
Abstract. The SHG eféciency is calculated in periodically
poled crystals in the éxed-intensity approximation. It is
shown that, as in homogeneous crystals, the solution obtained
in this approximation coincides, with an accuracy of the
factor �l=L�6, with the exact solution for a nonlinear regime
even when the quasi-phase-matching condition is exactly
fulélled. The relative accuracy of this approximation
increases with increasing mismatch ( l is the crystal length
and L is the nonlinear length). The éxed-intensity approx-
imation can be used for such crystals up to l � L even in the
case of exact quasi-phase matching, while the éxed-éeld
approximation is valid only for l < 0:3L.

Keywords: second harmonic generation, periodically poled struc-
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1. Introduction

Periodically poled crystals (PPCs) attract considerable
scientiéc and practical interest as efécient converters of
laser radiation to optical harmonics and parametric waves.
In such crystals, the so-called quasi-phase matching is
realised [1]. The PPC represents an artiécially constructed
system of sequentially arranged domains with the antipa-
rallel direction of spontaneous polarisation. The domain
size in the propagation direction of radiation is exactly
equal to the so-called coherence length at which the
generalised phase shift between the fundamental wave
and the second-harmonic wave achieves 908 [2].

The PPCs have a number of advantages over homoge-
neous crystals. For example, they can be manufactured by
using nonlinear media, which do not possess the conven-
tional phase matching (including isotropic media), and new
components of the nonlinear tensor of the type d33 (which
are not available in conventional crystals). In addition, there
are no restrictions on the polarisation of the waves in PPCs,
several optical harmonics can be simultaneously generated
in one crystal, parametric generation of light with multiple
frequencies can be performed, etc. [1].

In the éxed-éeld approximation, which is widely used in
SHG calculations in PPCs, the coherence length of the
crystal depends only on the mismatch of the wave vectors,
while the complex amplitude of the laser radiation éeld is
assumed constant. In other words, both the real amplitude
and phase of the fundamental wave are assumed constant.
This approximation substantially simpliées calculations;
however, information on the nonlinear character of the
interaction is lost and a number of important features of
SHG disappear [2]. The correctness and the region of
application of this approximation for calculating PPCs
are not a priori obvious.

Of course, this problem can be solved by direct com-
puter-aided numerical calculations of a sequence of
nonlinear truncated equations for SHG in each domain
[2]. It is also interesting to obtain exact solutions for SHG in
PPCs (for a crystal as a whole) in terms of special functions,
which are used in the SHG theory in homogeneous crystals
[3]. In this paper, we use for analytic calculations the so-
called éxed-intensity approximation for the fundamental
radiation in which only the real amplitude of the funda-
mental radiation is assumed constant, but not its phase [4]
(see also [2]). In this approximation, the coherence length
depends not only on the mismatch, but also on the so-called
nonlinear length, i.e., on the nonlinearity parameters and the
amplitude of the fundamental radiation éeld [2].

2. Basics equations and their solution in the
éxed-intensity approximation

An ideal PPC has the `lattice' period L � 2mlc, where
lc � p=Dk is the coherence length in the domain in the
éxed-éeld approximation; Dk � k2 ÿ 2k1 is the wave
detuning for phase matching of type I in the domain;
k1;2 is the wave numbers for the fundamental (1) and
second (2) harmonics; and m is the quasi-phase-matching
order. As a rule, Dk4 2s1U in PPCs, where U 2 �
�a1(0)�2 � �a2(0)�2s2=s1 is a constant, which is one of the
two exact integrals of the system of nonlinear truncated
equations [2]; s1;2 are nonlinear coupling coefécients; and
a1;2(0) are the amplitudes of the waves at the domain exit.

It was shown in our paper [3] that, by making the
appropriate change of variables in equations describing
SHG in conventional homogeneous crystals, we can obtain
similar equations that describe SHG in PPCs as a whole by
making the change of variables

x! 2x
mp

, D1 ! ÿ
mpb
2
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where x � s1Uz is the reduced length in the interaction
direction z; D1 � Dk=2s1U is the reduced wave detuning in
the domain; b � D1Dk

0=Dk is the reduced generalised
mismatch (in the crystal as a whole); Dk 0 � Dkÿ Km is
the generalised SHG mismatch in the PPC as a whole; and
Km � 2pm=L is the wave number (the modulus of the
reciprocal lattice vector) of the PPC, i.e., Dk 0 � Dkÿ
2pm=L.

The truncated equations with these new variables for the
complex amplitudes A1;2 of plane interacting waves for SHG
in PPCs in the absence of absorption have the form [3]

dA1

dz
� ÿis1A �1A2 exp�ÿi�Dkÿ 2pm=L�z�,

(1)

dA2

dz
� ÿis2A 2

1 exp�i�Dkÿ 2pm=L�z�.

Following [2, 4], we differentiate equations of system (1)
with respect to z,
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and introduce the wave intensities

I1 � A1A
�
1 � a 2

1 , I2 � A2A
�
2 � a 2

2 . (3)

By using (3), we rewrite (2) in the form

d2A1

dz 2
� i

�
Dkÿ 2pm

L

�
dA1

dz
ÿ s1�s1I2 ÿ s2I1�A1 � 0,

(4)
d2A2

dz 2
ÿ i

�
Dkÿ 2pm

L

�
dA2

dz
� 2s1s2A2I1 � 0.

The éxed-intensity approximation for the fundamental
radiation means that I1(z) � I1(0) � I10 � a 2

1 (0), and the
equation for A2 in (4) takes the form

d2A2

dz 2
ÿ i

�
Dkÿ 2pm

L

�
dA2

dz
� 2s1s2A2I10 � 0. (5)

Let us introduce the boundary conditions at the entrance
to the PPC as a whole:

A2�0� � 0,
dA2

dz
� ÿis2A 2

1 �0�. (6)

The solution of equation (5) can be represented in the form

A2�z� � ÿis2A 2
1 �0�z exp

�
i

�
Dkÿ 2pm

L

�
z

2

�
sinc�Qz�, (7)

where

Q �
��

1

2

�
Dkÿ 2pm

L

��2
� 2s1s2I10

�1=2

. (8)

For a suféciently large generalised (i.e., for the crystal as a
whole) wave mismatch (Dkÿ 2pm=L)4 (2s1s2I10)

1=2, the
éxed-intensity approximation coincides with the éxed-éeld
approximation [2].

Let us introduce the real amplitude and phase of the
second-harmonic éeld and rewrite equation (7), taking into
account that ÿi � exp (ÿ ip=2), in the form

a2�z� exp�ij2�z�� � s2a
2
1 �0�z sinc�Qz�

� exp

�
i

�
2j1�0� ÿ

p
2
� 1

2

�
Dkÿ 2pm

L

���
. (9)

This gives

a2�z� � s2a
2
1 �0�z sinc�Qz�, (10)

j2�z� � 2j1�0� ÿ
p
2
� 1

2

�
Dkÿ 2pm

L

�
. (11)

In the éxed-éeld approximation, we have instead of (10)
[2]

a2�z� � s2a
2
1 �0�z sinc

�
1

2

�
Dkÿ 2pm

L

��
. (12)

Let us énd the solution for the phase j1(z) of the
fundamental radiation in the éxed-intensity approximation.
By introducing the real amplitude and phase, we obtain
from the érst equation of system (1)

da1
dz
� ia1

�
dj1

dz

�

� ÿis1a1a2 exp
�
i

�
j2 ÿ 2j1 ÿ

�
Dkÿ 2pm

L

�
z

��
, (13)

which gives for the phase

dj1

dz
� ÿs1a2 cos

�
j2 ÿ 2j1 ÿ

�
Dkÿ 2pm

L

�
z

�
. (14)

By using relations (10) and (11), we transform (14) to the
relation

dj1

dz
� ÿs1s2I10z sinc�Qz�

� sin

�
2j1�0� ÿ 2j1�z� ÿ

�
Dkÿ 2pm

L

�
z

2

�
. (15)

The solution of this equation has the form

j1�z� � j1�0�

� �Dkÿ 2pm=L�z
8� �Dkÿ 2pm=L�2=�s1s2I10�

�1ÿ sinc�2Qz��. (16)
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This means that the phase velocity of the fundamental
radiation wave and, hence, the refractive index of the PPC
depend on the radiation intensity, i.e., the self-action of the
light wave takes place in a quadratically nonlinear medium.

By introducing the effective length of nonlinear inter-
action L � (s1s2I10)

ÿ1=2, we write expression (8) for the
parameter Q in the form

Q � 1

2

�
Dkÿ 2pm

L

��
1� 8

��
Dkÿ 2pm

L

�
L

�ÿ2�1=2
. (17)

It follows from relation (10) that the generalised coher-
ence length Lc (i.e., the coherence SHG length for the entire
PPC rather than for a domain), in the éxed-intensity
approximation (i.e., the distance at which the second
harmonic amplitude does not decrease) for SHG in the
PPC is determined by the expression

Lc �
p
2Q
� p

Dkÿ 2pm=L

�
�
1� 8

��Dkÿ 2pm=L�L�2
�ÿ1=2

(18)

Note that Lc 4 lc, where lc is the coherent interaction length
in the domain in the éxed-éeld approximation.

According to (18), the period a2(z) of the spatial beats of
the real amplitude in the PPC, i.e., the quantity 4Lc depends
on the nonlinear length L and, hence, on the intensity I10.
Recall that the coherence SHG length Lc � p(Dkÿ
2pm=L)ÿ1 in the PPC is independent of the intensity in
the éxed-éeld approximation.

It is interesting to compare expression (8) for Lc

obtained in the éxed-intensity approximation with the exact
expression for the coherence length, which is equal to one
fourth of the period of spatial beats, in the `nonlinear'
regime (when the reaction of the fundamental radiation to
the second harmonic is taken into account) [2]:

L pres
c � KL

���
b

p
, (19)

where

K �
� 1

0

��1ÿ y 2��1ÿ b 2y 2��ÿ1=2dy (20)

is the complete elliptic integral of the érst kind [5] and

b � 1�
�
Dkÿ 2pm=L

4

�2
L2. (21)

The calculation of the coherence length by exact
expression (19) shows that it virtually coincides with the
coherence length (19) calculated in the éxed-intensity
approximation when the condition

Lc

L
<

p
2
. (22)

is fulélled.
Relation (22) is not fulélled for small generalised mis-

matches Dkÿ 2pm=L or at low intensities (when Lc 4L),
but in any case the éxed-intensity approximation gives more
correct results than the éxed-éeld approximation. Let us
prove this statement by the example of the exact fulélment

of the phase-matching condition in the PPC (Dk � 2pm=L),
when inequality (22) is not only invalid but has the opposite
sign. In this case, b � 1 and K � Lc � 1, and the expres-
sion for the SHG intensity conversion follows directly from
(1) [2]:

Zint �
I2�l �
I10
� tanh2�l=L�, (23)

where l is the crystal length.
In the éxed-éeld and éxed-intensity approximations, we

have

Zf �
�

l

L

�2
, (24)

and

Zint �
1

2
sin2

� ���
2
p

l

L

�
. (25)

respectively.
By expanding expressions (23) and (25) into power series

in the parameter l=L < 1 and comparing the obtained
expressions, we can show that the SHG eféciency (25)
calculated in the éxed-intensity approximation coincides
with exact expression (23) with an accuracy of (l=L)6. Note
that the éxed-intensity approximation can be used up to
Dk � 2pm=L even in the case of the exact quasi-phase
matching in the PPC (l � L), whereas the éxed-éeld
approximation is valid only for l < 0:3L. The accuracy
of the éxed-intensity approximation increases with increa-
sing generalised mismatch.

Finally, we present the expression for the SHG eféciency
in the PPC calculated in the éxed-intensity approximation
using (10):

Zint �
I2�l �
I10
�
�

l

L

�2
sinc2�Ql �, (26)

where the parameter Q is expressed by (10). Because Q
depends on L, i.e., on the intensity, the positions of the
zeroes Z(Dk 0) of the quasi-phase-matching curve and the
amplitudes of the secondary maxima will also depend on
the intensity: as the intensity increases, the zeroes approach
the coordinate origin, while the intensity of the secondary
maxima increase.

3. Conclusions

The calculation of the SHG eféciency in PPCs in the éxed-
intensity approximation has shown that, as in homogeneous
crystals, the solution obtained in this approximation
coincides, with an accuracy of the factor (l=L)6, with the
exact solution for a nonlinear regime even when the quasi-
phase-matching condition is exactly fulélled. The relative
accuracy of this approximation increases with increasing
mismatch. The éxed-intensity approximation can be used
up to l � L even in the case of exact quasi-phase matching
in the PPC, whereas the éxed-éeld approximation is valid
only for l < 0:3L.

The question of the correctness of using the éxed-éeld
approximation in the SHG calculations in each individual
domain of the PPC is beyond the scope of this paper. On the
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one hand, an increase in the amplitude of the harmonic éeld
in each domain, irrespective of its number, is rather small
compared to the amplitudes of the fundamental and second
harmonics (note that this statement is invalid for several érst
domains where the increase in the harmonic éeld is
compared by the order of magnitude with the éeld itself
(see also [3]), but on the other hand, the neglect of even a
small phase shift of the fundamental radiation can be
incorrect due to the accumulation of this effect at many
domains.
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