Note that these
inequalities correspond obviously to the case when the
correlation radius of the longitudinal thermal field is
substantially lower than the scatterer size. The omitted
oscillating terms determine, in the case of a weak decay,
interference effects in the medium.

The thermal velocity of a hydrogen ion at normal
temperatures is /o ~ 1.4 x 10° cm s~', which is many
orders of magnitude lower than the speed of light, and
we have Aw?/o> Ak? for this ion. Away from the
resonance, we have (Aw —wp)/oc>Ak2 so that the
term containing Ak? in the expression for A, under the
root sign can be neglected. If vcz/oc > my, the term with Ak?
can be omitted near the resonance as well. We assume below
that these conditions are fulfilled.

By choosing for the term ~1/¢* the integration contour
passing in the lower half-plane A containing the pole
Ay, = A}, after calculation of residues and subsequent
integration over x, we obtain finally

n’B P>\
6vA® Re[(Aw? — w?) + ivAw]3/2 .

(H?), = (12)

The ratio of contributions (12) and (11) to the total additive
spectral emission line is

(H?), _

i _ {el(80’ — 02) +vAw]}'?
(H?), '

6mcey

For small detunings and near the resonance, this ratio is
~(l/6nc)(occup/v)1/2. Therefore, in the approximations used
here, this ratio is smaller than unity, i.e., the contribution of
(H?), dominates. The second contribution becomes com-
parable with the first one for Aw ~ vc/+/a. Under real
conditions, (H 2>1 covers virtually entire scattering spec-
trum.

It follows directly from the above discussion that the
spectral distribution of scattered radiation does not depend
on diffusion in the ion system, which determines the spatial
dispersion of the thermal field. Note here that this is
explained by the geometry of the process (scattered radi-
ation is detected along the direction of propagation of the
incident beam). For other observation angles corresponding
to the contribution of (H?), comparable to that of (H?),,
the scattering spectrum can strongly depend on the rate of
ion diffusion. The effect of thermal plasma oscillations on
the shape of the scattering spectrum /(Aw) (Fig. 2) strongly
depends on the ratio of the plasma frequency w, to the
width v of the plasma oscillation line. When this line is
broad (w,/v < 2), the spectral density of scattered radiation
monotonically decreases with increasing frequency shift Aw
of the scattered wave with respect to the incident wave. For
sufficiently large detunings Aw, the intensity I(Aw) of
scattered radiation decreases as Aw . In the case of a
weak decay, the case w,/v > 2 is realised, and the spectral
curve I(Aw) exhibits a minimum at the detuning

B [3(2w§—v2) — (1608 — 3602v> + 94"

2.2 4 1/2
p pV /
10 ’

and a maximum at the frequency

{3(2(05 —v3) +

(160 — 3602v> + 9v4)]/2} 12
10 '

Awmax =
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, / V5 , Aw

Figure 2. Spectral intensity of a scattered wave for w, /v > 2.

As the ratio w,/v increases, the interval between
frequencies Awp;, and Awg,, increases and the ratio of
spectral intensities at these frequencies increases as well.
When the plasma oscillation line is narrow (w,/v > 1), the
positions of the maximum and minimum of the spectral
curve are determined by the expressions

Awmin ~ wp/\/ga Awmax ~ Dp,
respectively, while the ratio of spectral intensities is
H(0x) I~ (@pin) ~ w§/3v2. Note that the absolute inten-
sity of scattered radiation is determined by the cross section
of the scatterer. In the diffusion model, the scattering
spectrum has the shape I(Aw) ~ [Ak(1 + szrf)}fl, where
g =v/ wé is the time of dielectric relaxation in the medium.
Therefore, the radiation intensity gradually decreases with
increasing frequency shift. In this case, the width of the
spectrum is ~1/t4.

When the characteristic frequencies are close to the
frequencies of resonance transitions in the scatterer, the
scattering spectrum is determined by the one-photon
absorption spectrum of the scatterer.
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